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ACTA UNIVERSITATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL. 38. NO. 1 

Groupoids and the Associative Law VIII. 
(Diagonally Non-Associative Groupoids) 

A. DRÁPAL and T. KEPKA 

Praha*) 

Received 16. September 1996 

Groupoids possessing only diagonal non-associative triples are investigated. 

Zkoumajf se grupoidy majicf pouze diagonalnf neasociativnf trojice. 

The present paper is a natural continuation of [2] and [3]. Here, we shall 
investigate in more detail the non-associative groupoids satisfying the implication 
a . be =# ab . c => a = b = c. 

VIII.1 First concepts 

1.1 Let Q) denote the class of groupoids G such that Ns(G) ^ {(a, a, a)\ ae G}\ 
that is, G e Q) iff a . be =t= ab . c implies a = b = c for any a, b, c e G. 

1.2 Let GeQ). We put K(G)={aeG\ a.aa + aa.a}, L(G) = G\K(G), 
K(G) = card(K(G)) and X(G) = card(L(G)). Thus G = K(G) u L(G\ K(G) n L(G) 
= 0 and K(G) + X(G) = card(G). 

1.3 Lemma. Let G eQ) and a, b e G. Then exactly one of the following three 
cases takes place: 

(J) ab e L(G). 
(2) a =)= b and ab = a = ba e K(G). 
(3) a =(= b and ab = b = bae K(G). 

Proof. First, let ab = c, a =|= c #= b. Then cc . c = (c . ab) c = ca . be = 
c(a . be) = c(ab . c) = c . cc and c e L(G). 

Now, let ab = a 4= ba. Then aa . a = (a . ab) a = aa . ba = a(a . ba) = 
a(ab . a) = a . aa and a e L(G). 

Similarly if ab = b =# ba and the rest is clear. 
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1.4 Corollary. Let G e l Then: 
(i) a2 e L(G) for every a e G. 

(ii) If a e K(G) and b e G, then a = ab iff a = ba. 

1.5 Lemma. Let G e3) and a e K(G). Then the elements a, a2, a . a2, a2. a are 
pair-wise different and {a2, a . a2, a2. a) ^ L(G). 

Proof. First, a e K(G) just means that a . a2 4= a2. a, and hence we have also 
a 4= a2. If a = a . a2, then a = a2. a by 1.4(ii). Thus a 4= a . a2 and, similarly, 
a 4= a2. a. If a2 = a . a2, then a2 = a . a2 = a(a . a2) = a2. a2 = a2(a . a2) = 
(a2. a) a2 = ((a2. a) a) a = (a2. a2) a = a2. a and this is not possible. Thus 
a2 ^r a . a2 and, similarly, a2 + a2. a. The rest is clear from V3. 

1.6 Proposition, (i) The class of Q)-groupoids is closed under homomorphic 
images and subgroupoids. 

(ii) If G e Q is not associative, then G x G £ 3. 
(Hi) If G e 3, then L(G) is a subgroupoid of G. 
(iv) If G e & is not associative, then card(G) > 4 and X(G) > 3. 

Proof. Use 1.3 and 1.5. 

1.7 Lemma. Lel G eQ) and ae G. Then: 
(i) The set S(a) = {be G\ab = a = ba) is either empty or a subgroupoid of G. 

(ii) If ae K(G), then the set T(a) = G\S(a) is a prime ideal of G and a e T(a). 

Proof, (i) Easy. 
(ii) Let b, c,d e G be such that b e S(a) and b = cd. By 1.5, b 4= aa, and hence 

either c 4= a or d 4= a. If d = a, then c 4= a, c . a2 = ca. a = cd. a = ba = 
= a e K(G) and we have c. a2 4= c. Now, by 1.3, ca2 = a2, and hence a = a2, 
a contradiction. Thus a 4= d and, similarly, a 4= c. Finally, ac .d = a . cd = 
= ab = a = ba = cd. a = c. da and ac = a = da by 1.3. Now, by 1.3 again, 
we have c, de S(a). 

1.8 Lemma. Let A be a generator set of a groupoid G e D. Then K(G) _= A. 

Proof. We can assume that A 4= 0. Let W be an absolutely free groupoid over 
A and let / : W-+ G be the (projective) homomorphism such that f\A = idA. 
Now, take ae K(G) and let t e W be a term such that the length l(t) of t is minimal 
with respect to f(t) = a. If l(t) = 1, then a = t e A. If l(t) > 2, then t = pq for 
some p,qeW and a = f(p)f(q)$L(G). Now, it follows from 1.3 that either 
f(p) = a or f(q) = a, a contradiction with the minimality of l(t). 

1.9 Corollary. Let G £ £# and let H = (A}G, where A is a non-empty subset 
ofK(G). Then K(H) = A. 

1.10 A groupoid GeQ) will be called minimal if G = <K(G)>G. 
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1.11 Lemma. Let G e S be a non-associative groupoid and H = <K(G)>G. 
Then H is a minimal Q-groupoid, K(H) = K(G) and A(H) < A(G). 

Proof. See 1.9. 

1.12 Lemma. Let G , / i e ® and let f: G —> H be a homomorphism. Ifa,beG 
are such that a =# b and f(a) e K(H), then f(a) 4= f(b). 

Proof. Obvious. 

1.13 Let G e @ . Define a relation g(= gG) on G by (a, b)e g iff either a = b 
or ab = beK(G). 

1.14 Proposition. Let G e @ . Then: 
(i) g is an ordering of G. 

(ii) For any a e G, the set R(a) = {be G; b + a, (b, a) eg] is either empty or 
a subgroupoid of G. 

(Hi) If A is a generator set of G and a e G is such that R(a) =# 0, then the 
subgroupoid R(a) is generated by the set A n R(a). 

Proof, (i) Clearly, g is reflexive and it follows from 1.3 that g is antisymetric. 
Finally, if (a, b), (b, c)e g and a =# b 4= c, then ac = a. be = a. be = c and 
(a, c) G o. 

(ii) Obvious. 
(iii) Use 1.3 and 1.7(i), (ii). 

1.15 Lemma. Let G e S and let C = <-4>G, D = <£>G, w/iere ^4, B are 
non-empty subsets of G such that (b, a) e gG and a #= b for all a e A, b e B. Then 
cd = c = dc for all c e C, d e D and card(C n D) < 1. 

Proof. By 1.14(ii), D ^ R(a) for every ae A and the rest is clear. 

VIII .2 Examples of ^r-groupoids 

2.1 Example. 

Я, 0 1 2 3 

0 0 0 0 0 
1 0 2 0 0 
2 0 3 0 0 
3 0 0 0 0 

D2 
0 1 2 3 

0 0 0 0 0 
1 0 2 3 0 
2 0 0 0 0 
3 0 0 0 0 

We have £>„ D2 e ®, D, = £>','", /C(£>,) = {1} = /C(D2) and Z), 

I>2 = <1>D2-
<!>!)„ 
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2.2 Remark. If G e 3 i not associative, then card(G) > 4 (1.6(iv)). Now, if 
card(G) = 4, then G is isomorphic to one of the groupoids D{, D2. 

2.3 Example. 

We have D3e3, K(D}) 
D} and D1? are isomorphic 

2.4 Example. 

Dз 0 1 2 3 4 

0 0 0 0 0 0 
1 0 3 3 4 0 
2 0 0 3 0 0 
3 0 0 4 0 0 
4 0 0 0 0 0 

(1, 2} and D3 = <1, 2>D v Moreover, the groupoids 

D4 0 1 2 3 4 

0 0 0 0 0 0 
1 0 2 0 0 1 
2 0 3 0 0 2 
3 0 0 4 0 3 
4 0 1 2 3 4 

We have L>4 e 0 , -K(-D4) = {l}and D4 = <1, 4>D4. 
2.5 Example. Let n > 1 and let Cn = {au ..., an, b{, ..., bn, c, a1} be a set 

containing 2n + 2 elements. Define a multiplication on C„ by axax = bx, bxa, = c, 
1 < i < n, and xy = d in all the remaining cases. Then Cn e 3, K(CH) = n and 
A(C„) = n + 2. 

VIII .3 Primitive ^-groupo ids 

3.1 Let G e 3. We shall say that G is primitive if GG <= L(G) (then L(G) is an 
ideal of G). 

3.2 (i) The class of primitive ^-groupoids is closed under homomorphic 
images and subgroupoids. 

(ii) Every one-generated S'-groupoid is primitive. 

Proof, (i) Easy. 
(ii) If G = <a>G e 3 is not associative, then K(G) = {a}. 
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3.3 Lemma. Let a groupoid G e <3) be generated by a set A such that 
A A = L(G). Then G is primitive. 

Proof. Let ab e K(G) for some a, b e G. With respect to 1.3, we can assume that 
a = ab. Now, let JVbe an absolutely free groupoid over A (we have 0 =1= K(G) = A) 
and let f: W -> G be the homomorphism such that f\A = id^. Then f(t) = b for 
some t e W and we can assume that b is chosen in such a way that the length l(t) is 
minimal. Since ae K(G) = A, we have b <£ A and t$ A. Consequently, t = pq and 
b = f(p)f(q). Now, by 1.7, a = af(p), a contradiction with l(p) < l(t). 

3.4 Let 3ft denote the variety of groupoids determined by the following 
equations: (x . yu)v = x(yu . v), xy . uv = (xy . u)v, xy . uv = x(y . uv). 

3.5 Lemma. Let W be an absolutely free groupoid over a non-empty set X and 
let r, se W, l(r) > 5. Then the equation r = s is satisfied in 3k iff it is satisfied in 
every semigroup. 

Proof. See [3, 4.4]. 

3.6 Remark, (i) Let F with a free generator set A(=t 0) be a free groupoid 
from 3k and let s denote the smallest congruence of F such that Fs = F/s is 
a semigroup. Then Fs is a free semigroup and, if f: F -> Fs denotes the natural 
projection, then f\A is injective and f(A) is a free generator set of F. 

Now, let a e A and let g be the endomorphism of F such that g(A) = {a}.Then 
Fr = g(F) is a free ^-groupoid over {a} and r n s = idF, where r = ker(g). In 
particular, F is isomorphic to a subgroupoid of the cartesian product Fr x Fs. 

(ii) Let Fs be a free semigroup with a free generator set A and let Fs be a free 3k-
groupoid with a one-element free generator set {a}.Put b = a2, c = a . a2, d = a2. a, 
e = aA(= a2. a2) and f = ca = ad = (a . a2)a = a(a2. a), {a,b,c,d,e,f} =Fr, and 
F = {(a,x); xeA}u {(b,xy); x, ye A}u {(c,xyz), (d, xyz); x, y, zeA}u {(e,xyuv)}, 
(f xyuv); x, y, u, v e A} u {(a", t); t e Fs, l(t) = n > 5}. Then F is a subgroupoid 
of Fr x Fs and F is a free ^-groupoid over {a} x A. 

(iii) 
ғr 

a b c d e f g
5
 gб 

a b c e f g
5 

g
5 

gб g
7 

b d e g
5 g

5 
gб gб g7 g

X 

c f g
5 

gб gб g
7 g

7 
gx g9 

d e g
5 

gб gб g
7 

g
7 

gx g9 

e g
5 

gб g
7 

g7 gx gx g9 gl() 

f g
5 

gб g
7 

g7 gx gx g9 glO 

g
5 

gб g7 gx gx g9 gy gl() gll 

gб g7 gx g9 g9 gю gю gll gl2 
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3.7 Proposition, (i) The variety & is generated by [Fr] u 9 (Fr is the free 
3%-groupoid of rank I and ff is the variety of semigroups). 

(ii) The variety Sk is generated by the class of primitive 2-groupoids. 
(Hi) The classes of one-generated Q)-groupoids and M-groupoids coincide. 
(iv) A groupoid G eQ) is primitive iff G eSfc. 

Proof. Obviously, every primitive _?-groupoid is in 0t. On the other hand, if 
G e l u S and ab = a for some a9beG, then a .aa = ab .aa = (ab . a)a = aa . a9 

and hence a = ab e L(G). Similarly, if ab = b, then ab e L(G). Now, it follows 
from 1.3 that G is primitive. The rest is clear from 3.2(h) and 3.6. 

3.8 Lemma. Let G e _2, a e K(G) and H = <a>G. Then H n R(a) = 0. 
Proof. If b e H n R(a)9 then a = ab = ba e K(G)9 a contradiction with 3.3. 

VIII .4 Irreducible terms 

4.1 Throughout this section, let (X9 s) be a non-empty ordered set. Further, let 
W be an absolutely free groupoid over X9 S a free semigroup over X and let 
g : W -» S be the projectve homomorphism such that g | X = \dx. 

4.2 Let t e W be such that 2 < l(t) = n. For every 1 < i < n9 we shall define 
a term d(t, i) by induction on n: Let t = pq9 p9 q e W If i = I and p e X9 then 
d(t, i) = _. If 1 < i < /(p) and 2 < l(p)9 then d(r, i) = d(p9 i)q. If /(p) + 1 < i and 
2 < l(q)9 then d(£, i) = pd(q9 i — l(p)). If i = n and q e X9 then d(t9 i) = p. 
Obviously, l(d(t9 i)) = /(f) - 1. 

4.3 Lemma. Let teW be such that l(t) > 3 and let 1 < i <j< l(t). Then 
d(d(tj)j) = d(d(tj)j - 1). 

Proof. Easy. 

4.4 Let f e KV and let M be a proper subset of the set {1, 2, ..., l(t)}. If M = 0, 
then we put d(t9 M) = t. If M =j= 0, then l(t) > 2, M = {il9..., iw}, where m < /(t), 
i, < i2 < ... < im and we put d(t, M) = d(...(d(d(t9 ifII), !"„,_,)...), i,) = 

" ( ^ J ^7i) ^ m - l ? ---•> l\)-

4.5 Remark. Let teW be such that /(t) > 3 and let 1 < i, < i2 < ... < 
im < l(t), 2 < m < l(t) - 1. Then, by 4.3, d(t9 M) = d(t9 im9 ..., i,) = 

d(t, im-u im-2> ••-. L - m -h 1) = d(t, im_2, ..-, ii, iw_i - m -h 2, im - m -F 1) = 
... = d(f, ij, i2 — 1, i3 — 2, ..., im_! — m H- 2, im — m -\- 1). Of course, 

ii < i2 — 1 < i} — 2 < ... < im — m + 1. 

4.6 Let t e W9 l(t) = n9 and let g(t) = x ^ . . . xn9 x , e l . We shall define 
a relation _r on the set {1,2,..., n) in the following way: If 1 < i < n, then (i, i) 6 st. 
If 1 < i < j < n9 then (i, j) _ sr iff (x„ x,) e s, (x /+1, x7) e s, ..., (x7_i, x;) e s and 
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x, =N xh x / + 1 =1= x/? ..., Xj_{ + xh If 1 < / < j < n, then (j, /) e st iff (x,+ 1, x,) e s, 
(x, + 2, x,) 6 s, ..., (x,, x,) 6 s and x,+ , + xh xi+2 #= x,-, ..., x,- + x,. 

Now, it is easy to see that s, is an ordering of the set {1, 2, ..., n} and we denote 
by M(t) the set of all maximal elements of this ordering. Further, we put 
N(t) = {1, 2, ..., n}\M(t) and we define a relation r, on {1, 2, ..., n) by (/,j) e rt iff 
( / , j )es .and |/ - j \ < 1. 

The term t will be called s-irreducible if the following equivalent conditions are 
satisfied: 

(a) s, = id; 
(b) r, = id; 
(c) M ( f ) = {1,2,..., n}; 
(d) JV(t) = 0. 

4.7 We shall define a relation a on W by (p, g) e a iff /? = d(q, i) for some 
(i,j) e i\n i =t= f Now, let /J denote the smallest equivalence (on W) containing a. 
It is easy to see that j5 is a congruence of the absolutely free groupoid W 

4.8 Lemma. Let p, qeW be such that (p, q) e /?. Then t = d(p, N(p)) = 
d(q, N(q)) is an s-irreducible term and (p, t), (q, t) e (3. 

Proof. We can assume without loss of generality that (p, q) e a, i.e., p = d(q, i), 
(U j) £ 'V ^ e t 9{Q) = x i ••• x"> n = % ) • The rest of the proof is divided into two 
parts. 

(i) Let f: {1,2, ..., / — 1, / + 1, ..., n} -> {1, 2, ..., n — 1} be the bijection 
defined by f(k) = k for 1 < k < i - 1 and f(k) = k - 1 for / + 1 < k < n. 
We claim that N(p) = f(N(q)\{i}). 

Indeed, let (f(k), f(m)) e sp and I = {h;k < h < m or m < h < k}.If / e I, then 
(k, m) e stJ. If / e I, then j e I, and hence (f(j), /(wi)) e Sp, (xj, xm) ^ s and (x„ xm) 6 s, 
x, -# xw. Thus we get (/, m) e s(] and then (k, m) e s(J. The other inclusion is 
immediate. 

(ii) From (i) we conclude that d(p, N(p)) = d(q, N(q)) = t and h = card(jV(g)) = 
card(iV(p) + 1. Now, there is a sequence q = qh, q^_1? ..., qx, q0 of terms such 
thhat (qh_u qh)eoc, (qh_2, qh-X)ea, ..., (q0, qx)ea and card(N(gA.)) = k for any 
0 < k < h. It follows that t = q0 = d(q, N(q)) is s-irreducible and (q, t) e /?. 

4.9 Lemma. Kvery b/ock cf /? contains just one s-irreducible term. 

Proof. If p, qeW are s-irreducible terms such that (p, q) e p, then p = 
d(p, N(p)) = d(q, N(q)) = q by 4.2. 

4.10 Let F(X, s) denote the set of s-irreducible terms. Now, in view of 4.3, we 
can define a binary operation on F(X, s) such that the corresponding groupoid will 
be isomorphic (in a natural way) to the factorgroupoid W/p. 

Finally, define an equivalence y on F(X, s) by (xx. xx, x (x . xx)) e y, 
(xx . xx, ( xx .x )x )ey , (x(xx . x), ( x . x x ) x ) e y for every xeX and (p, q)ey 
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whenever p, q e F(X, s), g(p) = g(q) and either I(p) > 5 or p contains at least two 
(different) variables. Then y is a congruence of the groupoid F(X, 5) and we denote 
by E(X, s) the corresponding factorgroupoid. (We shall identify the sets X and 
X/y). 

4.11 Proposition. Let E = E(X, s) (see 4. JO.) Then: 
(i) Ee^ and K(E) = X. 

(ii) If x, ye X} then xy = y iff x -# y and (x, v) e 5. 
(Hi) s = QE IX. 

Proof. Easy. 

VIII .5 Auxiliary results 

5.1 In this section, let W be an absolutely free groupoid over a non-empty set 
X, S a free semigroup over X and let g: W - • S be the (projective) homomor-
phism such that g\X = idx. Further, let / be a homomorphism of W into 
a groupoid G eQ). 

5.2 Lemma. Let te W, g(t) = x{... xn. 
(i) f(t)eK(G) iff there is 1 < k < n such that f(x) 4= f(xk) and (/(x,), 

f(xk)) e QGfor any i, 1 < i < n, i + k. 
(ii) Iff(t) e K(G), then f(t) = f(xk). 

Proof. The case n = 1 is trivial and, if n > 2, then the result follows from 1.3 
and 1.7. 

5.3 Lemma. Let teW, g(t) = xx... xn, n > 2 and 1 < /, j < n be such that 
j = i + 1 (or j = i - 1) and /(x ;)/(x,) = f(x)(or f(Xj)f(Xi) = /(x,)). Then 
f(t) = f(d(t,j))(see4.2). 

Proof. Assume j = i + 1, the other case being similar. We shall proceed by 
induction on n > 3 (there is nothing to prove for n = 2). If t = pq and l(p) #= /, 
then the induction hypothesis can be used for p or q. Hence, suppose 
g(p) = xx... x, and g(p) = x,+ 1 . . . x„. Then either / > 1 or / -h 1 < n and we shall 
restrict ourselves to the case / > 1 (again, the case n > i + 1 is similar). 

Let p = uv and a = f(d(q, 1)). If f(u)f(v).f(q) = f(u).f(v)f(q), then 
f(vq) = f(d(vq, l(v) + 1)) = f(v)a (by induction) and we see that f(t) = 
f(u). f(v)a = f(u)f(v). a = f(d(t, j)) in each of the following cases: a e L(G)\ 
a = f(q); a + f(v). However, if f(q) + a = f(v) e K(G), then (/(*,-), a) e QG by 
5.2 and /(x,)/(x7) = f(x) yields (/(x;), O)EQ, and so a = f(q) by 5.2, a contra­
diction. On the other hand, if f(u)f(v).f(q) + f(u).f(v)f(q), then f(u) = 
f(v) = f(q) = beK(G) and (/(x ;), b)eQ, (/(x,), b) e Q by 5.2. Since 
/(x,) / (x /) = /(x,), we get /(x,-) + b, and therefore f(q) = a by 5.2. 
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5.4 Lemma. Let p, qeW, g(p) = x{... xn = g(q), be such that f(p) 4= f(q). Then: 
(i) There is 1 < k < n such that (f(x), f(xk)) e QGfor any 1 < i < n. 

(ii) card(N)e{3,4}, where N = {1 < i < n\ f(x) = f(xk)}. 
(Hi) f(p) = f(d(p, M)) and f(q) = f(d(q, M)), M = {1, 2, ..., n}\N. 

Proof. Everything is clear for n < 2 and, now, we shall use induction on n > 3. 
(i) Suppose there are 1 < /', j < n satisfying the properties formulated in 5.3. 

Then the induction hypothesis works for the terms d(p,j), d(q,j) and, since (f(*,), 
f(xk)) e QG implies (fx7), f(xk)) e QG and f(x7) * f(xk) for any 1 < k < n, k 4= j , 
we get our result by induction and 5.3. 

(ii) With regard to (i), we can assume that f(x,) 4= f(x,)f(x7) -# /(*/) whenever 
1 < i9j < n, \i - 1| = 1. If f(xj) = f(xj) for all 1 < i, j < n, then the situation 
is clear from 3.7(iii) and 3.5. Consequently, suppose that f(x) 4= f(x{) for some 
1 < i< n and put t2 = x2(xi(... (xn_\Xf))) and tx = xxt2. 

If p = p{p2. p3, then, by 5.2, we have f(p) = f(px . p2Pi), and hence there is 
u e W with f(p) = f(.\'iu), g(u) = x2... xir If x, 4= x2 for some 3 < j < n, then 
f(u) = f(t2) by induction, and so f(p) = f(t{). Hence, assume that xy = x2 for 
every 2 < j < n and denote a = f(x{), b = f(x2). Since a 4= cib 4= b, we have 
ab e L(G) and the subgroupoid <a, b}G is primitive (by 3.3). Now, f(p) = f(t{) in 
the case n > 5 (by 3.5 and 3.7(iii)). If 3 < n < 4, then either u = t2 or 
u = x2x2. x2. In the latter case, f(p) = a(bb . b) = (a . bb)b = (ab . b)b = 
ab. bb = a(b. bb) = f(t{). Consequently, f(p) = f(t{) in all cases and, since 
/(g) = f{ti) 1s also true, we have f(p) = f(q). 

VIII .6 Almost free groupoids 

6.1 Let (A, J\) and (B, r2) be ordered sets. A mapping f: A - • B will be called 
an immersion if f is injective and, for all a, b e A, we have (a, b) e r{ iff (f(a), 
f(b))er2. 

6.2 Proposition. Let G, H eS) and let f: G -* H be a homomorphism. Put 
A = f~l(K(H)), r, = QC\A and r2 = QH\K(H). If A * 0, then A c K(G) and 
f\A is an immersion of (A, r{) into (K(H), r2). 

Proof. Obviously, f(L(G)) ^ L(H), and so A = K(G). Now, suppose that 
A -# 0; then f\A is injective by LI 2. If a, be A and ab = b, then 
f(a)f(b) = f(b), and hence f \ A is a homomorphism of (A, r{) into (K(H), r2). On 
the other hand, if a, be A and (a, b) £ QG, then ab e L(G), f(a)f(b) e L(H) and 
(f(a)f(b)) $ QH. The rest is now clear. 

6.3 Corollary. Let G,H eQ) and let f ' : G -> H be a projective homomorphism. 
Put r{ = £G |K(G) and r2 = QH\K(H). Then there exists an immersion of the 
ordered set (K(H), r2) into (K(G), r,). 
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6.4 Corollary. Let G be a minimal non-associative ^-groupoid and r = 
QG\K(G). Let (X, s) be a non-empty ordered set and let f:E(X, s) —> G be 
a homomorphism with j (X) = K(G). Then f is projective and the ordered sets 
(X, s) and (K (G), r) are isomorphic. 

6.5 Proposition. Let (X, s) be a non-empty ordered set and let h: X -> G e _? 
be a mapping. Then h can be extended to a homomorphism f: E(X, s) -^ G (which 
is then unique) if and only if the following two conditions are satisfied: 

(a) If x, yeX are such that x 4- y and (x, y) 6 s, then h(x)h()^) = h(y) = 
h(y)h(x). 

(b) If x, yeX are such that x + y and (x, v) e s and h(y)e K(G), then 
h(x)h(y) 4= h(y) #= h(x). 

Proof. If it easy to see that the conditions (a), (b) are necessary (1.3(i), LI2, 
4.11) and, now, we are going to show that they are also sufficient. 

Let, as usual, W denote an absolutely free groupoid over X, S a free semigroup 
over X and let k:W^E(X, s), j:W->G and g: W-+S be such that 
k(x) = g(x) = x and j(x) = h(x) for every x e X. 

(i) If p, q e W and (p, q)eoc (see 4.7), then p = d(q, i), g(q) = x{... xn, 
1 < i < n, and (xh y) e s, where either y = xi+l and / < n or y = x,_ t and 1 < i. 
By (a), h(xi)h(y) = h(y) = h(y)h(x), and hence j(p) = j(q) by 5.3. Now, it follows 
easily that j(p) = j(q) whenever p, qeW and (p, q) e /?. 

(ii) Let p, qeF(X, s) be such that (p, q)ey (4.10). Then g(p) = x{... xn = 
g(q) and we put Y = {x{, ..., xn}. If card(Y) = 1, then j(p) = j(q) by 3.7(iii) and 
3.5. If x, y e Y are such that x -# y and (x, y) e s, then (using 5.4) we can assume 
thatj(>?) = h(y) e K(G) and (j(x),j(y)) e QG. But this is a contradiction with (b). We 
have thus proved that j(p) = j(q). 

(iii) Combining (i) and (ii), we conclude that ker(k) _= jer(/), and hence we can 
put f(k(p)) = j(p) for every peW. 

6.6 Corollary. Let G e & be a groupoid generated by a non-empty set A and 
let s = QG | A. Then there exists a unique projective homomorphism f: E(A, s)-> G 
such that f\A = id^. 

6.7 Proposition. Let (X, s) be a non-empty ordered set, G e Q) and let 
f:G—> E(X, s) be a homomorphism such that f(K(G)) = X. Then f is an 
isomorphism if and only if G is minimal. 

Proof. Suppose that G = <K(G)>G, the other implication being obvious. By 
6.2, f|K(G): K(G) -> X is a bijection and, by 6.5, there is a homomorpism 
h : E(X, s)->G such that h(f(a)) = a for every a e K(G). Then f(h(x)) = x for 
every xeX and fh = id£ by 6.6. Since h(X) = K(G) generates G, h is projective 
and f = h-1. 
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VIII.7 Equations in ^-groupoids 

7.1 In this section, let X = {x1? x2, ...} be a countable infinite set and let W an 
absolutely free groupoid over X. Define an endomorphism e of Why e(x) = x{ 

for every i > 1. 
Let teW, g(t) = y{... yn, n > 1, yfeX. Then var(f) = {y\, ..., yn} and, for 

every proper subset V of var(t), we put c(V) = {f; 1 < i < n, y-t e V}. Moreover, 
ev(t) = e(d(t, c(V))) (see 4.4). 

7.2 Define sets 8 and 3F of identities in the following way: The identities t = t, 
(xx . x)x = xx . xx, x(x . xx) = xx . xx and (x . xx)x = x(xx . x), where teW 
and x = x h belong to 8. If p, qeW are such that g(p) = g(q) and l(p) > 5, then 
the identity p = q belongs to 8. Finally, if u, veW, then u = v belongs to 3F iff 
g(u) = g(v) (i.e., u = v follows from the associate law) and ev(u) = ev(v) belongs 
to 8 for every proper subset V of var(u). 

7.3 Lemma. Let G e S and let p, qe W be such that p = q belongs to 2F. 
Then G satisfies p = q. 

Proof. Let f: W -* G be a homomorphism such that f(p) 4= f(q). We have 
g(p) = g(q) and, by 5.4, there is a proper subset V of var(p) = var(q) such that 
f{p) = f{d(p, Z(V))\ f(q) = f(d(q, Z(V))) and f(x) = f(y) for all x, y e var(p)\V 
Now, ev(p) = ev(q) implies f(p) = f(q) (by 3.7(iii) and 3.5), a contradiction. 

7.4 Lemma. Let A = {a, b} be a two-element set ordered by s, (a, b) e s. Let 
h:W-+ E(A, s) be a homomorphism such that h(X) = A and h(x{) = b. Then, for 
every t e W, either V = var(^) or V =)= var(t) and h(t) = h(ev(t)), where 
V = {xe var(r); h(x) = a}. 

Proof. If x G V and y e var(r)\K then h(x)h(y) = ab = b = h(y). Now, we can 
(repeatedly) use 5.3. 

7.5 Lemma. Let p, q e W be such that every groupoid from Q) satisfies p = q. 
Then the identity p = q belongs to 3F'. 

Proof. Suppose, on the contrary, that p = q is not in J^; we can assume 
that X! <£ var(p). Now, every semigroup satisfies p = q, and hence g(p) = g(q) 
and the identity ev(p) = ev(q) does not belong to 8 for a proper subset V of 
var(p) = var(q). Let h : W-+ E(A, s) (see 7.4) be the (projective) homomor­
phism such that h(V) = {a} and h(X\V) = {b}.Then h(p) =N h(q) by 7.4, a con­
tradiction. 

7.6 Corollary, (i) The variety 3T generated by 3) is just the variety of 
groupoids satisfying the identities from 2F. 

(ii) The variety 2T is generated by the groupoid E(A, s) (see 7.4). 
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VIII .8 yf-unipotent ^-groupoids 

8.1 A groupoid G e @ will be called Jf-unipotent if a1 = b2 for all a, b e K(G)\ 
is G is non-associative, then the (uniquely determined) element a2(a e K(G)) will 
be denoted by w(= wG). By 1.4(i), w e L(G) and we also put (oG =)o = w2; again, 
o e L(G). 

8.2 Proposition. The class of Jf-unipotent Q)-groupoids is closed under sub-
groupoid and homomorphic images. 

Proof. Obvious. 

8.3 Lemma. Let G eS) be Jf -unipotent. 
(i) If a, b, ce K(G) are such that b -# a + c, then ab -# ca. 

(ii) Ifa.be K(G), then ab e L(G). 
(Hi) If ae K(G\ then aw + wa. 

Proof, (i) Assume, on the contrary, that ab + ca. Then a . aa = aw = a . bb = 
ab . b = ca . b = c . ca = cc . a = wa = aa . a, a contradiction. 

(ii) If ab =j= L(G), then we can assume that a = ab (see 1.3). Now, a = baby 
1.3 and so ab = ba, a contradiction with (i). 

(iii) We have aw = a. a2 #= a2. a = wa. 

8.4 Remark. Let G e S b e a groupoid such that K(G) < 1. Then, evidently, 
G is Jf-unipotent. In particular, this takes place, when G e Q) is a groupoid that 
can be generated by at most one element (see 1.8). 

The groupoid D4 from 2.4 is Jf-unipotent (since J f (D4) = {1} is a one-element 
set), but D4 is not primitive (since 1 e D4D4); notice that DA is generated by 
a two-element set. 

8.5 Let G e ^ . W e put 1(G) = {ab;a, be K(G), a + b} and i(G) = card(I(G)). 
Of course, 1(G) #= 0 (equivalently, i(G) > 1) iff K(G) > 2. 

8.6 Lemma. Let G e S> be a finite X-unipotent groupoid such that K(G) > 2. 
Then there exists a subgroupoid II of G such that 2K(II) > K(G) and i(G) > 
i(H) + 1. 

Proof. Choose x e /(G) and put A = {aeK(G)\ ab = x for some b e K(G\ 
a =# b} and B = {b e K(G); ab = x for some a e K(G\ a =1= b}. By 8.3(i), we have 
A n B = 0, and hence we can assume without loss of generality that 
card(B) < K(G)/2. NOW, put II = <K\B>G. Then K(H) = K\B by 1.9 and x $ 1(H). 

8.7 Lemma. Let G eQ) be a finite C/f -unipotent groupoid such that K(G) > 2m 

for some m > 0. Then i(G) > m. 

Proof. The result follows easily from 8.6 by induction on m. 

8.8 Proposition. Let G e & be a finite non-associative Jf -unipotent groupoid. 
ThenX(G) > log2(/c(G)) - 1. 
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Proof. We have X(G) > i(G) and the result now follows from 8.7. 

8.9 A groupoid G eQ) will be called Jf-zeropotent if it is Jf-unipotent and (in 
the non-associative case) the element oG = wG is an absorbing element of 
<K(G)}G. 

8.10 Proposition. The class of Jf -zeropotent Q)-groupoids is closed under 
subgroupoids and homomorphic images. 

Proof. Obvious. 

VIII .9 Primary ^-groupoids 

9.1 A groupoid G eQ will be called (strongly) primary if it is minimal and 
Jf-unipotent (Jf-zeropotent) (then it is primitive). 

9.2 Lemma. Let G e Q) be a non-associative primary groupoid and let 
K = K(G). Further, let W be an absolutely free groupoid over K, S a free 
semigroup over K and let f: W -> G and g : W -> S be the homomorphisms such 
that f \K = idK = g\K. If r, seW are such that g(r) = g(s) and f(r) 4= f(s), 
then there is a e K such that at least one of the following cases takes place: 

(J) f(r) = wa and f(s) = aw. 
(2) f(r) = aw and f(s) = wa. 
(3) f(r) = o and f(s) = awa. 
(4) f(r) = awa and f(s) = o. 

Proof. Easy (use 3.5). 

9.3 Lemma. Let G eS) be a non-associative primary groupoid. Then: 
(i) aw #= wafor every a e K(G). 

(ii) bw = wb for every b e L(G). 
(Hi) oc = co for every ceG. 

Proof, (i) See 8.3(iii). 
(ii) Let f: W -> G and g : W -> 5 mean the same as in 9.2. There is t e W such 

that b = f(t) and we have l(t) > 2 (since b e L(G)). Now, for every a e K(G), we 
have bw = f(ta2) and wb = f(a2t). Let g(t) = ax... an and n > 3. Using repea­
tedly 3.5 and the fact that G is Jf-unipotent, we have the following equalities (in 
G): 

bw = ax... ana
2
x = ax... an_xanan = ax... an_xan_xan = ... = axa}a2... an = 

a\ax... an = wb. 
If l(t) = 2 and t = axa2, where ax 4 a2, then (again in G) bw = axa2. a\ = 

(axa2. a2)a2 = axa2. a2 = axa
2. a2 = ax . a

2a2 = ax(ax . axa2) = a2. axa2 = wb. 
If l(t) = 2 and t = aa then b = w annd bw = wb trivially. 
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(iii) We have (by (ii)) oc = w2c = w . wc = wc . w = w . cw = cw . w = 
c . w2 = CO. 

9.4 Let G e Q) be JT-unipotent. We put J(G) = oG u Go u {o}. 

9.5 Proposition. Let G e 3 be a non-associative primary groupoid. Then: 
(i) J(G) is an ideal of G and J(G) = Go u {o} = oG u {o}. 

(7/) /fa 6 K(G) is such that aw e J(G) (resp. wa e J(G)), then wa $ J(G) (resp. 
avv^J(G)). 

(iii) w $ J(G) and w $ wG u Gw. 

Proof, (i) We have o2 e J(G) and it is now clear from 9.3(iii) that J(G) is an 
ideal. 

(ii) Assume, on the contrary, that {aw, wa] ^ J(G). First, we show that 
wa = ob and aw = co for some b, ceG. 

Indeed, if wa = o, then wa = ww = w . aa = wa . a = oa. If wa + o, then 
wa e oG trivially. Similarly for aw. 

Now, we have wa = ob = bw2 = bwaa = boba = b2oa = wb2wa = wb2ob = w3b3 

and, quite similarly, aw = c3w\ But then w3b = vv . w2b = w . wa = oa = ao = 
aw. w = co. w = cw} and wa = w3b3 = w3b. b2 = cw3b2 = c2w3b = C\v3 = aw, 
a contradiction. 

(iii) If weJ(G) and aeK(G), then aw, waeJ(G), since J(G) is an ideal, 
a contradiction with (ii). Finally , if w = wd, then vv = w . wa1 = w2d = od and 
w 6 J(G), again a contradiction. Thus w ^ wG and, similarly, w ^ Gw. 

9.6 Proposition. Lel GeQ) be a non-associative primary groupoid, H = G/J(G) 
and let f: G —• H denote the natural projection. Then: 

(i) H e 3) and H is a non-associative and strongly primary, 
(ii) f(K(G)) = K(H) and f\K(G) is injective (in fact, K(G) c G^J(G) and 

f\(G\J(G)) is injective. 
(iii) IfG is finite, then K(H) = K(G) and X(H) = X(G) + 1 - card(J(G)) < 1(G). 

Proof. The assertions follow easily from 9.5. 

9.7 Remark. Let Gxe 3) be finite, non-associative and Jf-unipotent. Then 
G2 = {K(G^f)Gx is (non-associative) primary, K(G2) = K(GX) and k(G2) < X(G^). 
Further, G3 = G2/J(G1) is strongly primary and, again, K(G3) = K(G{) and 
X(G3) < X(GX). 

V I I I . 1 0 T h e n u m b e r s /.(/?) 

10.1 Remark. Let n, k be positive integers such that n > 2 and n > k. We 
have n = 2!'k, where r = m -f- s is a real number, m a non-negative integer and 
0 < 5 < 1. Put / = max(k, m). We claim that / > log2 (n) — log2 (log2 (n)) — 1. 
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First, the inequality is equivalent to 2 / + 1 log2 (n) > 2m2sk, and hence it is enough 
to show that 2r(m + s + log2 (/<)) > k, t = I - m. If m = 0, then /• = 0, s = 0, 
k = I = t = n > 2, 2* > fc, k2,< > 2k and 2k log2 (/c) > k. Now, assume that 
m > 1. We show that 2rm > k = t + m. This is certainly true for k < m, and 
hence we restrict ourselves to the case 1 < m < k. Then t > 1, 2r — I > t, 
(2f — l)m > t and, finally, 2'm > t + m. 

10.2 Let G e Q) be a non-associative groupoid. We shall define an equivalence 
TG on K(G) by (a, b) e TG iff a2 = b2. Further, we denote r(G) = card(K(G)/TG). 

10.3 Lemma. Let G e 3?be a finite non-associative groupoid and let m be 
a non-negative integer such that K(G) > r(G)2"'. Then 1(G) > max(T(G), m). 

Proof. Let A be a block of TG with maximal number of elements (see 6.2), and 
let H = (A)G. Then K(H) = A, H is primary and K(H) = card (A) > 
K(G)/T(G) > T. By 8.7, we have )\G) > 1(H) > i(H) > m. On the other hand, 
i(G) > T(G)by 1.4(i). 

10.4 Proposition. Let G e Q} be a finite groupoid such that K(G) > 2. Then 
A(G) > log2(/c(G)) - log2(log2(/c(G)) - 1. 

Proof. Combine 10.3 and 10.V 

10.5 For a non-negative integer n, let X(n) denote the number min (A(G)), where 
G runs through all (finite) groupoids from Q) such that K(G) = n. 

We have i(0) = 1, ,1(1) = 3 and X(2) = 3 (by 2.1 and 2.3). Further, by 2.5 and 
10.4 we have log2(n) — log2 (log2 (n)) — 1 < k(n) < n + 2 and 3 < X(n) for 
every n > 2. In particular, the numbers X(n) are not bounded. 

VIII.11 Comments and open problems 

11.1 This part is natural continuation of [3] and it is based mainly on [1]. 
11.2 Describe the structure of the ^-groupoids G such that a2 #= b2 for all 

a, beK(G), a + b. 
11.3 Find better estimates for the numbers X(n). 
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