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Received 11. March 2000

The structure of the zeros set f ~'(0) of a continuous function f: I"*' - R", I = [0, 1],
satisfying some additional boundary conditions are investigated. This gives an extension
of some classical results due to Bolzano, Poincaré, Brouwer, Eilenberg and Otto.

§1. A main result. Let I" : = [0, 1]" be the n-dimensional cube of the Euclidean
space R" and let us denote by

I7 = {xel":x(i) =0}, I':={xel":x(i) =1}
its i-th opposite faces. In this paper we are going to prove the following.

Theorem. Let {(H,’, Hﬁ) i=1,..., n} be a family of pairs of closed sets such
that I xI <« H7, I xI <« H and I"xI = H7 v H}.
Then there exists a connected set W < ﬂ?:1 H; n H;* such that

Wa(I"x{0})* 0+ Wn(I"x{1}).

The proof of this theorem will be based on two combinatorial lemmas.
Letting H; := f;i"'(—o0,0], H := f,7'[0, 00) we obtain a parametric exten-
sion of Poincaré’s theorem (cf. [7, 3, 4]):

Corollary 1. Let f:I"xI — R", f = (fi,..., f,), I = [0, 1], be a continuous
map such that for each i < n

fll7 xI) = (=00,0] and f(I} xI) = [0, o0).

Then there exists a connected set W < f~'(0) such that
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WA x{0})+ 0+ Wn(I"x{1}).

It is easy to observe that Corollary 1 implies Theorem. It suffices to consider
functions fi(x):= d(x, H7) — d(x, H"), i = 1,..., n, where d(x, A):= inf{||x — a| :
ae A} means the distance functions from a set A4.

From Corollary 1 we immediately obtain an extension of Brouwer’s theorem due
to Browder (cf. [1, 6]):

Corollary 2. Ifg:I"x I — I" is a continuous map then there is a connected set
W < {(x,t)e I"x I : g(x, t) = x} such that

Wa(l'x{0})+ 0+ Wn(I"x{1}).

Indeed, the map f(x,t):= x — g(x, t) satisfies the assumptions of Corollary 1.

A closed subset F of a topological space X is a partition between two sets
Ay, Ay < X if there are two disjoint open sets Uy U; < X such that X\F =
Uyu U,and 4, < U;fori =0, 1.

The following corollary is an extension of the Eilenberg-Otto theorem [2]:

Corollary 3. Let F,,..., F, be closed subsets of the cube I" X I such that each
set F;’s is a partition between 17 X I and I;" x 1. Then the intersection Fy~ ... N F,
contains a connected set W = F, n ... F, such that

Wa("x{0})+ 0+ Wn(I"x{1}).
Proof. Let Ui c I"x I,i=1,...,n,6 = —, 4+ be open sets such that I" X I\ F; =
UruUNU nUY=0,17 xI cU-,I xI < Uf. Thesets H7 := U7 U F,
and H;" := U;" U F; satisfy the assumptions of Theorem. []

§2. A combinatorial part. Let kK > 1 be a given natural number and let Z, : =

{i/k:ie Z}, where Z denotes the set of integers. Let Z; denote the Cartesian
product of n copies of the set Z;:

pi={z:{1,..., n} > Z,| z is a map}.

Using the Cartesian notation let 0:= (0, ..., 0) be the neutral element and let
e:=(0,...,0,1/k,0,..., 0), e(i) = 1/k, be the i-th basic vector. Denote by P(n) the
set of permutations of the set {1,..., n}.

An ordered set S = [z, ..., z,| = Z} is said to be an n-simplex if there exists
a permutation o € P(n) such that

Z1 = 2o + ea(l)a Zy = Z1 + eoc(Z)a (X3 Zyp = Zy—1 + eoz(n)‘

Any subset [Zg, ..., Zi 1, Zigys s Zo] © S, i =0,...,n, is said to be the
(n — 1)-face of the n-simplex S. A subset C = Z} of the form

1 k=1
= C(k) =40, ..., ———, 1
C:= C(k) {o,k, e }
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is said to be a combinatorial n-cube. For n > 1 let us define the i-th combinatorial
back and front faces of C as
Cr:=Ci(k)={zeC:z(i) =0}, C':=C}(k) = {zeC:z(i) = 1},
and the boundary as
oC:=J{G uCrii=1,..,n}.
In the case n = 1 let us put C = {0,%, I 1} and C; = {0},C{ = {1}.

The set C = {0} is said to be 0-cube (and 0-simplex, too).
Let us say that an (n — 1)-face o of an n-simplex S lies in the boundary 0C if

occ Ciforsomei=1,...,nand ¢ = —, +.

G

G

c

Figure 1

Observation 1. Let S = [z, ..., z,| = Z} be an n-simplex. Then for each point
z; € S there exists exactly one n-simplex S[i] such that

SAS[i] = {2, ces Zicts Zists oo Zn)-

Proof. We shall define the i-neighbour S[i] of the simplex S (see Figure 1) as
(@ If 0<i<mn, then S[i]:=[zo ..., Zi_1, Xi» Zix1s--e» Zn)s Where x; =
zioy + (Zi+1 - Zi) =Zi 1 T ey
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(b) If i = 0, then S[0]:= [z, ..., 2, Xo], Where x, = z, + (z; — z).

(c) If i = n, then S[n]:= [Xm Zo, ..., Z,_1], Where X, = zg + (2,_1 — zy).

We leave it to the reader to prove that the n-simplexes S[i] are well-defined and
that they are the only possible i-neighbours of the n-simplex S. ]

The following observation is immediate:

Observation 2. Any (n — )-face of an n-simplex contained in the combi-
natorial n-cube C is an (n — 1)-face of exactly one or two n-simplexes from C,
depending on whether or not it lies on the boundary 0C.

For a given map ¢: C — {0,..., n} a subset S = C is said to be k-colored if

#(S) = {0..... k).

First Combinatorial Lemma. Let ¢:C — {0,..., n} be a map an n-cube
C = C(k) which for n > 1 satisfies the boundary condition

(2) i¢d(C7) and i— 1¢¢(CH).
Then the number p of the all n-colored n-simplices is odd.

Proof. Before starting the proof let us note that in the case n = 1 the condition
(«) means that ¢(0) = 0 and ¢(1) = 1. The condition () implies also that the face
C, is the only Cf face which is (n — 1)-colored. It is clear that the lemma is true
for n = 0 because ¢(C) = {0}.

We shall proceed to the proof with the induction on n. Assume that the lemma
holds for an (n — I)-cube, n > 1. According to the assumption () any
(n — 1)-colored face ¢ of an n-simplex which lies in dC lies in C; . Considering
C, to be an (n — 1)-cube, by our inductive hypothesis the number 5 of such faces
is odd. Let #(S) denotes the number of (n — 1)-colored faces of an n-simplex
ScC.

If § is an n-colored n-simplex, clearly n(S) = 1; while if S is not n-colored, we
have #(S) = 2 or 5(S) = 0 according as S is (n — 1)-colored or {0,..., n — 1}\
#(S) + 0. Hence

p = Y.n(S), mod 2.

On the other hand, an (n — 1)—colored face is counted exactly once or twice in
Y. 7(S) according as it is in the boundary 0C or not.

Accordingly
> n(S) = n, mod 2,
hence
n=p,mod 2.
But # is odd. Thus p is odd, too. U

Consider the product D := C x J of a combinatorial n-cube C = C(k) and an

1-cube J = J(k) = {0,%, s k—;—l, 1}.The set D is a combinatorial (n + 1)-cube. Fix
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amap ¢:D — {0,..., n}.In the set of the all (n + 1)-simplices contained in D let
us establish the relation ~; S; ~ S, whenever ¢(S; N S,) = {0,..., n},ie. ;N S,
is n-colored.

From the pigeon hole principle it follows that each (n + 1)-simplex S = D
which is n-colored has one or two simplices Sy, S, < D such that S; ~ S and
S, ~ S depending on whether S has or not n-colored face lying in dC.

1 0 1 1 0 1 0

Figure 2

Second Combinatorial Lemma. Let ¢ : C xJ — {0,..., n} be a map from the
product of a combinatorial n-cube C = C(k) and a combinatorial 1-cube J = J(k).
Assume that for each i = 1, ..., n the following condition holds:

() i¢ $(Cr xJ) and i—1¢¢(CFxJ).
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Then the number of the all chains Sy ~ ... ~ S of (n + 1)-simplices such that

o P(So N (Cx{0}))= {0,..., n} = ¢(S, N (Cx{1})

Proof. Consider maximal chains S, ~ ... ~ S, of (n + 1)-simplices in C x J
such that
(1) $(Son (Cx {0})= {0,..., n}.
According to the boundary condition (ﬁ) there are only two possibilities (see
Figure 2, n = 2);
(2) ¢(Sw  (C x {O1)= {0,..., n)
or

(3) (S0 (Cx {1})={0,..., n}.

From First Combinatorial Lemma it follows that the number p of the all
(n + 1)-simplices S = C x J such that S n (C x {0}) is n-colored, is odd. Since any
maximal chain which satisfies the conditions (1) and (2) occupies two (n + 1)—sim—
plices having n-colored faces in C x {O}, so we infer that there is an odd number of
chains such that the conditions (1) and (3) holds (see Figure 2 for n = 2). O

§3. A topological part. For a given sequence {4, : n € N} of subsets of a metric
space X let us define the set Ls {4,: ne N};x € Ls {4, : n e N}if and only if there
exists an infinite set M < N of points x,, € A, such that x = lim {x,,:me M 1.

Lemma (see [5; Th. 5.47.6]). Let {Am :meN } be a sequence of connected subsets
of a compact metric space X such that some sequence {a,: n € N} of points a, € A,
is converging in X. Then the set A:= Ls {A,, :neN } is compact and connected.

Proof. 1. First, let us prove that A4 is a closed. Fix x € X\ 4. Then there exists
a neighbourhood U, of x such that U, meets only finite number of the sets 4, s.
It is clear that U, n A = (. Thus the set X\ A4 is open.

2. Let {a,: ne N} be a sequence of points a, € 4, converging to a point a € X.
Suppose that there are two disjoint nonempty open sets U, U; < X such that
Ac Uyu U,and Uy~ U; = 0. Assume that a € U, and fix a point x € U; N A.
Let {x,:me M}, be a sequence such that x = lim {x, : m € M}. Observe, that for
some me M; A, < Uy u U,. Because if not then we can choose a converging
subsequence {y,:se€S}, S < M, such that y,eA\(U,u Uj). We have,
lim {y,:seS}¢ Uyu U, > A, contradicting the definition of the set A. Thus
A, < Uyu U, for some me M. The facts a,e Uy A4,, x,e U, N A, and
Uy, n U, =  yield that the set A4,, is not connected, a contradiction.

We have completed the proof that A is a closed connected subset of X. O

Proof of Theorem. Define a map ¢ : I" — {0,..., n} by
j
$(x) := max {j:xe ﬂF,-*}, (1)
i=0
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where F;" = I"x I and F;" = H\I; xIforeachi =1,..., n. Since I} x I < Hj,
where ¢ = + or —, the map ¢ has the following properties:

if (x,t) e I7 x I, then @(x, t) < i, and if (x, 1) € I x I, then ¢(x, 1) + i — 1. (2)

From (1) it follows that for each subset § < I" x I

d(S N IixI)={0,...,n — 1} implies that i = nand ¢ = —. (3)
Observe that (2) and the fact that I" x I = H; U H;" imply that
if ¢(x)=1i—1 and ¢(y) =i, then xe H; and ye H;'. (4)

For each k = 2, 3, ... the map ¢|C(k) x J(k) satisfies the condition () of Second
Combinatorial Lemma and therefore there is a chain S§ ~ ... ~ Sk, of simplices
such that

d(S§ N (C(k) x {0}))= {0,..., n} = ¢(Sk, N (C(k) x {1})).
Define connected sets

my
W, := | conv S}, k=23,..,

i=0
where conv 4 means the convex hull of the set A. Since I" x I is a compact space
we can find an infinite subset M = N and convergent subsequence {w,,:m € M},
W, € W,. According to Lemma the set W: = Ls{W,:me M} is connected.
Obviously

W (I"x {0} }+ 0 + W~ (I"x {1}).

Let us prove that W < ﬂ;‘lef N Hf. To see this, fix x € W and choose
a subsequence {x,: ke K},K = M, of points x; € W, such that lim {x,: ke K} = x.
Next, choose n-colored (n + 1)—simplices S.’s, Sy = W,, such that x; € conv S,.
Since lim diam {conv Si: ke K} = 0, we infer that for arbitrary subsequence
{y:leL}, Lc K, yeconvS, we have; x = lim {);:le L}. Therefore the
proof will be completed if we show that for each i = 1,..., n an n-colored
(n + 1)-simplex S;
H nS+0+H'nS.

But it is clear in view of the property (4). O
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