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TOTALLY REFLEXIVE MODULES WITH RESPECT

TO A SEMIDUALIZING BIMODULE

Zhen Zhang, Zibo, Xiaosheng Zhu, Xiaoguang Yan, Nanjing

(Received November 25, 2011)

Abstract. Let S and R be two associative rings, let SCR be a semidualizing (S, R)-
bimodule. We introduce and investigate properties of the totally reflexive module with
respect to SCR and we give a characterization of the class of the totally CR-reflexive
modules over any ring R. Moreover, we show that the totally CR-reflexive module with
finite projective dimension is exactly the finitely generated projective right R-module. We
then study the relations between the class of totally reflexive modules and the Bass class
with respect to a semidualizing bimodule. The paper contains several results which are new
in the commutative Noetherian setting.

Keywords: semidualizing bimodule, totally reflexive module, Bass class, precover, preen-
velope
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Introduction

In 1967, Auslander [1] introduced the Gorenstein dimension, or G-dimension for

finitely generated modules, and the finer details were developed in his joint paper [2]

with Bridger. The G-dimension is a relative homological dimension and Christensen

[4] studied the modules that serve as building blocks in the resolutions, which were

called modules in the G-class by Auslander [1] and [2]. In 1995, Yassemi [22] studied

Gorenstein dimensions for complexes and showed the possibility of defining the G-

dimension with respect to a semidualizing complex C. The study of semidualizing

modules goes back at least to Vasconcelos [19] who calls them spherical modules.

This module is a PG-module, which was defined by Foxby in [7] as a generalization

This research was partially supported by the National Natural Science Foundation of
China (No. 10971090).
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of a projective module and a Gorenstein module. A dualizing module is always

a semidualizing module. Relative homological algebra with respect to a semidualizing

module has caught many authors’ attention. For this topic, we refer the reader to

see Holm and White’s work [12], but also to [10], [15], [16], [17]. In [8], Golod

introduced the totally C-reflexive module with respect to a semidualizing module C

over a commutative Noetherian ring, and the homological dimension which arises by

resolving a given finitely generated module by totally C-reflexive modules is known

as the GC -dimension of a finitely generated module. In the case C = R, totally C-

reflexive modules are exactly the modules in the G-class. Hence studying the totally

C-reflexive modules is very useful; for this we refer the readers to [14].

On the other hand, Holm and White [12] extended the notion of semidualizing

modules to the associative ring, where they defined the semidualizing (S, R) bimodule

SCR for any associative rings R and S (see Definition 1.3), and the Auslander class

and Bass class with respect to SCR. Araya, Takahashi and Yoshino [3, Definition 2.1]

defined totally CR-reflexive modules with respect to a semidualizing (S, R)-bimodule

SCR over any associative rings S and R, which extends Golod’s notion of totally C-

reflexive modules with respect to a semidualizing module C to the non-commutative

non-Noetherian setting and generalizes the modules in the G-class within this setting.

In this paper, we denote the class of all totally CR-reflexive modules by TC(R) (see

Definition 2.1), and we show that many conclusions over a commutative Noetherian

ring also hold in an associative ring. Moreover, we show several results which are

new in the commutative Noetherian setting.

Section 2 is devoted to the study of the totally reflexive modules with respect to

a semidualizing bimodule SCR. We get the following result about the class TC(R)

over any ring R, see Theorem 2.3, and for the notation see Section 1:

TC(R) = gen∗(RR) ∩ cog∗(CR) ∩ ⊥(CR).

Additionally, we show that when M ∼= HomS(N, C) for some finitely generated left

S-module N , then M is totally CR-reflexive if and only if HomR(M, C) is totally

SC-reflexive, see Corollary 2.7. Moreover, we investigate the TC -dimension and the

TC(R)-precover (and preenvelope) for a finitely generated right R-module M with

degreewise finitely generated projective resolution, see Proposition 2.8.

On the other hand, recall that Add(XR) (add(XR)) denotes the class of right

R-modules M which is a direct summand of a (finite) direct sum of copies of XR.

Particularly, Add(RR) is the class of all projective right R-modules and add(RR)

is the class of all finitely generated projective right R-modules. It is proved in

Corollary 2.4 and Remark 2.2(1) that both add(CR) and add(RR) are all contained in

the class TC(R) (see Definition 2.1), and the totally CR-reflexive modules with finite
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add(CR)-projective dimensions must be contained in add(CR), see Observation 2.10.

It is natural to ask whether a totally CR-reflexive module with finite projective

dimension must be in add(RR)? The affirmative answer is shown in the following

theorem (Theorem 2.11), and it answers a special case of the question put forward

by D.White in [21, Question 2.15], i.e., when the semidualizing bimodule SCR is

faithful, White’s conjecture is true for the right R-modules with degreewise finitely

generated projective resolutions over any rings R and S.

Theorem 2.11. Let SCR be faithfully semidualizing (see Definition 1.3), and

MR ∈ TC(R). If pdRM < ∞, then M is finitely generated projective.

In Section 3, motivated by the work of Mantese and Reiten [13], we show that

there exist some relations between the classes TC(R) and BC(R) (see Definition 1.4).

Theorem 3.2. Let SCR be faithfully semidualizing. Denote by P<∞

R the class

of right R-modules which are in gen∗(RR) (see Section 1) and have finite projective

dimensions. Then

(1) ⊥BC(R) ∩ gen∗(RR) ⊆ TC(R) and ⊥BC(R) ∩ P<∞

R = TC(R) ∩ P<∞

R ;

(2) TC(R)⊥ ⊆ BC(R).

Throughout this paper, R and S are always two associative rings and SCR is

always a semidualizing (S, R)-bimodule, see Definition 1.3. A subcategory or a class

of right R-modules (left S-modules) is a full subcategory of the category of right

R-modules (left S-modules), which is closed under isomorphisms. For unexplained

concepts and notation, we refer the reader to [13], [20], [14].

1. Preliminaries

In this section, we recall a number of notions and results which will be used

throughout this work. First, we employ some notions used by S. Sather-Wagstaff,

T.Wakamatsu and D.White in [14], [20], [21].

Definition 1.1. Let X be a class of right R-modules and MR a right R-module.

A left X -resolution ofMR is an exact sequence of right R-modules X = . . . → X1 →

X0 → M → 0 with each Xi ∈ X . The right X -resolution of MR is defined dually.

The X -projective dimension of MR is the quantity

X -pdR(M) = inf{sup{n > 0: Xn 6= 0} : X is a left X -resolution of MR}.

Particularly, we denote by pdRM the projective dimension of a right R-moduleMR.

Denote by X̂ the class of right R-modules with finite X -projective dimension.
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We denote by ⊥X the subcategory of right R-modulesM such that ExtiR(M, X) =

0 for all i > 1 and all X ∈ X and similarly, X⊥ = {M : Exti
R(X, M) = 0 for all i > 1

and all X ∈ X}.

Definition 1.2 [15, Definition 1.6]. Let X be the class of right R-modules. For a

right R-moduleM , an X -precover ofM is a right R-module homomorphism ϕ : X →

M where X ∈ X is such that, for each X ′ ∈ X , the homomorphism HomR(X ′, ϕ) :

HomR(X ′, X) → HomR(X ′, M) is surjective. The term preenvelope is defined dually.

Following [6, Definition 7.1.6], an X -precover ϕ of M is called special provided

that the sequence 0 → L → A
ϕ
→ M → 0 of right R-modules with A ∈ X is exact

and L ∈ X⊥. The term special preenvelope is defined dually.

Holm and White [12, Definition 2.1] extended the definition of semidualizing mod-

ules to associative rings. They also defined faithfully semidualizing bimodules over

non-commutative rings, i.e., a semidualizing bimodule SCR is faithfully semidual-

izing if HomS(C, N) = 0 implies N = 0 and HomRoP (C, M) = 0 implies M = 0

for all modules SN and MR, see [12, Definition 3.1], and they showed that if R is

commutative, then a semidualizing module is always faithfully semidualizing, see [12,

Proposition 3.1].

Definition 1.3 [12, Definition 2.1]. An (S, R)-bimodule C = SCR is called

semidualizing if

(1) SC admits a degreewise finitely generated S-projective resolution;

(2) CR admits a degreewise finitely generated R-projective resolution;

(3) the natural homothety map SSS → HomR(C, C) is an isomorphism;

(4) the natural homothety map RRR → HomS(C, C) is an isomorphism;

(5) Ext>1
R (C, C) = 0 = Ext>1

S (C, C).

Holm and White [12] defined the Bass class BC(S) with respect to the semidual-

izing module SCR over any rings R and S.

Definition 1.4 [12]. The Bass class BC(R) with respect to SCR consists of all

right R-modules N satisfying

(1) ExtiR(C, N) = 0 for all i > 1,

(2) TorS
i (HomR(C, N), C) = 0 for all i > 1,

(3) the natural evaluation homomorphism νN : HomR(C, N) ⊗S C → N is an iso-

morphism.

Remark 1.5. Recall that BC(R) are closed under direct products and direct

sums. By [12, Proposition 4.2] we know that BC(R) is also closed under direct

summands and direct limits. Moreover, by [12, Corollary 6.3], if SCR is a faithfully

semidualizing bimodule, BC(R) has the property that if two modules in a short exact

sequence are in BC(R), so is the third.
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The following lemma is used frequently in this paper, so we present it here and

give the proof.

Lemma 1.6. Let SCR be a semidualizing bimodule. Then

(1) Add(CR) = {P ⊗S C : PS ∈ Add(SS)} = PC(R) and add(CR) = {Q ⊗S C :

QS ∈ add(SS)};

(2) HomR(P, C) ∈ add(SC) for all P ∈ add(RR) and HomR(Ci, C) ∈ add(SS) for

all Ci ∈ add(CR).

P r o o f. (1) Let PS be a projective right S-module. Then there exists a pro-

jective right S-module P ′

S such that P ⊕ P ′ = S(I) for some index set I, and so

(P ⊗S C) ⊕ (P ′ ⊗S C) ∼= S(I) ⊗S C ∼= C(I) ∈ Add(CR).

Conversely, let MR ∈ Add(CR), then there exists a right R-module N such

that M ⊕ N = C(J) for some index set J . Since C(J) ∈ BC(R) and BC(R) is

closed under direct summands by Remark 1.5, we have that M ∈ BC(R). Thus

M ∼= HomR(C, M) ⊗S C. On the other hand, HomR(C, M) ⊕ HomR(C, N) ∼=

HomR(C, C(J)) ∼= S(J), which implies that HomR(C, M) is S-projective. In the

same way we can prove that add(CR) = {Q ⊗S C : QS ∈ add(SS)}.

(2) For a semidualizing bimodule SCR, we have that HomR(C, C) ∼= S and

HomS(C, C) ∼= R. Thus the result is easy to prove. �

At last, we recall notation used in [20]. Let XR be a right R-module. We denote

by cog∗(XR) the class of right R-modules MR which admits an exact sequence:

0 → M → X0 → X1 → . . . such that Xi ∈ addXR and the sequence is HomR(−, X)-

exact. Dually, gen∗(XR) = {MR : M admits a HomR(X,−) exact sequence: . . . →

X1 → X0 → M → 0, with X i ∈ addXR}. Particularly, gen∗(RR) is exactly the class

of all finitely generated right R-modules with degreewise finitely generated projective

resolutions.

We will show some properties of these two classes.

Lemma 1.7. Let XR be a right R-module with Ext1R(X, X) = 0 and let 0 →

M ′ → M → M ′′ → 0 be an exact sequence of right R-modules. The following

assertions hold.

(1) Both the two classes cog∗(XR) and gen∗(XR) are closed under finite direct sums

and direct summands.

(2) If Ext1R(M ′′, X) = 0 and any two of the three modules M ′, M and M ′′ are in

cog∗(XR), so is the third.

(3) If Ext1R(X, M ′) = 0 and any two of the three modules M ′, M and M ′′ are in

gen∗(XR), so is the third.

P r o o f. (1) It is easy to see that both the class cog∗(XR) and the class gen∗(XR)
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are closed under finite direct sums by their definition. And by [20, Lemma 2.2], both

the two classes are closed under direct summands.

(2) Assume that Ext1R(M ′′, X) = 0. If M ′ ∈ cog∗(XR) and M ′′ ∈ cog∗(XR), then

M ∈ cog∗(XR) follows from [20, Lemma 2.3(1)].

IfM ∈ cog∗(XR) andM ′′ ∈ cog∗(XR), we will show thatM ′ ∈ cog∗(XR). In fact,

since M ∈ cog∗(XR), there exists a HomR(−, X) exact exact sequence: 0 → M →

X0 → X1 → . . . with Xi ∈ addX for i > 0. Let K1 = ker(X1 → X2), then clearly

K1 ∈ cog∗(XR). Moreover, by [20, Remark 2.1(1)] we have that Ext1R(K1, X) = 0.

We have the following pushout:

0

��

0

��

0 // M ′ // M //

�� y

M ′′ //

��

0

0 // M ′ // X0
//

��

D //

��

0

K1

��

K1

��

0 0

Consider the exact sequence 0 → M ′′ → D → K1 → 0. As Ext1R(M ′′, X) = 0

and Ext1R(K1, X) = 0, we have that Ext1R(D, X) = 0 and the exact sequence in

the middle row of the above pushout is HomR(−, X)-exact. Moreover, since M ′′ ∈

cog∗(XR) and K1 ∈ cog∗(XR), we have D ∈ cog∗(XR) by [20, Lemma 2.3(1)]. Hence

M ′ ∈ cog∗(XR).

IfM ′ ∈ cog∗(XR) andM ∈ cog∗(XR), we will show thatM ′′ ∈ cog∗(XR). In fact,

since M ′ ∈ cog∗(XR), there exists an exact sequence 0 → M ′ → X ′
0 → K ′

1 → 0 with

X ′
0 ∈ addX and Ext1R(K ′

1, X) = 0 which is HomR(−, X) exact and K ′
1 ∈ cog∗(XR).

We have the following pushout:

0

��

0

��

0 // M ′ //

�� y

M //

��

M ′′ // 0

0 // X ′
0

//

��

D //

��

M ′′ // 0

K ′
1

��

K ′
1

��

0 0
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Consider the exact sequence in the second row: 0 → X ′
0 → D → M ′′ → 0. Since

Ext1R(M ′′, X) = 0 and X ′
0 ∈ addX , we have Ext1R(M ′′, X ′

0) = 0. Thus the exact

sequence splits and M ′′ is a direct summand of D. On the other hand, we have the

exact sequence in the second column: 0 → M → D → K ′
1 → 0. By the above proof,

we know that K ′
1 ∈ cog∗(XR) and Ext1R(K ′

1, X) = 0. Moreover, M ∈ cog∗(XR),

thus D ∈ cog∗(XR) by [20, Lemma 2.3(1)]. Hence M ′′ ∈ cog∗(XR) by (1).

(3) is dual to (2), so we omit the proof. �

2. Totally reflexive modules with respect to

a semidualizing bimodule

In this section, we introduce and investigate properties of the totally reflexive

module with respect to a semidualizing bimodule SCR over any associative rings S

and R. Over a commutative Noetherian ring the following definition can be found

in [14, Definition 2.1.3]. And over any left Noetherian ring S and right Noetherian

R, the notion of the totally C-reflexive module was also given by Araya, Takahashi

and Yoshino [3, Theorem 2.1].

Definition 2.1. Let SCR be a semidualizing bimodule. A finitely generated

right R-module MR is totally CR-reflexive if it satisfies the following conditions:

(1) MR admits a degreewise finitely generated R-projective resolution;

(2) the biduality map δC
M : M → HomS(HomR(M, C), C) is an R-module isomor-

phism;

(3) HomR(M, C) admits a degreewise finitely generated S-projective resolution;

(4) ExtiR(M, C) = 0 = Exti
S(HomR(M, C), C) for all i > 1.

We denote the class of all totally CR-reflexive right R-modules by TC(R).

Similarly we can define the totally SC-reflexive left S-modules, denoting them by

TC(S).

Remark 2.2.

(1) Clearly, finitely generated projective right R-modules and the semidualizing

right R-module C are all totally CR-reflexive.

(2) For each G ∈ TC(R) and i > 1, we can get that Exti
R(G, L) = 0 for any right

R-module L with finite addCR-projective dimension by dimension shifting.

(3) It is easy to see that the functors HomR(−, C) and HomS(−, C) induce a duality

between the class TC(R) and the class TC(S) by Definition 2.1, which is also

proved by Araya, Takahashi and Yoshino [3, Theorem 2.1].
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Wakamatsu [20] defined the Wakamatsu tilting module over any ring and proved

that a semidualizing (S, R)-bimodule SCR is always a Wakamatsu tilting module

[20, Corollary 3.2]. Note that the Wakamatsu tilting module is called a tilting mod-

ule in [20]. Hence the semidualizing bimodule shares the same properties with the

Wakamatsu tilting modules. Particularly, using results from [20, Sec. 4] we have the

following equality for the class of totally CR-reflexive modules over any ring R.

Theorem 2.3. Let SCR be a semidualizing bimodule. Let us denote (−)C
R =

HomR(−, C). Then

TC(R) = gen∗(RR) ∩ cog∗(CR) ∩ ⊥(CR).

P r o o f. Let MR ∈ TC(R), then M ∈ gen∗(RR)∩⊥CR andM
∼=
→ HomS(MC

R , C)

by Definition 2.1. So we only need to show M ∈ cog∗(CR). In fact, we have

that MC
R ∈ TC(S) by Remark 2.2(3). Thus MC

R ∈ gen∗(SS) ∩ ⊥

S C and MC
R

∼=
→

HomR(HomS(MC
R , C), C). Hence HomS(MC

R , C) ∈ cog∗(SC) by [20, Proposi-

tion 4.1]. Thus M ∈ cog∗(SC) as M
∼=
→ HomS(MC

R , C). Therefore, MR ∈

gen∗(RR) ∩ cog∗(CR) ∩ ⊥(CR). For the reverse inclusion, since M ∈ cog∗(CR),

we have MC
R ∈ ⊥

S C ∩ gen∗(SS) by [20, Proposition 4.1]. So by Definition 2.1 we only

need to show that the biduality map δC
M is an isomorphism. In fact, we have the

following two commutative diagrams with exact rows by the definition of cog∗(CR):

0 // M
f0

//

δC
M

��

C0
//

δC
C0

��

cokf0
//

δC
cokf0

��

0

0 // HomS(MC
R , C) // HomS((C0)

C
R, C) // HomS((cokf0)

C
R, C)

and

0 // cokf0
f1

//

δC
cokf0

��

C1
//

δC
C1

��

cokf1
//

δC
cokf1

��

0.

0 // HomS((cokf0)
C
R, C) // HomS((C1)

C
R, C) // HomS(cok(f1)

C
R, C)

Clearly, δC
C0
and δC

C1
are isomorphisms. Hence by the Snake Lemma, we get that δC

M

is an isomorphism. Hence M ∈ TC(R). �

From Theorem 2.3 we can get the following Corollary.
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Corollary 2.4. Let SCR be a semidualizing (S, R)-bimodule and let 0 → M ′ →

M → M ′′ → 0 be an exact sequence of right R-modules. Then the following asser-

tions hold.

(1) The class TC(R) is closed under finite direct sums and direct summands.

(2) If M ′′ ∈ TC(R), then M ′ ∈ TC(R) if and only if M ∈ TC(R).

(3) If both M ′ ∈ TC(R) and M ∈ TC(R), then M ′′ ∈ TC(R) if and only if

Ext1R(M ′′, C) = 0.

P r o o f. (1) Clearly ⊥CR is closed under finite direct sums and direct summands.

Moreover, by Lemma 1.7 we know that both cog∗(CR) and gen∗(RR) are closed under

finite direct sums and direct summands. Hence the class TC(R) is closed under finite

direct sums and direct summands by Theorem 2.3.

(2) Since M ′′ ∈ TC(R), we have M ′′ ∈ ⊥(CR) by Definition 2.1. Moreover, ⊥(CR)

is closed under extensions and kernels of epimorphisms. Hence (2) follows from

Theorem 2.3 and Lemma 1.7.

(3) (⇒) follows from Definition 2.1. Next we will show (⇐). In fact, since

M ′ ∈ TC(R) and M ∈ TC(R), we have M ′ ∈ ⊥(CR) and M ∈ ⊥(CR). Apply-

ing HomR(−, C) to the exact sequence 0 → M ′ → M → M ′′ → 0, we get that

Exti+1
R (M ′′, C) = 0 for i > 1. Hence M ′′ ∈ ⊥CR. Moreover, M ′ ∈ TC(R) and

M ∈ TC(R), so M ′′ ∈ gen∗(RR) ∩ cog∗(CR) by Lemma 1.7. Hence M ′′ ∈ TC(R) by

Theorem 2.3. �

When R = S is a commutative ring and C = R, the following proposition is [4,

Proposition 1.1.9]. Since the proof is similar, we omit it.

Proposition 2.5. Let SCR be a semidualizing bimodule andM a right R-module.

If M ∼= HomS(N, C) for some finitely generated left S-module N , thenM is a direct

summand of HomS(HomR(M, C), C).

Remark 2.6. From Remark 2.2(3) we know that if a right R-module M is to-

tally CR-reflexive, then HomR(M, C) is totally SC-reflexive. However, the reverse

implication does not hold true in general, see [4, Observation 1.1.7]. But when

M ∼= HomS(N, C) for some finitely generated left S-module N , we have the follow-

ing corollary.

Corollary 2.7. Let M be a right R-module. Assume that M ∼= HomS(N, C) for

some finitely generated left S-module N . Then M is a totally CR-reflexive module

if and only if HomR(M, C) is a totally SC-reflexive module.

P r o o f. The forward implication follows from Remark 2.2(3). For the converse,

since HomR(M, C) is totally SC-reflexive, HomS(HomR(M, C), C) is totally CR-re-

flexive also by Remark 2.2(3). AsM is a direct summand of HomS(HomR(M, C), C)
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by Proposition 2.5, we have that M is a totally CR-reflexive module by Corol-

lary 2.4(1). �

By Remark 2.2(1) we know that finitely generated projective right R-modules are

totally CR-reflexive, thus we can define TC -dimension for every finitely generated

right R-module M which admits a degreewise finitely generated projective resolu-

tion (e.g., the finitely generated right R-module over the right Noetherian ring R),

denoted by TC -dimR(M), see [20, Sec. 3]. For a non-negative integer n, we write

TC -dimR(M) 6 n if there exists an exact sequence 0 → Gn → . . . → G0 → M → 0

with each Gi ∈ TC(R). In the next proposition, we investigates the TC -dimension

and the TC(R)-precover (preenvelope) for M ∈ gen∗(RR).

Proposition 2.8. Let SCR be a semidualizing bimodule and n a non-negative

integer. The following conditions are equivalent for M ∈ gen∗(RR) with finite TC

dimension:

(1) TC -dimR(M) 6 n.

(2) For any degreewise finitely generated projective resolution of M , . . . → P1
f1

→

P0
f0

→ M → 0, we have that the ker(fi) is totally CR-reflexive for i > n− 1, and

when n = 0, then ker(f−1) = M .

(3) For any exact sequence . . . → Gi
gi
→ Gi−1 . . . → G1

g1

→ G0
g0

→ M → 0 with

Gj ∈ TC(R) for j > 0, we have that ker(gi) for i > n− 1 is totally CR-reflexive,

and when n = 0, then ker(f−1) = M .

(4) ExtiR(M, C) = 0 for i > n + 1.

(5) MR has a special TC(R)-precover 0 → K → G → M → 0 such that G ∈ TC(R)

and add(CR)-pdRK 6 n − 1 if n > 1 and K = 0 if n = 0.

(6) MR has a special ̂add(CR)-preenvelope 0 → M → L → G′ → 0 such that

add(CR)-pdRL 6 n and G′ ∈ TC(R).

P r o o f. Using a proof similar to [3, Lemma 2.1 and Theorem 2.2], we can prove

that (1) ⇔ (2) ⇔ (3) ⇔ (4).

(5) ⇒ (1) It is straightforward to prove.

(1) ⇒ (5) Since TC -dimR(M) 6 n, using a proof similar to [9, Theorem 2.10]

and Lemmas 1.6, 1.7 and Theorem 2.3 we can find an exact sequence of right R-

modules, 0 → K → G
ϕ
→ M → 0 such that G ∈ TC(R) and add(CR)-pdRK = TC -

dimR(M)−1. So add(CR)-pdRK 6 n−1. Moreover, by Remark 2.2(2), we have that

Exti
R(N, K) = 0 for any N ∈ TC(R) and i > 1. Hence ϕ is a special TC(R)-precover

of M by Definition 1.2.

At last we will show that (5) ⇔ (6). In fact, assume that (5) holds, then TC -

dimR(M) 6 n < ∞. Thus using a proof similar to [5, Lemma 2.17] and Lemmas 1.6
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and 1.7, we can find an exact sequence of right R-modules

0 → M
ϕ
→ L → G′ → 0

such that G′ ∈ TC(R) and add(CR)-pdRL = TC -dimR(M) 6 n. Thus L ∈ ̂add(CR),

see Definition 1.1. Moreover, we have that Exti
R(G′, L′) = 0 for any L′ ∈ ̂add(CR)

and i > 1 by Remark 2.2(2). Hence ϕ is a special ̂add(CR)-preenvelope of M by

Definition 1.2.

Conversely, assume that (6) holds. Then there is an exact sequence 0 → M → L →

G′ → 0 such that add(CR)-pdRL 6 n and G′ ∈ TC(R). If n = 0, then L ∈ add(CR).

By Remark 2.2(1) and Corollary 2.4(2), we know that M ∈ TC(R). Hence the exact

sequence 0 → M
∼=
→ M → 0 satisfies the condition of (5). Next we assume that n > 1,

then we can find an exact sequence of right R-modules, 0 → L′ → C0 → L → 0 with

C0 ∈ add(CR) and add(CR)-pdRL′ 6 n − 1. Thus we have the following pullback

diagram.

0

��

0

��

L′

��

L′

��

0 // G′′ //

f
��

p

C0
//

��

G′ // 0

0 // M

��

// L //

��

G′ // 0

0 0

From the second row we know that G′′ ∈ TC(R) by Corollary 2.4(2). Since L′ ∈
̂add(CR), f is a special TC(R)-precover of M by Remark 2.2(2). Thus the first

column 0 → L′ → G′′ f
→ M → 0 is the desired exact sequence and (5) holds true.

�

Because semidualizing modules are Wakamatsu tilting modules, see the argument

above Proposition 2.8, so by [20, Proposition 5.6, Theorem 6.6] and the Baer Crite-

rion, we can also obtain the result over the non-commutative Noetherian ring, which

gives a necessary and sufficient condition for a semidualizing module to be a dualiz-

ing module. Note that we can define a dualizing bimodule SDR over any rings R and

S. We call a bimodule SDR dualizing if it is a semidualizing bimodule with finite

left S- and right R-injective dimension.
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Proposition 2.9. Let S be left Noetherian, R right Noetherian and let m, n be

nonnegative integers. Then TC(R)-dimR M 6 m for every finitely generated right

R-module M and TC(R)-dimR N 6 n for every finitely generated left S-module N if

and only if idR(C) 6 m and idS(C) 6 n.

P r o o f. (⇒) For any ideal I of R, R/I is a finitely generated right R-module.

Thus TC(R)-dimR R/I 6 m. Consider the injective resolution of CR:

0 → C → E0 → E1 → . . . → Em−1 → Cm → 0.

Applying HomR(R/I,−), we get that Ext1R(R/I, Cm) ∼= Extm+1
R (R/I, C). Hence

Ext1R(R/I, Cm) = 0 by Proposition 2.8. Thus Cm is injective by the Baer Criterion

and idR(C) 6 m. Using the same method we can prove that idS(C) 6 n.

(⇐) Since idR(C) 6 m, we have Extm+i
R (M, C) = 0 for each right R-module M

and i > 1. Consider the projective resolution of M :

0 → ΩmM → Pm−1 → . . . → P1 → P0 → M → 0,

then we have that 0 = Extm+i
R (M, C) ∼= Exti

R(ΩmM, C). Thus ΩmM ∈ ⊥CR. Since

R is right Noetherian, ΩmM ∈ gen∗(RR). Moreover, as S is left Noetherian and

idS(C) 6 n < ∞, we have that TC(R) = gen∗(RR)∩cog∗CR∩
⊥CR = gen∗(RR)∩⊥CR

by Theorem 2.3 and [20, Proposition 5.6]. So ΩmM ∈ TC(R) and TC(R)-dimR M 6

m. Similarly, we have that TC(R)-dimR N 6 n for every finitely generated left S-

module N . �

Observation 2.10. For every totally CR-reflexive moduleM , from Theorem 2.3

we know that there exists a HomR(−, C)-exact exact sequence of right R-modules

. . . → P1
f1

→ P0
f0

→ C0
g0

→ C1
g1

→ . . . with Pi finitely generated projective and

Cj ∈ add(CR) and M ∼= ker(g0). As Ext1R(C, C) = 0, it is easy to see that

Ext1R(ker(gj), C) = 0 for each j > 0. Moreover, by Remark 2.2(1) we know that

Pi and Cj are all totally CR-reflexive, hence every kernel in this exact sequence

is totally CR-reflexive by Corollary 2.4. Hence we can get an exact sequence:

0 → M → C0 → ker(g1) → 0 with ker(g1) totally CR-reflexive. If M ∈ ̂add(CR),

then the sequence splits by Remark 2.2(2). Thus M ∈ add(CR).

It is natural to ask whether a totally CR-reflexive module with finite projective

dimension is finitely generated projective. When SCR is a faithfully semidualizing

module, the next theorem gives an affirmative answer to this question. Moreover,

by [21, Theorem 4.4] we know that a right R-module M with M ∈ gen∗(RR) is

GC -projective if and only if M is totally CR-reflexive. Note that the conclusion

holds true in any ring and the condition HomR(M, C) ∈ gen∗(RR) is not needed in
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the proof of [21, Theorem 4.4]. Hence the theorem is also the answer the special

case of the question put forward by D.White in [21, Question 2.15], i.e., over a non-

commutative non-local ring R, her conjecture is true for the right R-moduleM with

M ∈ gen∗(RR).

Theorem 2.11. Let SCR be faithfully semidualizing and MR ∈ TC(R). If

pdRM = n < ∞, then M is finitely generated projective.

P r o o f. By Theorem 2.3 we have that TC(R) = gen∗(RR) ∩ cog∗(CR) ∩ ⊥(CR).

SinceMR ∈ TC(R) and pdRM = n, there exists an exact sequence of rightR-modules

(∗) 0 → Pn → . . . → P0 → M → 0

with Pi finitely generated projective. Applying HomR(−, C) to (∗), we get a sequence

0 → HomR(M, C) → HomR(P0, C) → . . . → HomR(Pn, C) → 0.

Since M ∈ ⊥(CR), the sequence is exact. By Lemma 1.6, HomR(Pi, C) ∈ add(SC).

Assume that HomR(Pi, C) = Ci, K0 = HomR(M, C), Kn = Cn and Ki = ker(Ci →

Ci+1) for (n − 1) > i > 1. Then we can get several short exact sequences:

0 → Kn−1 → Cn−1 → Cn → 0,

...

0 → Ki → Ci → Ki+1 → 0,

...

0 → HomR(M, C) → C0 → K1 → 0.

Since add(SC) ⊆ BC(S), we have Ki ∈ BC(S) for n > i > 0 by Remark 1.5.

Thus Ext1S(C, Ki) = 0. So we get that Ext1S(Cn, Kn−1) = 0 and the first short

exact sequence splits, thus Kn−1 ∈ add(SC). Repeating this process we get that

HomR(M, C) ∈ add(SC). As SCR is a semidualizing bimodule, so HomS(C, C) ∼=

R. Thus M
∼=
→ HomS(HomR(M, C), C) ∈ add(RR) and M is finitely generated

projective. �

Corollary 2.12. Let SCR be faithfully semidualizing and let MR be a right

R-module such that M ∈ gen∗(RR). Then TC -dimR M = pdRM when pdRM < ∞.

P r o o f. By Remark 2.2(1), we know that finitely generated projective right

R-modules are totally CR-reflexive, so TC -dimR M 6 pdRM . On the other hand,
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assume that TC -dimR M = n < ∞. Then there exists an exact sequence of right

R-modules

0 → Gn → Pn−1 → . . . → P1 → P0 → M → 0

such that Pi is finitely generated projective for 0 6 i 6 n − 1 and Gn ∈ TC(R) by

Proposition 2.8. Since pdRM < ∞, we have pdRGn < ∞. Hence Gn is finitely

generated projective by Theorem 2.11. It follows that pdRM 6 n. Therefore TC -

dimR M = pdRM . �

3. Connections with Bass class

In this section, we will show that there exist some relations between the class TC(R)

and the class BC(R). First, we employ the notions of Mantese and Reiten in [13].

For a Wakamatsu tilting right R-module TR, denote by Gen∗(TR) the subcategory

of all right R-modules M such that there exists an exact sequence . . . → T 1 g1

→

T 0 g0

→ M → 0 where T i ∈ Add(TR) and Ext1R(T, ker gi) = 0 for i > 0. When TΛ

is a Wakamatsu tilting module over an Artin algebra Λ, there is an exact sequence

0 → Λ
f0

→ T0
f1

→ T1 → . . . with Ti ∈ add(TR) and cokfi ∈
⊥(CR) for i > 0. Denote

Ki = cokfi, Mantese and Reiten [13, Proposition 3.6] showed the following equality:

T⊥ ∩ Gen∗(T ) =

( ⊕

i>0

Ki ⊕ T

)⊥

.

Moreover, it is not hard to see from the proof of [13, Proposition 3.6] that the

equality holds over any ring R. On the other hand, by [20, Corollary 3.2] we know

that a semidualizing bimodule SCR is a Wakamatsu tilting, so there exists an exact

sequence of right R-modules 0 → R
f0

→ Cn0
f1

→ Cn1 → . . . where ni are positive

integers and cokfi ∈
⊥C. Denote the modules cokfi by Ki for i > 0, then we have

a similar equality for a semidualizing bimodule SCR, that is, (CR)⊥ ∩ Gen∗(CR) =( ⊕
i>0

Ki ⊕ C
)⊥

. It is easy to see that Ki ∈ cog∗(CR) ∩ gen∗(RR) by Lemma 1.7.

Thus Ki ∈ gen∗(RR) ∩ cog∗(CR) ∩ ⊥(CR) = TC(R) for i > 0 by Theorem 2.3.

Now, we show the following proposition.

Proposition 3.1. Let SCR be an (R, S) semidualizing bimodule. Then BC(R) =( ⊕
i>0

Ki ⊕ CR

)⊥

.

P r o o f. By Definition 1.4, we know that for a rightR-moduleM ,MR ∈ BC(R) if

and only if M ∈ (CR)⊥, TorS
i>1(HomR(C, M), C) = 0 and HomR(C, M)⊗S C

∼=
→ M .
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On the other hand, Takahashi and White [18, Proposition 2.2] proved the following

result: over a commutative ring R, for any R-module M , M admits an exact proper

PC -resolution if and only if TorR
i>1(HomR(C, M), C) = 0 and HomR(C, M)⊗R C

∼=
→

M . Note that the result holds true over any associtative ring R from the proof of

Takahashi and White [18, Proposition 2.2]. By Lemma 1.6 and the definition of the

proper PC -resolution, see [18, 1.5], we have that M admits an exact proper PC-

resolution if and only if M ∈ Gen∗(CR). Hence we have that BC(R) = (CR)⊥ ∩

Gen∗(CR). So by the above argument, we have that BC(R) =
(⊕

i>0

Ki ⊕ CR

)⊥

. �

Theorem 3.2. Let SCR be faithfully semidualizing. Denote by P
<∞

R the class of

right R-modules which are in gen∗(RR) and have finite projective dimensions. Then

(1) ⊥BC(R) ∩ gen∗(RR) ⊆ TC(R) and ⊥BC(R) ∩ P<∞

R = TC(R) ∩ P<∞

R ,

(2) T ⊥

C (R) ⊆ BC(R).

P r o o f. (1) Assume that M ∈ ⊥BC(R) ∩ gen∗(RR). Then M ∈ ⊥(CR) because

CR ∈ BC(R). The Bass class BC(R) is preenveloping by [11, Theorem 3.2(b)] and

contains all the injective right R-modules, so there exists an exact sequence for any

right R-module M , 0 → M
ϕ
→ B → M ′ → 0 with B ∈ BC(R), where ϕ is a BC(R)-

preenvelope. By [18, Corollary 2.4] and Lemma 1.6, there is an exact sequence

0 → B′ → C(I) → B → 0 for some index set I. Hence we have a pullback

0

��

0

��

B′

��

B′

��

0 // P //

��

C(I) //

��

M ′ // 0

0 // M
ϕ

//

��

B //

��

p

M ′ // 0

0 0

By Remark 1.5, B′ ∈ BC(R), so the first column splits and we have an exact sequence

0 → M → C(I) → M ′′ → 0. Since M ∈ gen∗(RR), M is finitely generated. So M is

contained in a finite direct sum of copies C. That is, the image of M is contained in

a finitely generated submodule Cn of C(I). Thus we have the commutative diagram
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with exact rows

0 // M // Cn //

��

M1
//

��

0

0 // M // C(I) //

��

M ′′ //

��

0

0 // M
ϕ

// B // M ′ // 0.

Applying HomR(−, B′′) with B′′ ∈ BC(R) to the first row and the last row of the

commutative diagram, we get the following commutative diagram with exact rows:

0 // HomR(M ′, B′′) //

��

HomR(B, B′′) //

��

HomR(M, B′′) // 0

0 // HomR(M1, B
′′) // HomR(Cn, B′′) // HomR(M, B′′)

Note that the first row is exact because ϕ is a BC(R)-preenvelope. It is

easy to see from the last commutative square of the commutative diagram that

HomR(Cn, B′′) → HomR(M, B′′) is surjective. By Definition 1.4, we know that

add(CR) ⊆ ⊥BC(R), so Ext1R(Cn, B′′) = 0. Thus we have the long exact sequence

induced by HomR(−, B′′),

HomR(Cn, B′′) → HomR(M, B′′) → Ext1R(M1, B
′′) → 0

and

0 → Exti
R(M, B′′) → Exti+1

R (M1, B
′′) → 0 for i > 1.

So we get that Ext1R(M1, B
′′) = 0 and Exti+1

R (M1, B
′′) ∼= Exti

R(M, B′′) for i > 1.

Hence M1 ∈ ⊥BC(R). As add(CR) ⊆ BC(R), repeating this process, we get that

M ∈ cog∗(CR). Hence M ∈ gen∗(RR) ∩ cog∗(CR) ∩ ⊥(CR) = TC(R) and ⊥BC(R) ∩

gen∗(RR) ⊆ TC(R).

By [18, Proposition 2.2] and Lemma 1.6, we know that for any right R-module

B ∈ BC(R) there exists an exact sequence of right R-modules

(∗) . . . → C1
f1

→ C0
f0

→ B → 0

with Ci ∈ Add(CR) and the sequence is HomR(C,−)-exact. LetMR ∈ ⊥(CR)∩P<∞

R ,

then M ∈ gen∗(RR), so M has degree-wise finitely generated projective resolution.

Hence ExtjR
(
M,

⊕
C

)
∼=

⊕
Extj

R(M, C) for j > 0 by [6, Lemma 3.1.16]. Thus

Extj
R(M, Ci) = 0 for j > 1 and i > 0. Applying HomR(M,−) to (∗), we get that

Extj
R(M, B) ∼= Extj+n

R (M, ker(fn)) for j > 1 and n > 1. Since M ∈ P<∞

R , we
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have pdRM < ∞. So Extj
R(M, B) = 0 for all j > 1. Hence ⊥(CR) ∩ P<∞

R ⊆
⊥BC(R) ∩ P<∞

R . But TC(R) ⊆ ⊥(CR) by Definition 2.1. So TC(R) ∩ P<∞

R ⊆
⊥(CR) ∩ P<∞

R ⊆ ⊥BC(R) ∩ P<∞

R . On the other hand, we have that ⊥BC(R) ∩

P<∞

R ⊆ TC(R) ∩ P<∞

R by the above argument, as P<∞

R ⊆ gen∗(RR). Therefore,
⊥BC(R) ∩ P<∞

R = TC(R) ∩ P<∞

R .

(2) By Definition 2.1, we know that CR ∈ TC(R), and the argument above

Proposition 3.1 indicates that Ki ∈ TC(R) for i > 1. Let MR ∈ T ⊥

C (R), then

Exti
R(C, M) = 0 for i > 1. So ExtiR

(⊕
Ki, M

)
∼=

∏
ExtiR(Ki, M) = 0. Hence

MR ∈
( ⊕

Ki ⊕ C
)⊥

= BC(R) by Proposition 3.1. It follows that T ⊥

C (R) ⊆ BC(R).

�
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