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ESTIMATES IN THE HARDY-SOBOLEV SPACE OF THE ANNULUS

AND STABILITY RESULT

Imed Feki, Sfax

(Received February 24, 2012)

Abstract. The main purpose of this work is to establish some logarithmic estimates of
optimal type in the Hardy-Sobolev space H

k,∞; k ∈ N
∗ of an annular domain. These

results are considered as a continuation of a previous study in the setting of the unit disk
by L.Baratchart and M. Zerner, On the recovery of functions from pointwise boundary
values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269
and by S.Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces
H

k,∞, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006.
As an application, we prove a logarithmic stability result for the inverse problem of

identifying a Robin parameter on a part of the boundary of an annular domain starting
from its behavior on the complementary boundary part.

Keywords: annular domain, Poisson kernel, Hardy-Sobolev space, logarithmic estimate,
Robin parameter

MSC 2010 : 30H10, 30C40, 35R30

1. Introduction

The purpose of this paper is to establish logarithmic estimates of optimal type in

the Hardy-Sobolev space H1,∞(Gs) where s ∈ ]0, 1[ and Gs is the annulus of radius

(s, 1). More precisely, we study the behavior on the whole boundary of the annulus

Gs with respect to the uniform norm of any function f in the unit ball of the Hardy-

Sobolev space H1,∞(Gs) starting from its behavior on any open connected subset

I ⊂ ∂Gs with respect to the L1-norm. Our result can be viewed as an extension of

those established in [7], [14], [15].

This research has been supported by the Laboratory of Applied Mathematics and Har-
monic Analysis: L. A. M. H. A. LR 11ES52.
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The particular case where I = T has been considered by L. Leblond, M.Mahjoub

and J.R. Partington in [14]. The authors proved in this case that the L2-norm of

any function f in the unit ball of the Hardy-Sobolev space H1,2(Gs) on the inner

boundary sT is controlled by the corresponding norm taken on the outer boundary T.

In the same context, H.Meftahi and F.Wieolonsky gave recently in [15] an explicit

logarithmic inequality exhibiting the dependence with respect to the inner radius s

of the above control. The first estimate of this kind remounts to L. Baratchart and

M. Zerner in [2] where the authors proved, a log log / log control with L2-norm in the

Hardy-Sobolev space H1,2 of the unit disk D. In [1], Alessandrini et al. have proved

by a quite different method an estimate of 1/ logα-type, 0 < α < 1. Recently, the

author of this paper together with S.Chaabane [5] proved in the uniform norm some

optimal logarithmic estimates in the Hardy-Sobolev space Hk,∞(D); k ∈ N
∗.

For more regular functions, we improve inequality (3.6) amid the class of bounded

Hk,∞(Gs) functions.

These logarithmic estimates allow us to prove a stability result for the inverse

problem of recovering a Robin coefficient on a part of the boundary of an annular

domain starting from its behavior on the complementary boundary part. The par-

ticular case where the inaccessible part of the boundary is the inner circle has been

proved in [14]. We can also refer the reader to [1], [5], [7], [14], [15] for stability

estimates in the case of simply or doubly connected domains.

2. Notation and preliminary results

Let D be the open unit disk in C with boundary T and let Gs denote the annulus:

Gs = {z ∈ C; s < |z| < 1}; 0 < s < 1.

The boundary of the annular domain Gs consists of two pieces sT and T: ∂Gs =

sT∪T. Let I be any connected open subset of the boundary ofGs and let J = ∂Gs\I.

We also equip the boundary ∂Gs with the usual Lebesgue measure µ normalized so

that the circles T and sT each have unit measure. Furthermore, we denote λ =

µ(I)/(2π), assume that λ ∈ ]0, 1[ and define

‖f‖L1(I) =
1

2πλ

∫

I

|f(reiθ)| dθ,

for the L1-norm of f on I, where r = s if I ⊂ sT and r = 1 if I ⊂ T.

In the sequel, the Hardy spaceH∞(Gs) is defined as the space of bounded analytic

functions on Gs. According to ([11], Theorem 7.1), the Hardy space H∞(Gs) can be
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identified with the direct sum

H∞(Gs) = H∞(D) ⊕ H∞
0 (C \ sD),

where the Hardy space H∞
0 (C \ sD) is defined as the set of analytic functions in

C \ sD, with a zero limit at infinity. Hence we can regard it as a closed subspace

H∞(∂Gs) of L
∞(∂Gs). Equivalent definitions of Hardy spaces on annular domains

are discussed by several authors ([3], [10], [11], [17], [18]). We can also refer the

reader to [12] for more comprehensive details on Hardy spaces.

For k ∈ N
∗, we designate by Hk,∞(Gs) the Hardy-Sobolev space of order k of the

annulus

Hk,∞(Gs) = {f ∈ H∞(Gs) : f (j) ∈ H∞(Gs), j = 0, . . . , k},

where f (j) denotes the jth complex derivative of f . We endow Hk,∞(Gs) with the

norm inherited from the space L∞(∂Gs):

‖f‖Hk,∞(Gs) = max
06j6k

(‖f (j)‖L∞(sT) + ‖f (j)‖L∞(T)).

Let Bk,∞ = {f ∈ Hk,∞(Gs); ‖f‖Hk,∞(Gs) 6 1} be the closed unit ball of Hk,∞.

Next, we introduce the Poisson kernel p for the annulus Gs. Following Sarason [18]

and Hwai [19], we consider the holomorphic function

F (t, r) =
1

2q0
tanh

(

− πt

2q0
+ i

(

π

4
+

π

2q0
log

r√
s

))

,

where q0 = − log s, 0 < s < r < 1 and t ∈ R.

The imaginary part P (t, r) of F (t, r) is the harmonic function given by:

P (t, r) =
1

2q0

cos(πq0
−1 log(r/

√
s))

cosh(q0
−1

πt) − sin(πq0
−1 log(r/

√
s))

.

Referring to [19, p. 92], we recall the following lemma.

Lemma 2.1. The harmonic function P posseses the following properties:

(i) P (t, r) > 0 for s < r < 1 and t ∈ R.

(ii)
∫ +∞
−∞ P (t, r) dt +

∫ +∞
−∞ P (t, s/r) dt = 1 for s < r < 1.

(iii) There exists a non negative constant C such that for every |t| 6 π and j large

enough, we have:

|P (t + 2πj, r)| 6 min

(

C

j4
,

C cos(π/q0) log(r/
√

s)

t4

)

.
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This lemma allows us to define the Poisson kernel p for the annular domain Gs:

p(t, r) =

+∞
∑

j=−∞
P (t + 2πj, r) for |t| 6 π and s < r < 1.

We also have, from [19], the following lemma.

Lemma 2.2.

(i) p(t, r) is a harmonic function on the annulus Gs.

(ii) p(t, r) > 0 for s < r < 1 and |t| 6 π.

(iii) (2π)−1
∫ 2π

0
p(t, r) dt + (2π)−1

∫ 2π

0
p(t, s/r) dt = 1 for s < r < 1.

In the next lemma, we recall the Poisson-Jensen formula for the annulus, see ([18,

p. 25]). This will be of interest later.

Lemma 2.3. Let f 6≡ 0 be a function in Hq(Gs) for 1 6 q 6 ∞. Then for all
reit ∈ Gs we have

log |f(reit)| 6
1

2π

∫ 2π

0

p(t, r) log |f(eit)| dt +
1

2π

∫ 2π

0

p
(

t,
s

r

)

log |f(seit)| dt.

3. Optimal logarithmic estimates in Hk,∞

Our objective in this section is to establish some logarithmic estimates in the

Hardy-Sobolev space Hk,∞(Gs); k ∈ N
∗ that can be viewed as a continuation of

the results already established by [5], [14], [15]. We start by recording a variant of

the Hardy-Landau-Littlewood inequality which will be used crucially in the proofs

of Theorem 3.5 and Theorem 3.7, see [4, chapter VIII p. 147] and [16].

Lemma 3.1. Let I be a bounded interval and let j ∈ N satisfy j > 2. Then,

there exists a non negative constant C∞(I , j) such that

(3.1) ‖g′‖L∞(I ) 6 C∞(I , j)‖g‖1/j
W j,∞(I )‖g‖

1−1/j
L∞(I ) for all g ∈ W j,∞(I ).

Next, we give a lower bound for the Poisson kernel p which will be useful for the

proof of Lemma 3.3.
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Lemma 3.2. There exists a non negative constant Cs depending only on s ∈ ]0, 1[

such that for every |t| 6 π we have

p(t, r) >
2Cs

log s
(log s − log r) if s < r 6

√
s,

p(t, r) >
2Cs

log s
log r if

√
s 6 r < 1.

P r o o f. Let us recall that q0 = − log s. Let r ∈ ]s, 1[, then πq−1
0 log(r/

√
s) ∈

]− 1
2π, 1

2π[ and therefore

P (t + 2πj, r) >
1

2q0(1 + cosh πq0
−1(t + 2πj))

cos
(

π

q0
log

( r√
s

))

.

Since

Cs(t) =
1

2q0

+∞
∑

j=−∞

1

1 + cosh πq0
−1(t + 2πj)

< ∞ for every |t| 6 π,

we deduce that

(3.2) p(t, r) > Cs cos
(

π

q0
log

( r√
s

))

, Cs = inf
|t|6π

Cs(t).

In the case where r ∈ ]s,
√

s], we have πq0
−1 log

(

r/
√

s
)

∈
]

− 1
2π, 0

]

. Using the

inequality cosx > 2π
−1x + 1 for x ∈

]

− 1
2π, 0

]

, we obtain

p(t, r) >
2Cs

log s
(log s − log r).

Otherwise, r ∈ [
√

s, 1[ and πq0
−1 log(r/

√
s) ∈ [0, 1

2π[. Using the inequality cosx >

−2π
−1x + 1 for x ∈ [0, 1

2 π[, we obtain

(3.3) p(t, r) >
2Cs

log s
log r,

which completes the proof of the Lemma. �

We adapt the same arguments as those developed in ([2], Lemma 4.1) with some

slight shifts to prove
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Lemma 3.3. Let g ∈ H∞(Gs) and m > ‖g‖L∞(∂Gs). Then, for every z ∈ Gs, we

have

|g(z)| 6 m
∥

∥

∥

g

m

∥

∥

∥

2λCslog−1 s(log s−log |z|)

L1(I)
if s < |z| 6

√
s,

|g(z)| 6 m
∥

∥

∥

g

m

∥

∥

∥

2λCslog−1 s log |z|

L1(I)
if
√

s 6 |z| < 1.

P r o o f. Let h = g/m and let z = reit ∈ Gs. From Lemma 2.3 and the fact that

log |h| is a non positive subharmonic function, we get

log(|h(reit)|) 6
1

2π

∫ 2π

0

p(t−θ, r) log(|h(eiθ)|) dθ+
1

2π

∫ 2π

0

p
(

t−θ,
s

r

)

log(|h(seiθ)|) dθ.

If we suppose that I ⊂ T, then by using the facts that p(t, r) > 0 and log |h| 6 0 we

deduce that

log(|h(reit)|) 6 λ

∫

I

p(t − θ, r) log(|h(eiθ)|) dθ

2πλ
;

consequently, from Lemma 3.2 we obtain

log(|h(z)|) 6
2λCs

log s
(log s − log r)

∫

I

log(|h(eiθ)|) dθ

2πλ
if s < |z| 6

√
s,

log(|h(z)|) 6
2λCs

log s
log r

∫

I

log(|h(eiθ)|) dθ

2πλ
if
√

s < |z| < 1.

By using Jensen’s inequality we deduce that

|g(z)| 6 m
∥

∥

∥

g

m

∥

∥

∥

2λCslog−1 s(log s−log |z|)

L1(I)
if s < |z| 6

√
s,

|g(z)| 6 m
∥

∥

∥

g

m

∥

∥

∥

2λCslog−1 s log |z|

L1(I)
if
√

s < |z| < 1.

If we suppose that I ⊂ sT, then by using again the facts that p(t, r) > 0 and

log |h| 6 0 we get

log(|h(reit)|) 6 λ

∫

I

p
(

t − θ,
s

r

)

log(|h(seiθ)|) dθ

2πλ

and the proof can be completed in a way similar to the first case. �

Let f ∈ H∞(Gs) and let t be a real number such that |t| 6 π. We designate by

Ft the radial primitive of f that vanishes at s and is defined by

(3.4) Ft(r) =

∫ r

s

f(xeit) dx for all r ∈ I = ]s, 1[.

From Lemma 3.3 we obtain
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Lemma 3.4. Let f ∈ H∞(Gs) and m > ‖f‖L∞(∂Gs). We suppose that f is not

identically zero and that ‖f‖L1(I) < e−q0/λCs . Then for all |t| 6 π and r ∈ ]s, 1[ we

get

(3.5) |Ft(r)| 6
(2s + 1)q0m

∣

∣2λCs log ‖f/m‖L1(I)

∣

∣

.

P r o o f. Let |t| 6 π and r ∈ ]s, 1[. From (3.4) and the monotonicity of the

function η(y) =
∫ y

s
|f(xeit)| dx we have

|Ft(r)| 6

∫

√
s

s

|f(xeit)| dx +

∫ 1

√
s

|f(xeit)| dx,

and according to Lemma 3.3 we get

|Ft(r)| 6 m

∫

√
s

s

∥

∥

∥

f

m

∥

∥

∥

2λCslog−1 s(log s−log x)

L1(I)
dx + m

∫ 1

√
s

∥

∥

∥

f

m

∥

∥

∥

2λCslog−1 s log x

L1(I)
dx

6
ms

|1 + 2λCsq0
−1 log ‖f/m‖L1(I)|

+
m

|1 − 2λCsq0
−1 log ‖f/m‖L1(I)|

.

From the assumption that ‖f‖L1(I) < e−q0/λCs we have

1

|1 + 2λCsq0
−1 log ‖f/m‖L1(I)|

6
2

|2λCsq0
−1 log ‖f/m‖L1(I)|

,

and therefore, we conclude the desired inequality

|Ft(r)| 6
(2s + 1)q0m

|2λCs log ‖f/m‖L1(I)|
.

�

We are now in a position to establish the main control theorem in the Hardy-

Sobolev space H1,∞(Gs).

Theorem 3.5. Let f ∈ B1,∞ and m > ‖f‖L∞(∂Gs). We suppose that f is not

identically zero and that ‖f‖L1(I) < e−q0/λCs . Then

(3.6) ‖f‖L∞(∂Gs) 6
C2

∞(I , 2)/(1 − 1/2e)

|λ0log‖f‖L1(I)|
where λ0 = min

(

1,
2λCs

(1 + 2s)q0

)

.

Moreover, for I = T there exists a sequence of functions fn ∈ B1,∞ such that

(3.7) lim
n→+∞

‖fn‖L∞(∂Gs)|log‖fn‖L1(T)| > s|log s|.
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P r o o f. For every |t| 6 π let Ft be the radial primitive of f defined by equation

(3.4) and let m > max(‖f‖L∞(∂Gs), 1). According to Lemma 3.4, we have

(3.8) |Ft(r)| 6
m

|λ0 log ‖f/m‖L1(I)|
, where λ0 = min

(

1,
2λCs

(1 + 2s)q0

)

.

Since f ∈ B1,∞, by virtue of the Hardy-Landau-Littlewood inequality (3.1) there

exists a non negative constant C = C∞(I , 2) such that

‖f‖L∞(∂Gs) 6 C‖F‖1/2
L∞(Gs)

,

and consequently,

(3.9) ‖f‖L∞(∂Gs) 6 m1 := C

(

m

|λ0 log ‖f/m‖L1(I)|

)1/2

.

Making use of (3.8) and (3.9) for the new estimate m1 of ‖f‖L∞(∂Gs), one obtains

(3.10) ‖f‖L∞(∂Gs) 6 C

(

m1

|λ0 log ‖f/m1‖L1(I)|

)1/2

.

Let η(x) = x|log x|1/2 and α = 1 − 1/(2e). Since m > 1, λ0 6 1 and g(x) 6 xα in

]0, 1], we get
∥

∥

∥

f

m1

∥

∥

∥

L1(I)
=

(mλ0)
1/2

C
η
(
∥

∥

∥

f

m

∥

∥

∥

L1(I)

)

6 ‖f‖α
L1(I).

From (3.10) and the monotonicity of the mapping ε(x) = 1/|Logx| we obtain

‖f‖L∞(∂Gs) 6 C1+1/2 m(1/2)2(1/α)1/2

|λ0log‖f‖L1(I)|1/2(1+1/2)
.

Proceeding thus repeatedly, we obtain for every k ∈ N
∗

‖f‖L∞(∂Gs) 6 Cbk
m(1/2)k+1

(1/α)ck

|λ0log‖f‖L1(I)|ak
,

where ak, bk and ck are three recurrent sequences satisfying

a1 =
1

2

(

1+
1

2

)

, b1 = 1+
1

2
, c1 =

1

2
, ak+1 =

1 + ak

2
, bk+1 = 1+

bk

2
, ck+1 =

1 + ck

2
.

The proof of inequality (3.6) is completed by letting k → +∞. �
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To prove equation (3.7), we consider the sequence of functions un(z) = 1/zn;

n ∈ N
∗.

Let I = T and let fn = un/‖un‖H1,∞(Gs) be the H1,∞(Gs) normalized function

of un. Then

‖fn‖L∞(sT) =
1/sn

n(1 + 1/sn+1)
, ‖fn‖L∞(T) =

1

n(1 + 1/sn+1)

and ‖fn‖L∞(∂Gs) =
1 + 1/sn

n(1 + 1/sn+1)
.

Let An = ‖fn‖L∞(∂Gs)|log ‖fn‖L∞(T)|, then we have

An = s
1 + sn

n(1 + sn+1)
|log n + log(1 + sn+1) − (n + 1) log s|.

Hence, lim
n→∞

An = s|log s| and this completes the proof. �

Remark 1. The estimate (3.6) still holds in a more general situation of a smooth

doubly-connected domain G ⊂ R
2 (see [13] for more details on conformal mapping).

Remark 2. The estimate (3.6) of Theorem 3.5 is of optimal type: it is impossible

to find a function ε which tends to zero at zero such that for all f ∈ B1,∞,

‖f‖L∞(∂Gs) 6
1

|log‖f‖L1(I)|
ε(‖f‖L1(I)).

Remark 3. The estimate (3.6) of Theorem 3.5 is false in the general setting of

bounded function f ∈ H∞(Gs) (we consider the H∞-normalized function of un).

Remark 4. The problem under investigation is to give the optimal constant C

in equation (3.6):

C = max
f∈B1,∞

‖f‖L∞(∂Gs)|log‖f‖L1(I)|.

The following corollary is a direct consequence of Theorem 3.5.

Corollary 3.6. Let K > 0 and f ∈ H1,∞(Gs) be such that ‖f‖H1,∞(∂Gs) 6 K

and ‖f‖L1(I) < e−q0/λCs . Then we have

‖f‖L∞(∂Gs) 6
C2

∞(I , 2)max(1, K)/(1 − 1/(2e))

|λ0log‖f‖L1(I)|
.

If we suppose that f is more regular, then we can improve inequality (3.6) in the

same way as in the proof of Theorem 3.5.
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Theorem 3.7. Let k ∈ N
∗. There exists a non negative constant C depending

only on k, s and λ such that every f ∈ Bk,∞ satisfying ‖f‖L1(I) < e−q0/λCs also

satisfies

‖f‖L∞(∂Gs) 6
Ck(s)

|log‖f‖L1(I)|k
.

Moreover, for I = T, there exists a sequence fn in Bk,∞ such that

(3.11) lim
n→+∞

‖fn‖L∞(T)|log ‖fn‖L1(I)|k > s|log s|k.

P r o o f. For every |t| 6 π we have according to the proof of the previous theorem

that the radial primitive Ft of f satisfies inequality (3.8). Since f ∈ Bk,∞, then from

the Hardy-Landau-Littlewood inequality (3.1) applied to j = k + 1 we prove that

there exists a non negative constant C = C∞(I , k + 1) such that

(3.12) ‖f‖L∞(∂Gs) 6 m1 := C
( m

|λ0 log ‖f/m‖L1(I)|
)k/(k+1)

.

Similarly to the proof of Theorem 3.5, consider ̺ = k/(k + 1), g̺(x) = x|log x|̺ and
σ = 1 − ̺/e. Then we have g̺(x) 6 xσ in ]0, 1] and consequently we establish for

every j ∈ N
∗ the inequality

‖f‖L∞(∂Gs) 6 Cbj
m(̺)j+1

(1/σ)cj

|λ0log‖f‖L1(I)|aj
,

where aj , bj and cj are three recurrent sequences satisfying

a1 = ̺(1+̺); b1 = 1+̺; c1 = ̺; aj+1 = ̺(1+aj); bj+1 = 1+̺bj and cj+1 = ̺(1+cj).

Then by letting j → +∞ we obtain

‖f‖L∞(∂Gs) 6
Ck(s)

|log ‖f‖L1(I)|k
.

To prove equation (3.11), we consider the same sequence as in the proof of equation

(3.7), with the suitable Hk,∞(Gs) normalization norm. �
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Corollary 3.8. Let K > 0, let j and k be integers with 0 6 j < k. Let f ∈ Hk,∞

be such that ‖f‖Hk,∞(Gs) 6 K and ‖f‖Hj,∞(I) < e−q0/λCs . Then there exist non

negative constants C, ε depending only on K, k, j, s and λ such that

‖f‖Hj,∞(∂Gs) 6
C

|log‖f‖L1(I)|k−j

provided that ‖f‖L1(I) < ε.

P r o o f. Let K1 = max(K, 1) and g = f/K1, then the derivative g(i) of order

i ∈ {0, . . . , j} belongs to Bk−i,∞ and satisfies the assumptions of Theorem 3.7.

Hence, there exists a non-negative constant C1 depending only on K, k, i, s and λ

such that

(3.13) ‖g(i)‖L∞(∂Gs) 6
C1

∣

∣log ‖g(i)‖L1(I)

∣

∣

k−i
.

According to [16, Theorem 1] and the assumption that g ∈ Bk,∞, there exists a non-

negative constant C2 such that

‖g(i)‖L1(I) 6 C2‖g‖1−i/k
L1(I) .

We derive from (3.13) and the monotonicity of the mapping ηi(x) = 1/ logk−i(1/x)

that

(3.14) ‖g(i)‖L∞(∂Gs) 6 C1ηi

(

C2‖g‖1−i/k
L1(I)

)

.

Let us choose ε > 0 small enough such that

(3.15) ηi(C2‖g‖1−i/k
L1(I) ) 6 2ηi(‖g‖L1(I)),

then from (3.14) and (3.15) we obtain

‖g(i)‖L∞(∂Gs) 6
2C1

|log ‖g‖L1(I)|k−i
.

Taking the maximum over all i = 0, . . . , j we complete the proof of the corollary. �

As an immediate consequence, we prove that if the L1-norm of a bounded

Hk,∞(∂Gs) function is known to be small on a connected open subset I of ∂Gs,

it remains also small (with uniform norm) on the whole boundary ∂Gs. The same

result with the L2-norm has been established by Leblond et al. in [14].
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Corollary 3.9. Let j and k be integers with 0 6 j < k, and let I ⊂ ∂Gs

be any connected open subset. Let (fp) be a sequence of functions in the unit

ball of the Hardy-Sobolev spaces Hk,∞(∂Gs) such that ‖fp‖L1(I) −→ 0. Then

‖fp‖Hj,∞(∂Gs) −→ 0.

In the particular case where I = T, the following corollary provides logarithmic

estimates with respect to the L∞-norm similar to those proved with the L2-norm by

Leblond and al. in [14].

Corollary 3.10. Let I = T, let k and j be integers with 0 6 j < k. Then

there exist non negative constants C, ε depending only on K, k, j and I such that

whenever f ∈ Bk,∞ satisfies ‖f‖Hj,∞(I) < e−q0/λCs , we have

‖f‖Hj,∞(sT) 6
C

|log‖f‖L1(T)|k−j

provided that ‖f‖L1(I) < ε.

4. Application

In this section we prove a logarithmic stability result for the inverse problem of

identification of a Robin parameter in two dimensional annular domain. Let I be

any connected open subset of the boundary of the annulus Gs and let J = ∂Gs \ I.

We consider the following inverse problem (I.P).

Given a function ϕ and a prescribed flux φ on I, find a function q ∈ Qn
ad such that

the solution u to the problem

(N.R)











△u = 0 in Gs,

∂nu = φ on I,

∂nu + qu = 0 on J

also satisfies u|I = ϕ, where ∂n stands for the partial derivative with respect to

the outer normal unit vector to ∂Gs and the admissible set Qn
ad of smooth Robin

coefficient is defined by

Qn
ad = {q ∈ C

n
0 (J) : |q(k)| 6 c′, 0 6 k 6 n, and q > c},

where c, c′ are non negative constants and K is a nonempty connected subset of J

far from the boundary of J . For q ∈ Qn
ad we denote by uq the solution of the

Neumann-Robin problem (N.R).

Referring to [6], [8], [9] we have the following
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Lemma 4.1 ([6], [8], [9]). Let n ∈ N, φ ∈ Wn,2(I) with non-negative value such

that φ 6≡ 0 and assume that q ∈ Qn
ad for some constants c, c′ > 0. Then the solution

uq of the inverse problem (I. P) belongs to Wn+3/2,2(Gs).

Furthermore, there exist non negative constants α, β such that for every q ∈ Qn
ad

and every φ ∈ Wn,2(I) we have

uq > α > 0 and ‖u‖W n+1,2(∂Gs) 6 β.

The following identifiability result proves the uniqueness of the solution q of the

inverse problem (I. P).

Lemma 4.2 ([6], [9]). The mapping

F : Qn
ad −→ L2(Γd),

q 7−→ uq/Γd

is well defined, continuous and injective.

Applying to Theorem 3.7, we establish the following stability result.

Theorem 4.3. Let n > 2 and let φ ∈ Wn,2
0 (I) be such that φ 6≡ 0 and φ > 0.

Then there exists a non negative constant C such that for any q1, q2 ∈ Qn
ad we have

‖q1 − q2‖L∞(J) 6
C

|log‖uq1
− uq2

‖L1(I)|n−1

provided that ‖uq1
− uq2

‖L1(I) < e−q0/λCs .

P r o o f. Referring to ([14], Lemma 12), we introduce for every i = 1, 2 the

analytic function fi in Gs satisfying uqi = Refi and fi ∈ Hn+1,2(∂Gs). Moreover,

Lemma 4.1 together with the Gagliardo-Nirenberg inequalities proves that there

exists non negative constantsM, K depending only on s and the class Qn
ad such that

(4.1) ‖fi‖Hn,∞(Gs) 6 M‖fi‖Hn+1,2(Gs) 6 K for i = 1, 2.

Using the equation ∂nu + qu = 0 on J , we get for f = f1 − f2 that

q1 − q2 = − 1

Ref1

∂ Imf1

∂θ
+

1

Ref2

∂ Imf2

∂θ
= − 1

Ref1

∂ Imf

∂θ
+

∂ Imf2

∂θ

Ref

Ref1Ref2
.

It follows from Lemma 4.1 that

‖q1 − q2‖L∞(J) 6
1

α
‖f‖W 1,∞(J) +

β

α2
‖f‖L∞(J) 6

( 1

α
+

β

α2

)

‖f‖W 1,∞(J).
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Hence, from (4.1) and Corollary 3.8 we get

‖q1 − q2‖L∞(J) 6
C

|log‖uq1
− uq2

‖L1(I)|n−1

provided that ‖uq1
− uq2

‖L1(I) < e−q0/λCs . �

The particular case where I = T has been recently established by Leblond et al.

in [14].

Corollary 4.4. Let n > 2, let φ ∈ Wn,2
0 (T) be such that φ 6≡ 0 and φ > 0. Then

there exists a non negative constant C such that for any q1, q2 ∈ Qn
ad we have

‖q1 − q2‖L∞(sT) 6
C

|log‖uq1
− uq2

‖L1(T)|n−1
,

provided that ‖uq1
− uq2

‖L1(T) < e−q0/λCs .
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