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1993 ACTA UNIVERSITATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL. 34. NO. 

A Note on Singular Points of Convex Functions in Banach Spaces 

L. ZAJlCEK 

Prague* 

Received 14 April 1993 

The magnitude of sets A\f) of points at which the subdifferential of a continuous convex function/ 
defined on a Banach space with separable dual space contains a ball of finite codimension n is 
characterised. 

Introduct ion 

Let Xbe a Banach space and let/be a continuous convex function (or, more 
generally, a proper convex function) on X. For a nonnegative integer n9 we denote 
by An(f) the set of all points x e X at which the subdifferential df(x) contains 
a ball of codimension n (i.e. a ball in a closed affine subset of codimension n). We 
investigate how big the set An(f) can be. If X is finite-dimensional, then a satisfac­
tory characterisation of the magnitude of sets An(f) is given in [Z] (the case of 
a continuous convex f) and in [V] (the case of a proper convex / ) . 

The case when X* is separable was considered also in [V]. In this case A°(f) 
is always countable and each set of the form An(f)9 n ^ 1, can be covered by 
countably many of special pieces of some n-dimensional Lipschitz surfaces in X9 

which are called d -convex fragments. 
In the present note we observe that the proof in [V] implicitely contains the fact 

that these 6 - convex fragments have an additional property (they are UDCn 

— fragments, cf. Definition 2 below). 
The second observation is that a slightly modified construction from [Z] gives 

that if E c X can be covered by countably many of UDCn — fragments, then 
there exists a continuous convex function / on X such that E c An(f). Thus we 
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obtain a characterization of the magnitude of sets An(f), but it is not too nice, 
since the notion of a UDCn — fragment is rather complicated and there is 
a natural open question (cf. Problem below) whether it can be simplified. 

A quite satisfactory characterisation we have for n = 0 and n = 1 only. 
Finally we consider the set -4£(/) of points x at which / "has a big singularity 

in all directions", more precisely, dvf(x) + d ~J(x) > e for each v, ||t;|| = 1, 
where e > 0 does not depend on v. It is easy to see that always A°(f) c Al(f). 
But the opposite inclusion generally does not hold. Moreover, it is shown (Exam­
ple 1) that Al(f) can be uncountable in 4-

In the following we shall use the following notations and definitions. 
Notation. The open ball with center x and radius r is denoted by B(x, r). The 

one-sided derivative of a function f on a normed linear space is defined as 
dvf(x) = lim t_0+(f(x + tv) — f(x))t ~\ For the notion of a proper convex func­
tion see e.g. [PJ. 

Definition 1. (cf. [VZJ, p. 45, Problem 10) Let X, Y be linear spaces, A c X 
be an open convex set and 0 # M C A. We shall say that F: M -+ Y is delta-
-convex on M w.r.t. A if ther exists a continuous convex function f (so called 
control function) on A such that for each y* e Y*, \\y*\\ = 1, there exists a conti­
nuous convex function gy* on A such that y* o F = gf — / on M. 

Note 1. IfM = A, we obtain the notion of a delta-convex mapping on A which 
generalizes in a natural way the well-known notion of a d-convex function. The 
investigation of delta-convex mappings was started in [VZJ (cf. also [KMJ, where 
2 from 10 problems contained in [VZJ are solved). It is still unknown (cf. Problem 
10 from [VZJ) whether or not each F: M -+ Y which is delta-convex w.r.t. A can 
bo always extended to a delta-convex mapping on A. 

Note 2. A slightly different definition of a delta-convex mapping is used in [VJ. 
Namely, the control function is demanded to be Lipschitz. This difference is not 
essential, since each continuous convex function is locally Lipschitz. 

Definition 2. Let E be a subset of a Banach space X and n < dimX be 
a positive integer. Following [VJ (p. 558) we shall say that E is a d-convex fragment 
of dimension n (E e DCn) if there exists a closed subspace Z of X and its 
topological complement W of dimension n, M c W and a Lipschitz mapping 
q>: M -+ Z which is delta-convex on M w.r.t. W with a Lipschitz control function 
f such that 

E = {w + cp(w) : w e M]. 

We shall say that E is a uniformly Lipschitz d-convex fragment of dimension 
n(E e UDC n) if E e DCn and, moreover, q> and f can be chosen in such way that 
all functions gy> from Definition 1 can be K-Lipschitz for some K (independent 
ony*). 

Fragments with M = W will be called surfaces (curves for N = 1). 
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Resul t s 

To prove our main result, we shall need the following characterization of the sets 
A\f). 

Lemma. Let f be a continuous convex function defined on an open convex 
subset C of a Banach space X. Then for each nonnegative integer n the following 
conditions are equivalent: 
(i)xeA"(f), 
(ii) There exists a closed subspace Z c X of codimension n, y£ X* and e > 0 

such that 

dj(x) > (Z, y) + efor each z*Z, ||z|| = 1. 

Proof, (a) Suppose that (i) holds. Then there exists a closed subspace W c X* 
of codimension n, y e X* and r > 0 such that 

B(y, r) n (y + W) C df(x). 

Chose a n-dimensional V c Z* such that V 0 W = X* and let nw:X* - W 
be the projection in the direction of V. Put e =|r||jtv^|| "1 and Z = x K It is well 
known that codim (Z) = n. Choose z e Z, \\z\\ = 1. We know (cf. e.g. [P]) that 

(1) dj(x)= sup{(z, s):sedf(x)}. 

Find u e X*, \\u\\ = 1 such that (z, u) = 1 and denote w = nw(u). Then obvi­
ously (z, H>) = 1, || w|| iS ||JIH>|| and y + ~—w e d/(jc). Therefore by (1) 

^ ) £ ( z 'H r -^- ( z ->>+^ i (^ ) + £ 

(b) Now suppose that (ii) holds. We can suppose without any loss of generality 
that y — 0 (if y # 0, we can consider the convex function f(x) = f(x) — (x, y)). 
Choose an n-dimensional T a X such that Z © T = X and put E = T1, 
F = Z 1 . It is well-known that E © F = X* and dim F = n. Let jt̂  : X* - £ be 
the projection in the direction of F. We shall show that 

nE(df(x)) 3 E n B(0, f). 

In fact, let p e £ n fi(0, e). Since y = 0, (ii) implies that 

(z, />) ^ d/(*) ^ / (* + z) - f(z) for each z e Z. 

Therefore by the well-known version of the Hahn-Banach theorem (cf. e.g. [RW]) 
there exists q e df(x) such that p/Z — q/Z and consequently p = nE(q). Now 
let «0 be the minimal nonnegative integer for which there exists a closed subspace 
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W of codimension n$ such that a linear projection of df(x) on W has a nonempty 
interior in W. We have proved that n ^ % If .n0 = 0, then (df(x))° ¥* 0, i.e. 
* e _4°(/). Thus suppose « =; /IQ =; 1 and choose a closed subspace W of codi­
mension n0, a linear projection j tw : X* -• TV and a (relatively) open ball .8 in 
TV such that B c jt^d/j^c))-

At first we shall show that (Jtw)-1(w) n df(x) is a singleton for each w e B. 
Suppose on the contrary that there are w1 ^ u2 from df(x) and j e f l for 
which nw(ul) = Jtw(w2) = y. Put u = w2 — w1, Z = JiĴ flO}) and choose 
a ((rt0 — l)-dimensional) subspace U such that If © Lin{u} = Z. Further let 
L = IV © Lin{u} and jt L : X* -* L be the projection in the direction of U. Clear­
ly A '• itL(df(x)) is convex and bounded. Therefore 

a(w) : = sup{t: w + tu e A} 

is a bounded concave function on B and 

0(w) : = inf{t: w+ tut A} 

is a bounded convex function on B. Therefore u and / are continuous on B. Since 
clearly a(y) > fi(y), we easily obtain that A has a nonempty (relative) interior in 
L, which is a contradiction with the definition of % 

Thus we know that n"^l(w) n df(x) is a singleton, say { (̂w)}, lor each w e B. 
Let {ux, ...,w„0} be a basis of Z. Considering for each i e {1, ...,«o} and u : = «, 

U,, L„ .A,, a,-, A defined as above, 

we obtain that at(w) = Pt(w) are continuous and affine on B and therefore also 
(j>: B — X* is continuous affine on B and consequently has a unique continuous 
affine extension f: W -+ X*. It is easy to prove that $(W) is a closed affine 
subspace of codimension n^, df(x) a $(W) and <j){B) c d/(jt) is open in $ W), 
which proves (i). 

Theorem. Let X be a Banach space with a separable dual space X* and T c X 
be a set. Then the following assertions are equivalent: 
(i) There exists a continuous convex function F on X such that T c An(F). 
(ii) There exists a proper convex function F on X such that T c An(F). 
(Hi) T can be covered by countably many of uniformly Lipschitz d-convex frag­

ments. 

Proof. The implication (i) =-> (ii) is trivial. The proof of the implication 
(ii) => (Hi) is implicitely contained in [V]. In fact, it is sufficient to observe that 
each function H^ constructed in [V] (p. 564) is Lipschitz with the constant 
f (m + r). 

182 



To prove the implication (Hi) => (i) consider at first a fragment E e UDCn 

which is determined by W, Z, cp: M -+ Z and a control function / as in Definit­
ion 2. We can suppose that cp, f and all gz* are K-Lipschitz. Remember that by 
definitions 

(2) z*(cp(w)) - g^(w) - f(w) for z* e Z*, \\z*\\ = 1 and w e M. 

Now define the function c on W X Z (equiped with the maximum norm) by the 
formula 

c(w, z) = s u p { g ^ ) - z * ( z ) : | | z * | | = l}. 

All functions g^(w) — z*(z) are obviously convex and (K + 1)-Lipschitz on 
W X Z. On account of (2) we have 

(3) c(w, z) - sup {z*(<p(w>)) + /(w) - z*(z) : ||z*|| = 1} for w e M and z e Z 

and consequently 

c(w, <P(H>)) = f(w) for w £ M. 

Consequently c is a finite (K + 1)-Lipschitz convex function on W X Z. Fur­
ther (3) implies that 

c(w, cp(w) + A) = /(u>) + || A || for each w - M and A e Z. 

Identifying X and W X Z, we obtain a Lipschitz convex function c on Z such that 
dhc(x) = 1 for each x e E and A e Z, ||A|| -• 1. Therefore Lemma gives 
E c An(c). 

Now suppose that T c (J*.! £* e UDCn. For each natural k find a Lipschitz 
convex function ck on _X such that Ek C -4n(c^) and then a sequence {ak), ak > 0 
such that F(x) : = J]".! «/%cit(x) is a convex Lipschitz function on X. It is easy to 
prove that T c ,4"(F). 

Note 3. 5mcc tAc nature of UDCn-fragment is not sufficiently known, we 
cannot be satisfied with the characterization of the magnitude of the setsA°(f) for 
n > 1. The case n — 0 is easy (each countable set is a subset of some A°(f)) and 
for n = 1 our Theorem and results from [V] give that the following assertions are 
equivalent: 
(i) There is a continuous convex function F on X such that T c A1(F). 
(ii) T can be covered by countably many curves with finite convexity (i.e. LFC-

-curves in the terminology of fVJ). 
(iii) T can be covered by countably many of 6-convex curves. 
The case n > 1 is unclear, since the following problem (analogical to Problem 10 
from [VZJ, cf. Note 1 above) is open. 
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Problem. Is it true that each uniformly Lipschitz d-convex fragment of dimensi­
on n > lis a subset of a (uniformly Lipschitz) d-convex surface of dimension n? 

Note also that I do not know, whether each (5-convex fragment of dimension 
n > 1 can be covered by countably many of umformly Lipschitz <5-convex fragments 
of dimension n. The following example which shows that A%(f) can be uncountable 
in /2 was suggested to me by P. Holicky, J. Tiger and L. Vesely. 

Example 1. 
Let 

C - {(*„) e l2: |xj £ 1/n} and A - {(*„) e /2: \xn\ - 1/n}. 

Clearly C is a compact convex subset of l2 and A c C is uncountable perfect. Let 

f(x) = d/$/(;t, C) be the distance function determined by the set C. 

It is well known that / is a convex 1-Lipschitz function and obviously 

dj(x) ^ 0 for each x e C. 

Now let a vector v e /2, ||i> || = 1 and x e A be given. Consider the sets 

71 - {n: xn - 1/n, vB ^ 0}, T2 - {n: *„ - 1/n, vn < 0}, 

73 - {n: xn - - l / / i , v„ £ 0}, /* - {n:xn = -1/n, vn < 0}. 

Since IV = (J*--7** w e c a n c h o o s e k e U> 2, 3, 4} such that X{(vn)2 : 
#i e y*} £ 1/4. We claim that dvf(x) £ 1/2 if A: e {1, 4} and d_v/(x) ^ 1/2 if 
A: e {2, 3}. Let, for example k = 3. Now choose t > 0 and consider the size of 
f(x — vt) = dist(x — vt9 C). If c e C and w € / 3 we have 

( x - v f - c)„ 1 / n - v n t - cn £ -vnt 
and therefore \(x — vt — c)n\ ^ tvn. 

Consequently 

and therefore 
i* - v t - c\\ S VBť2(w«)2 = n e 73} Ž ř/2 

/(> - t>0 - /(JC) 1 
-•- —------ £ - for each f > 0. 

f 2 

The cases k = 1, 2, 4 are quite similar. Thus we have proved that 

dj(x) + d _/(.*) £ 1/2 whenever x e 4̂ and || v|| = 1. 
Example 1 implies that /!$(/) does not coincide with A\f) in lv The following 

simpler example illustrating this phenomenon was shown me by L. Vesely. 
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Example 2. 
Let 

C-{x^{xi}^l2:xi^09\\x\\ SI}. 

Then the support function 

f(x) : = oc(x) = sup{x, y):y* C} 

is a continuous convex function on 4 with 5/(0) = C. Consequently 0 * A°(f). 
On the other hand, 0 e ̂ ( f ) . In fact, for each v = {vj e /2, || v|| — 1, the num­
bers dj(0)9 d-v/(0) are clearly nonnegative, but one from them is at least |, since 
v+ : = {v*} e C, v" : = {vf} 6 C, (v, v+ — v~) = 1 and therefore one from the 
numbers 

(v, v+), ( -v , v ) 

is at least \ 
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