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Adaptive Procedures 
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The aim of this páper is to explain the main ideas of adaptive procedures, to summarize 
their basic structure and to review procedures obtained by modification of those based on ranks. 
Some properties are stated. The results are presented for one- and two-sample model. 

Cílem článku j e vysvětlit hlavní ideje adaptivních metod, popsat jejich základní strukturu 
a poskytnout přehled adaptivních metod získaných modifikací postupů založených na pořadí. 
Dále jsou uvedeny některé jejich vlastnosti. Výsledky jsou presentovány pro jedno- a dvouvýbě-
rový model. 

U.ejib 3TOH CTarbH — o6i>HCHHTb ocHOBHMe HfleH a^anTHBHbix MeTO,ziOB HenapaMeTpHiecKoro 
OHeHHBaHHfl, OnHCaTb HX CTpVKTVpy H AaTb 0630p npHeMOB, OCHOBaHHbIX Ha npHMeHeHHH paHroBbix 
CTaTHCTHK. O6cV3KflaK>TCH pe3yJIbTaTbI JXJISL OflHOBblÓOpOHHOH H AByXBbl6opOHHOH MOfleJIH. 

1. Introduct ion 

Consider the one-sample and the two-sample models in the following form: 
Two-sample m o d e l : (Xl9 ...,X„) and (Yl9 ..., Ym) are independent random 

samples from the distribution with the density f(x) resp.f(x — 0), where f is absolute­
ly continuous with nonzero finite Fisher's information 

o<i(f)=t(f(x)yf-\x)dx < +00 , 

9 is a parameter. 
One-sample m o d e l : (Xl9 ...,X„) is the sample from the distribution with the 

density f(x — 9), where f is symmetric about zero, absolutely continuous and 0 < 
< 7(f) < +oo. 

The general form of rank test statistics for testing hypothesis H : 9 = 0 versus 
A : 9 > 0 in the two-sample model is the following: 

(1.1) S ^ ) = Z ^ i / ( - V + l ) ) , 

*) 186 00, Praha 8, Sokolovská 83, Czechoslovakia. 
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where N = n + m, Rt is the rank of Xt in the sequence Xl9 . . . ,Xn , Yx, ..., Ym, 
<p is a square integrable function on (0, 1). Analogously, rank test statistics for 
H : 9 = 0 versus A : 6 > 0 in the one-sample model can be expressed as follows: 

(1.2) S:(cp) = £ sign Xt cp(R+l(n + 1)) , 

where R* is the rank of |X ; | in the sequence \Xt\, ..., \X„\, cp is as above, sign x = 1, 
x ^ 0, sign x = —1, x < 0. 

As for rank estimators of 6, the Hodges-Lehman rank estimators 6(q>) and the 
linearized rank estimators 6L(cp) are used, where cp is a monotone square integrable 
functions on (0, 1). The definitions will be done only for the two-sample model and cp 
nondecreasing; for other cases they can be easily modified. The estimator 6(cp) is 
defined as follows: 

(1.3) d(cp) = <x91(cp) + (l -«)02(cp), 

where 0 < a < 1, 

Ш-sĄъ.ię(Ш^>»}, 

92W.,„f{ьф(^)<o}, 
with Ri(b) being the rank of Xt — b in the sequence Xx — b, ..., Xn - b, Yt, ..., Ym. 

The estimator 9L(cp) has the following form: 

(1.4) 0L(<P) = 8+([l <P\») du\X — t cp (£&L) , 
\ Jo J mn i=i \N + 1/ 

where B is the preliminary translation and scale invariant estimator fulfilling 

(1.5) V N 05 ~ e) = °P(1) a s m i n K n) ~+ °° • 

If the density / is known and satisfies some regularity conditions the test for H 
versus A based on SN(cpf) and Sf(cpf) leads to the asymptotically most powerful 
test for contiguous alternatives in the two-sample resp. one-sample model. Here 

(1.6) * > ) = - 7 ^ ^ UE^1^ 

f(F > ) ) 

(1.7) cp+(u) = cpf((u + l)/2), u e ( 0 , l ) , 

F_1(w) -= inf{x; F(x) = u} . 
The functions cpf and cpf generate also the asymptotically optimal estimators of 6 
(by asymptotically optimal estimator 6 of 6 is understood the estimator with the 
property: 

^ ( V ( » ) ( 0 - 0 ) V I ( / ) ) - w N ( ( ) , l ) as n^cc). 
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Analogous situation arises in case of other types of test statistics and estimators 
(e.g. L-estimators, maximumlikelihood type estimators). 

In practice, we usually do not know the true density / , nevertheless we are in­
terested in having the asymptotically optimal (or at least reasonable) tests or esti­
mators. The procedures solving this problem are called adaptive procedures (the 
known estimators and test statistics are adapted according to the data). These 
procedures are generally of two kinds, restrictive and nonrestrictive. 

The basic struture of the restrictive procedure is: 

1. choose a reasonable family 3F of distributions, a decision rule for selection of the 
distribution from 3F\ 

2. choose according to the decision rule (based on the sample Xl9 ..., Xn, preferably 
on the corresponding ordered sample X(1) ^ ... ^ X(n)) the density f0 e &\ 

3. provide the test (or the estimator) of type, which is optimal for/0 , 

The nonrestrictive adaptive procedure consists in 

1. estimating of <pf\ 
2. application of the test statistics (or estimator) with cpf replaced by their esti­

mators. 

There were suggested several adapative procedure of both kinds and studied 
their properties. Generally, the restrictive procedures are usually simple, utilizing 
well known tests or estimators. However, the resulting tests and estimators are 
asymptotically optimal only if the true density belongs to the chosen family !F. 
The results of simulation studies support these procedures for small samples. 

Both the tests estimators obtained by nonrestrictive procedures are mostly 
asymptotically optimal for a quite broad class of the densities, but the convergence 
is very slow and application is usually connected with long computations. 

The most of adaptive procedures was developed by modification of the rank 
type test, rank estimators, L-estimators, maximumlikelihood estimators. The next 
two sections are devoted to rank type tests and estimators. Adaptive maximum­
likelihood type estimators were suggested by Stone (1975) and Moberg et al. (1980). 
Adaptive L-type estimators were proposed by Takeuchi (1971), Johns (1974), Sacks 
(1975). The welldone survey of adaptive procedures till 1974 was done by Hogg (1974). 

2. Restrictive procedures 

The attention here is concentrated to the review of possible families & of 
distributions and decision rules for selection of the distribution in the one-sample 
model. In the following, we shall often work with the subfamily &(f) of densities 
generated by a density/as follows: 

&(f) = {g; 9(x) = rj f(rjx - u), - oo < u < oo, n > 0} . 
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First, we mention the procedures with decision rules motivated by the behavior 
of the tails of distribution (e.g. Hajek (1970), Hogg and Randies (1973), Hogg, 
Fisher and Randies (1975), Jones (1979)). In such a case the family 3F contains 
densities ranging from the light-tailed (like uniform) to heavy-tailed (like Cauchy). 

Randies and Hogg (1973) considered the family 3F consisting of three type 
densities «^(fi), ^(fi\ ^(fs)* where f- is double exponential density (heavy-tailed), 
f2 is logistic one (medium-tailed), f3 is uniform one (light-tailed). The decision rule 
is the following: 

choose &(fx) if Q > 2.96 - 5.5/w , 

choose J^(f2) if 2.96 - 5.5/n = Q = 2.08 - 2\n , 

choose ^(f3) if 2.08 - 2/w > Q , 

where 
n 

(2.1) Q = (X(n) - X(1)) n{ X |X(0-median of A>| 2 } " 1 for n = 20 , 
i = i 

(2.2) Q = (Vo.os-L0.Q5)(VQ.5-L0.5)-
1 for n > 2 0 , 

with U^ and La being the average of 100a % the largest and smallest order statistics, 
resp. The motivation for this decision rule, if n = 20, comes from the fact that the 
optimal translation and scale invariant test that the considered sample is from the 
uniform distribution versus double exponential one can be (approximately) based 
on Q given by (2.1). As for n > 20, notice that 

Q —> 3.3 in probability as n -> oo for f e ^(fi) , 

Q -> 2.6 in probability as n -> oo for f e ^ ( f 2 ) , 

Q -> 1.96 in probability as n -> oo for fe $F(f^) • 

Then the test statistics are chosen according to the general rule except « "̂(f3) — the 
authors recommend to use some modified Wilcoxon one-sample test. This decision 
rule was slightly modified and used also for proposing of other adaptive proce­
dures (e.g. Moberg et al. (1980)). 

Another procedure based on tail behavior was suggested by Hajek (1970) for 
the family J^ = {^(f-), ..., ^(fk)}, where f are distinct symmetric densities. The 
decision rule consists, in fact, in choosing ^(f) for which the quantile function 
corresponding to f- is close to the sample quantile function. The procedure is very 
quick but no properties were studied. 

Jones (1979) introduced the family 2F = {fA, X e KJ, where fA satisfies 

Er1(") = ( « A - ( i - « ) A ) M 
(i.e. <p(u,fx) = (A - l)(wA"2 - (1 - uf-2)(uA-1 + (1 - t /Y-1)"2) . This family 
contains densities ranging from light-tailed ones (X > 0) to heavy-tailed ones (A < 0). 
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Particularly, for X = 1 and X — 2 fk is uniform, for X = 0.135 fx is approximately 
normal, for X = 0 fA is logistic. The author proposed to estimate X through the or­
dered sample as follows: 

X = (log 2) log {[X(fJ_2M+l) ~~ ^(/i-4M+l)J * |_^("-M+1) + ^(/i-2Af+l)J } 

where M is chosen in some proper way reflecting the behavior of the tail. As the re­
sulting ^-function is taken cp(u,fx). 

As examples of procedures not motivated by the behavior of tails, we shall 
sketch two procedures published by Hajek (1970) for a general family 2F = 
= {^(fj), ..., ^( f t)}, where fl9 ...,fk are distinct densities and the procedure 
by Albers (1979). In the first procedure, the decision rule is the Bayesian translation 
and scale invariant rule and the second one is based on the asymptotic linearity of 
rank statistics, the third one utilizes the estimate of the kurtosis. In order to have the 
decision rule dependent only on the ordered sample |X |d) ^ ... = |X|(n) (cor­
responding to |X!|, ..., |Xn|) we define new random variables Xf = V{|X|(Q.), i = 
= 1, ..., n, where (Ql9 ..., Qn) is a random permutation of (1, ..., n) and (Vl9..., Vn) 
are i.i.d. with P(V, = l) = P(Vf = - l ) = 1/2 independent of Xl9 ...9Xn. Then 
under H the random vector (X*, . ..,X*) is independent of (Rl9 ..., Rn) and 
(sign Xl9 ..., sing Xn) and are distributed as (Xl5 ..., Xn). 

The Baysian translation and scale invariant rule (if all types are apriori equi-
probable) yields the following: 

choose J^(f.) if maxp in(Xt,...,Xn*) = p/n(Xt,...,Xn*) 

where 

^oo /•+ oo n 

Ilf(XX* - u)X"-2dudX, j = l,...,k. 
/*oo 

pjn(X*9 . . . ,X*) = 
Jo. 

Uthoff(1970) derived pn(Xl9 ..., Xn) for some well known distributions (e.g. normal, 
uniform, exponential). Sometimes there are computational problems with evaluating 
p„(Xi, • •-, Xn). For such cases Hogg et al. (1972) recommended to use 

P%(x*,...,x:) = n&jn
lf((x* - fiJn)tf), r-1-

i = l 

where ftjn and ajn are maximum likelihood estimators of location and scale for the 
j-th distribution, instead of pjn(X*9 ...9X*). 

The decision rule based on the asymptotic linearity of rank statistics (fl9 ...,fk 

absolutely continuous and l(fj) < + oo, j = 1, ..., k) is defined as follows: 

choose ^(fi) if max Ljn = Lin, 
1 ^ j ' ^ n 

where 

Ljn = [StU, n-*'2) - s:(j, 0)] . [varH S*n(j, 0 ) ] ' 1 ' 2 , 
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St(j, t) =-.sign XtvURtVfr + I)"1) 

with R + (t) being the rank of \X* - t\ in the sequence \X* - f|, ..., \X* - t\. Notice 
that by the asymptotic linearity (see van Eeden (1972)) 

Lj« -* ¥>/,(«) 4»/(«) du ( <p+
f?(u) duj 

1/2 

in probability as n -> oo, j = 1, ..., k, if the true density isf. By Schwarz inequality 
the right-hand side is smaller or equal (j0 (pf

2(u) du)1/2 and the maximum is achieved 

i f / e ^ ( f . ) . 
Albers (1979) considered instead of the family of distributions J^ the family 

(say J) of functions cp generating the test statistics S^(cp) given by (1.2), where 
J = {cpr; cpr = cp0 + rh, —D1=^r = D2], cp0 and h are smooth functions on (0, l), 
D! > 0, D2 > 0. He reccommended to choose such cpf, where f is minimizing 

"-'IW І = I 

x\q dFr(ҡ) 

{n-lUШp)ąlp 

\l 
with Fr being the distribution function corresponding to cpr, 0 < p < q. It is also 
indicated how p and q should be chosen for given J. 

3. Nonrestrictive procedures 

Here will be presented estimators of the functions cpf, some of their asymptotic 
properties and also the resulting tests or estimators in the two-sample model. 

Hajek (1962) proposed the following estimator of cpf based on ordered sample 
Xd) = ... = Xin): 

&(«) = 2 ~ - {(-W,.) - -W*.>)" (3.1) ì - 1 -

" X(hnJ+1+qn) - X(nnJ + 1-qn))
 x} for Kjn-1

 = u < hnJ+l , 1 = ; = tn 

where qn = [n3/4en"2], r., = [n1/4fi3], £„ -> 0, n1/4£3 -> oo, as n -> oo, /inj. = 
= [jnj(tn + 1)], 1 = j = n̂, with [a] denoting the largest integer part of a. 

The motivation of this estimator comes from the following two facts: 

1) X(mi) -• F_1(u) in probability as n -> oo, u e(0, l), 

-) 
lim 2rs ) — I = 

r\os\o [F'^u + r) - F~\u - r) F~\u + s + r) - F~\u + s - r)j 

46 



= q>Ju)t ue (0,1). 

Beran (1974) suggested another estimator (say 0n) of <pf through the estimators tk 

of the Fourier coefficient ck belonging to q>f(u). Namely, 

(3.2) <pn(u) = £ ** exp {2niku} , 
1*1 = 1 

ck = Tn(X,exp{-2nik-}) 

where X = (Xu ..., Xn)', T„(X, g) is the functional defined on L2(0, 1) given by 

T„(X, g) = (2J.0,,)-11 {g((n - l )" 1 £ «(*, - Xj + 9H)) -
v = l 7 = 1 

- ^ ( ( n - ^ ^ i u ^ - X , - ^ ) ) } , 
1=i 
I*v 

u(x) = 1 if x = 0, u(x) = 0 if x < 0, 0,, = 6n~1/2 for some b + 0. In fact, T„(X, g) 
is an estimator of the functional 

T(g) = J ' <p/u) g(u) d« = J - ^ dF(x) , 

obtained by replacing the theoretical distribution by the empirical one and replacing 
the derivative by difference. 

The estimator (pn(u) is consistent in the sense that 

(3.3) (<Pn(
u) — <rV(M))2 du -» 0 in probability as n 

and 

(3.4) (Pn(u) du -» I(f) in probability as n -> oo . 
Jo 

If, moreover, Mn -> oo and M^ / 2n -1 -> 0 as n -* oo then in both relations cpn(u) 
can be replaced by @n(u). 

The respective adaptive test statistics in the two-sample model are SN(cpN) and 
SN(QN)> where S^y) is given by (1.1) and 

(3.5) cp*(u) = N~x(n q>n(u, X) + m 0m(u, Y)) u e (0, 1) , 

writing <p,,(u, X) and (pm(u, Y) for <p„ obtained from the sample X = (Xl9 ...,X„)' 
and Y = (Yl5 ..., Ym)', resp. <p* is defined similarly. Under H 

(3.6) ^((SN(ip*)-EN)DN
1)^wN(0,\) as min (n, m) - co , 

where £„ = N"1 E(p*(i(N + l)"1), fl> = (N - l )£(*J( i(" + l)"1) - ENf. If, 
i = i i = i 
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moreover, MN -> co, MN(min (n, m ) ) - 1 -> 0, then yN ca» be replaced by <pN in (3.6). 
The tests based on either SN(cpN) or SN($*) provide the asymptotically most powerful 
tests for H versus contiguous alternatives. 

As for estimators, Beran (1974) proved asymptotic optimality of 9L(0*) given 
by (1.4). Van Eeden (1970) and Kraft and van Eeden (1970) got the same properties 
(under somewhat stronger conditions) of 6L((p**) and 9(<pN*), resp., where cp** is 
a modified form of the estimator cp* obtained from vanishingly small fraction of the 
data. 
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