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A connection between groups and certain groupoids is investigated. 

Vysetfuje se souvislost mezi grupami a jistymi grupoidy. 

H3ynaeTCH CBH3B rpyrm H HeKOTOpbix rpyimoHflOB. 

1. Introduction 

Generalizations of the notion of the arithmetic mean value have been considered 
e.g. in [2] and [5]. If (G, + , •) is an algebra where (G, + ) is a uniquely 2 — divisible 
abelian group and the multiplication is the usual arithmetic mean value, then x + 
+ yz = xy + xz. The aim of the present paper is to study algebraic systems satis­
fying identities of a similar type. 

Let k be an integer. An algebra (G, + , •) with two binary operations is called 
a k-system if (G, + ) is a group (possibly non-commutative) and the following ident­
ity holds: 

(1) x + k(yx) = xy + xz . 

Let G = (G, + , •) be a k-system. We denote by Z{G) the centre of the group 
(G, +) . If a e G then we have four transformations Lfl, Ra, Lfl and Ra of G defined 
by La(b) = ab, Rjb) = ba, L+(b) = a + b and Ra(b) = b + a. Obviously, both 
La and Ra are permutations. Further, we define five transformations d, e, f, g and h 
of G by d(a) = aa, e(a) = (2 — k) a, f(a) = ka, g(a) = (k — 1) a and h(a) = 2a 
for every a e G. 

In the sequel we shall need the following simple result. 

1.1. Lemma. Let k + 0 be an integer and (G, + ) a 2-divisible group such tha* 
ka = 0 for every a e G. Then (G, + ) is uniquely 2-divisible. 
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1.2. Example. Let (G, + ) be a 2-divisible group and let t be any transformation 
of G such that 2 t(a) = a for every a e G. Put ab = f(a) for all a,beG. Then 
(G, + , •) is a 0-system. 

1.3. Example Let (G, + ) be a 2-divisible abelian group and let t be any trans­
formation of G such that 2 f'a) = a for every a e G. Put ab = t[a) + f(b) for all 
a, b e G. Then (G, + , •) is a 1-system. 

1.4. Example. Let fc be an integer and (G, +) a group such that fca = 0 for 
every ae G. Suppose further that the group (G, + ) is uniquely 2-divisible (e.g. fc 
is odd or fc =j= 0 and (G, + ) 2-divisible — see 1.1) and put ab = a/2 for all a, be G. 
Then (G, + , •) is a fc-system. 

The fc-systems constructed in 1.4 will be called fc-systems of type one. 

1.5. Example. Let fc be an integer and (G, + ) an abelian group such that 
(fc — 1) a = 0 for every a e G. Suppose further that the group (G, + ) is uniquely 
2-divisible (e.g. fc even or fc 4= 1 and (G, + ) 2-divisible — see 1.1) and put ab = 
= a/2 + 6/2 for all a,beG. Then (G, + , •) is a fc-system. 

The fc-systems constructed in 1.5 will be called fc-systems of type two. 

1.6. Example. Let fc be an integer and (G, + ) a group such that fc(fc — 1) a = 0 
and fca eZ(G) for every a e G. Suppose further that the group (G, + ) is uniquely 
2-divisible (e.g. fc =f= 0, 1 and (G, + ) 2-divisible - see 1.1) and put ab = a/2 + fcb/2 
for all a,b eG. Then (G, + , •) is a fc-system. 

A fc-system G is said to be splitting if it is isomorphic to the direct sum 
of a fc-system of type one and a fc-system of type two. 

Finally, the reader should consult [1] and [4] for definions, notation etc. 

2. Basic properties of k-systems 

In this section let G be a fc-system. 

2.1. Lemma. For all a,beG: (2) a = (2 - fc) (aa), (3) (fc - 1) (ab) = - a + 
+ aa = (fc - 1) (aa), (4) 2(ab) + (2 - 2k) (bb) = a + b, (5) 2(ab) = a + fc(bb). 

These equalities are easy consequences of (1). 

2.2. Lemma. fc(fc — 1) a = 0 for every a e G. 

Proof. We have fc(fc - 1) (aa) = (fc - 1) (0 + fc) (aa)) = (fc - 1) 2(0a) = 
= 2(fc - 1) (0a) = 2(00) by (3) and (5). Hence, by (2), fc'vfc - 1) a = k[k - 1) . 
. (2 - fc) (aa) = 2(2 - fc) (00) = 0. 

2.3. Lemma, (i) ed = idG, (ii) gLa is constant for every a e G, (iii) Ra = 
= R-hgd(a)hRa a n d RHaa) = hRa for every a e G, (iv) L+JLb = LabLa for all a,beG, 
(v) L+

afRb = R:bLa for all a, b e G. 



Proof, (i) follows from (2), (ii) from (3), (iii) from (4) and finally (iv) and (v) 
follow from (1). 

2.4. Lemma. The transformation e is surjective, d is injective, h is surjective 
and Ra is injective for every as G. 

Proof. Use 2.3. 

2.5. Corollary, (i) The group (G, + ) is 2-divisible and (fe - 2)-divisible, (ii) 
The group (G, +) is uniquely 2-divisible provided that fe 4= 0,1, (iii) Let fe 4= 0, 1 
and fe(fe — 1) = 2% i ^ 0, j odd. Then ja = 0 for every a e G. (iv) The groupoid 
(G, •) is right cancellative. 

2.6. Proposition. The following conditions are equivalent: 
(i) The groupoid (G, •) is right divisible. 

(ii) The groupoid (G, •) is a right quasigroup. 
(iii) The group (G, +) is uniquely 2-divisible. 

Furthermore, these conditions are satisfied if fe + 0, 1, 

Proof. See 2.3 (iii) and 2.5. 
Now fe-systems satisfying the equivalent conditions of 2.6 are said to be regular. 

2.7. Lemma. Let a, b9 c e G be such that ab = ac. Then fLb = fLc9 fRb = fRc 

and f(bb) = fKcc). 

Proof. By 2.3 (iv), L+
afLb = L+

abLa = L+
acLJLC9 so that fLb=fLc. Similarly 

fRb = fRc. Combining the two equations we get f(bb) = fyce). 

2.8. Lemma. For all a9 b e G: (i) k(aa) = ka and (ii) 2(ab) = a + kb. 

Proof, (i) We have ka = k{2 - fe) (aa) = (2 - fe) k(aa) = 2k(aa) - k\aa). 
By 2.2, k2(aa) = k(aa) and hence ka = k(aa). 

(ii) This follows from (i) and (5). 

2.9. Lemma. 2(00) = 0 and if fe = 0, then 00 = 0. 

Proof. By 2.8 (ii), 2(00) = 0. If fe + 0, 1 then (G, +) is uniquely 2-divisible 
and 00 = 0. If fe = 1, then 00 = 0 by (2). 

2.10. Lemma. Let G be regular. Then fee and fec/2 are elements of Z(G) for every 
ceG. 

Proof. Put q = h~x. By 2.8 (ii), ab = q(a + kb) for all a, b e G. Let ceG. 
Now the equation (l) can be written in the form: 

a + kq(b + fee) = q(a + kb) + q(a + fee) . 
For a = 0 we have 

kq(b + fee) = q(kb) + q(kc) , 
so that 

a + q(kb) + q(kc) = q(a + kb) + q(a + fee) . 



From this, for c = 0, we see that 

a + q(kb) = q(a + kb) + q(a) , 
hence 

a + q(kb) — q(a) = q(a + kb) , 
and therefore 

a + q(kb) + q(kc) = a + q(kb) — q(a) + a + q(ke) — q(a) . 

Consequently, 
q(kc) = q(a) + q(kc) - q(a) , 

so that q(kc) e Z(G). 

3. 0-systems 

3.1. Proposition. Let G be a 0-system. Then there exists a transformation t 
of G such that 2 t(a) = a and afe = t(a) for all a, b e G. 

Proof. It is enough to put t(a) = aa for every ae G. Now the result follows 
from (2) and (3). 

4. 1-systems 

In this section let G be a 1-system. 

4.1. Lemma, (i) a = aa and 2(ab) = a + b for all a, b e G. (ii) / = idG. (iii) 
L+Lb = L+

abLa for all a, b e G. (iv) L ^ = R+
hLa for all a, b e G. (v) L0 = R0. 

(vi) L^L, = Ka
+
0Lfl for every a e G. 

Proof, (i) follows from (2) and (5), (ii) is obvious, (iii) follows from 2.3 (iv) 
and (iv) from 2.3 (v). To prove (v) notice that we have L0 = R0L0 = R00L0 = 
= L0R0 = R0. Finally (vi) is clear from (iii), (iv) and (v). 

4.2. Lemma. Let a e G such that 0a e Z(G). Then La = Ra. 

Proof. By 4.1 (iii) and (iv), La = L+
0aL0 = R+

aL0 = Ra. 

4.3. Lemma, a 0 6 Z(G) for every a e G. 

Proof. By 4.1 (vi), a 0 + a b = ab + a0 for each b e G. Hence, by 4.1 (i), 
aO + a + b = aO + 2(ab) = 2(ab) + aO=b + aQ. 

4.4. Lemma. Both the group (G, + ) and the groupoid (G, •) are commutative. 

Proof. By 4.1 (v) and 4.3, a 0 = 0a e Z(G) for every a e G. Now (G, •) is com­
mutative by 4.2 and (G, + ) by 4.1 (i). 

4.5. Proposition. (G, + ) is an abelian group and there exists a transformation 
t of G such that 2 t(a) = a, t(0) and ab = t(a) + t(b) for all a,beG. 



Proof. Put t(a) = a 0. Then 2 t(a) = a by 4A (i), t(0) = 0 by 4A (i) and t(a) + 
+ t(b) = Oa + Ob = 0 + ab = ab. 

5. k-systems of type 1 

5.1. Proposition. The following conditions are equivalent for a fc-system G: 
(i) ka = 0 for every a e G. 

(ii) ab = ac for all a,b,ce G. 
(iii) Either fc = 0 or G is of type 1. 

Proof, (i) implies (ii): This follows immediately from (3). (ii) implies (i): This 
follows easily from 2.8 (ii). (i) implies (iii): Suppose that fc 4= 0. Then (G, + ) is 
uniquely 2-divisible and ab = a/2 by 2.8 (ii). Thus G is of type one. (iii) implies (i): 
This is trivial. 

5.2. Proposition. Now a 0-system is of type one iff it is regular. 

Proof. Use 3.L 

5.3. Lemma. Let fc = ±2\ i _ 0. Then every fc-system of type one is trivial 
(i.e. a one-element set). 

Proof. Obvious. 

6. k-systems of type 2 

6.1. Proposition. The following conditions are equivalent for a fc-system G: 
(i) (fc — 1) a = 0 for every a e G. 

(ii) The groupoid (G, •) is idempotent. 
(iii) The groupoid (G, •) is commutative, 
(iv) Either fc = 1 or G is of type 2. 

Proof, (i) is equivalent to (ii): This is clear from (2). (i) implies (iv): suppose 
that fc #- 1. Then G is regular and (G, + ) is abelian by 2A0. Now ab = a/2 + 6/2 
by 2.8 (ii), so that G is of type 2. (iv) implies (iii): This is obvious, (iii) implies (i): 
By 2.8 (ii), a + kb = 2(ab) = 2(ba) = b + ka for all a,beG. Thus for b = 0 
we have (fc — 1) a = 0. 

6.2. Proposition. Now a 1-system is of type 2 iff it is regular. 

Proof. Use 4.5. 

6.3. Lemma. Let fc = +21, f _• 0. Then every fc-system of type 2 is trivial. 

Proof. Obvious. 



7. Several consequences 

7.1. Proposition. Let G be a k-system. Then ka e Z[G) for every a e G. Moreover, 
if G is regular then ka/2 e Z(G). 

Proof. The assertion is trivial for k = 0 and it follows from 4.5 for k = 1. 
If k 4= 0, 1 then G is regular and 2.10 can be applied. 

7.2. Theorem. Let G be a regular k-system. Then ab = a/2 + kb/2 for all 
a, beG. 

Proof. The statement follows easily from 2.8 (ii) and 7.1. 

7.3. Proposition. Let G be a k-system and H = {a e G: (k — 1) a = 0}. Then: 
(i) (H, + ) is a normal subgroup of (G, +) , H i= Z(G) and ka e H for every a e G. 
(ii) H is a subsystem of the k-system G and H is a k-system of type 2 provided 

that either k =j= 1 or G is regular. 

Proof. If k = 0, 1 then the situation is clear. Now assume that k + 0, 1. By 
7.1 and 2.2, H c Z(G) and ka e H for every ae G. Thus (H, + ) is a normal subgroup 
of (G, +) . By 1.1, the group (G, +) / (# , + ) is uniquely 2-divisible and we see that 
a/2 e H for every a e H. The rest is clear from 7.2. 

7.4. Proposition. Let k + 0 and let G be a k-system. Then: (i) Z G) is a subsystem 
of G. (ii) Z(G) is an abelian k-system. 

Proof. We can proceed similarly as in the proof of 7.3. 

7.5. Proposition. Let G be a k-system. Define a relation r on G by (a, b) e r iff 
a — b e H. Then 

(i) r is a congruence of the k-system G. 
(ii) H is one of the blocks of G. 

(iii) The factor system G\r is a k-system of type one provided k 4= 0. 

Proof. We can assume that k + 0, 1. Now let a, b, ce G with (b, c)e r. Then 
b - ceH and ab - ac = a/2 + kb/2 - kc/2 - a/2 = kb/2 - kc/2. Further, 
(k - 1) (kb/2 - kc/2) = 0. We see that ab - ac e H, so that (ab, ac) e r. Similarly, 
ba - ca = 6/2 - c/2 = (b - c)/2 + c/2 - c/2 = (b - c)/2. Thus ba - caeH and 
(ba, ca) e r. We conclude that r is a congruence of the k-system G. The rest is clear. 

7.6. Proposition. Let G be a regular k-system. Then thegroupoid (G, •) is medial 
(i.e. satisfies the identity xy . uv = xu . yv). 

Proof. Apply 7.1 and 7.2. 

8. Some k-systems 

8.1. Proposition, (i) Every 2-system is trivial, 
(ii) Let i _ 1. Then every +2f-system is of type 2. 

(iii) Le: i = 1 and k = ±2l + 1. Then every k-system is of type 1. 



Proof (i): This is clear from (2). (ii): Let G be a + 2£-system. Consider the con­
gruence r of G by 7.5. From 5.3 and 7.5 (ii) it follows that r = G x G, i.e. H = G 
and G is of type 2. (iii): Using 6.3, we can proceed in the same way as in the proof 
of(ii). 

9. Splitting k-systems 

In this section, let fe + 0, 1 and let G be a fe-system. Put K = {a e G: ka = 0} 
and define a relation s on G by (a, b) e s iff a — b e K. 

9.1. Lemma, (i) (fe — 1) a e K for every ae G. 
(ii) HnK = 0,H. + K = G and each element g of G has a unique expression 

of the form g = h + x, where he H and x e K. 
(iii) 5 is reflexive and symmetric. 
(i3) r n s = idG. 

Proof. Now (i), (iii) and (iv) are clearly true. As for (ii), it is easy to see that 
H n K = 0 and H + K = G. Let g = h^ + xx = h2 + x4, where ht e H and 
xteK (i = 1, 2). Then hx - h4 = x2 - x t e H c Z(G). Thus 2(x4 - xx) = 
= (x2 — xx) + (x2 — xx) = x2 + (x2 — xx) - xx = 2x2 — 2xx. By induction, 
fe(x2 — xx) = fex4 W kxx = 0, hence x2 — x±e K. Now x2 — xx e H n K = 0, so 
that x2 = x t and h^ = h2 yeilding the uniqueness of the expression. 

9.2. Theorem. If G is a fc-system, then it is splitting. 

Proof. Define a mapping m: G -> H © GJH (direct sum) by m(g) = (h, x + H), 
where g has the unique expression g = h + x[h e H, xe K). This mapping is a group 
homomorphism with Ker (m) = 0 and Im (m) = H © G/H. Hence 

(G, + ) ^ ( H , + ) © ( G , +) / (# , + ) 

and now it is clear that G is splitting by 7.3 and 7.5. 

9.3. Corollary. If G is a fe-system, then 
(i) (K, + ) is a normal subgroup of (G, +) . 

(ii) The transformation / is an endomorphism of (G, +) . 
(iii) 5 is a congruence of the fe-system G. 

Proof. Now (i) and (ii) follow from 9.2 and (iii) is a consequence of 7.2. 

10. Finite k-systems 

10.1. Proposition. Let G be a finite fe-system of order n. Then n is odd and G 
is splitting. 

Proof. Use 2.6 and 9.3 (the cases fe = 0, 1 are trivial). 



Now let G be a finite 1-system of odd order n. By 4.4 it is easy to see that (G, •) 
is a commutative quasigroup. Thus the transformations La = Ra(a e G) are permuta­
tions of G and they generate the multiplication group of (G, •) which we denote 
by M(G, •). 

Denote by t the mapping x -> ((n + l)/2) x. Clearly, t is an automorphism 
of (G, +) . Now we prove 

10.2. Proposition. Let G be a finite 1-system with odd order n = p\x ... pn
n 

(the primary decomposition of n, n odd.). Then M(G, •) is the group theoretical 
splitting extension of (G, •) by <t>. Furthermore, 

o(t) | 1 cm . (p? - par\ ..., Pa
n

n - 1C"1) • 

Proof. The first part of the proposition follows from lemma 2.2 in [3]. Since 
(n + l)/2 is a unit in zn and n is odd, the well-known properties of the group of units 
of zn imply the second past. 
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