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AN APPROACH TO GENERALIZING BANACH SPACES: NORMED ALMOST LINEAR 

SPACES 

G. Godini 

INTRODUCTION 

This paper is a sequel to [2] in which we have introduced the normed al

most linear spaces, a generalization of normed linear SDaces. All spaaes involved 

in this paper are over the real field R. Rouphly speaking, a normed almost linear 

spaae (nals) is a set X together with two mappings s:X x X ->- X and m:R x X -> X 

which satisfy some of the axioms of a linear sDace - called an almost linear spaae 

(als) - and on the set X there exists a functional | | . | | :X -* R - cal led a norm -

which satisfies all the axioms of an usual norm on a linear space (Is), as well as 

some additional ones, which in the case of a normed linear space (nls) are conse

quences of the axioms of the norm. Due to the fact that we have weakened the axi

oms of a Is, but we have strenpthened the axioms of the norm, some results Involv

ing only algebric structure, which are not true in an als, hold In a nals (see 

Section 1). Since the norm of a nals X does not generate a metric on X, in [2] we 

considered the strong normed almost linear spaces, which also generalize the norm

ed linear spaces. Roughly speakinp, a strong normed almost linear spaae (snals) Is 

a nals X together with a semi-metric on X which is related in a certain way to 

the norm of X. 

To support the idea that the nals Is a good conceDt, we introduced In [2] 

the concept of a dual space of a nals X, where the functionals oh X are no longer 

linear but "almost linear", which is also a nals. When X is a nls, then the dual 
•K 

space defined by us is the usual dual space X . 

The nals and snals were not introduced for the sake of cTeneral Ization. We 

have proved in [2] that they constitute the natural framework for the theory of 

best simultaneous approximation, by showina that this theory is a particular case 

of the theory of best approximation In a nals (snals). 

The present paper has a more general interest, since here we want to ex

tend for a nals (snals) some general results from the theory of normed linear spa

ces ([1]). Now, In the theory of normed linear spaces an Imoortant tool'fs the 

Hahn-Banach theorem. A similar theorem Is no lonner true in a nals. Conseouently, 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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we do not know whether the dual space of a nals X may be reduced to the only func

tional f=-0. Though the algebric dual of an als X may be {0}, in all our examples 

when X is a nals, the dual space of X is not {0}. The main objective of this paper 

is to give sufficient conditions on the nals X in order that its dual space have 

non-zero almost linear functionals. 

We draw attention that in the definition of the norm of a nals (the same 

for the semi-metric of a snals), in [2] we have considered all the axioms given 

in this paper, as well as an additional one. Since this latter axiom is surely 

of no use for solving our main problem (whether the dual space of a nals is, or 

is not {0}), here we omit it. Oh the other hand, the dual space defined by us, as 

well as all the examples of(strong) normed almost linear spaces in Section k sa

tisfy all the axioms required in [2]. 

This paper is organized as follows. Section 1 contains basic results, the 

most of them being used throughout this paper. Section 2 deals with bases in al

most linear spaces. Not all of them have a basis, and when they do then there 

exist a norm and a metric such that they are snals. Section 3 is devoted to the 

question whether the dual space of a nals contains non-zero almost linear func

tional. If X has a basis then this is surely true, and we also qive some suffi

cient conditions for an affirmative answer to the above nuestion. We also examine 

the extension property of almost linear functionals defined on an almost linear 

subspace of the nals X. Finally, Section -4 contains examples related to the sub

ject matter of this paper. 

We did not change the terminology (and notation) from the theory of norm-*, 

ed linear spaces ([1]), except for the linear functional which we extended it in 

two ways to an als. 

The most part of the results of this paper makes sense only when the nals 

(als) X is not a Is. From our results which make sense sr. n nls (is) E, we recover 

either trivial or known results in E. That Is why throughout this paper, if other

wise not stateds the als X is not a Is. 

1. BASIC PROPERTIES OF A NORMED ALMOST LINEAR SPACE 

In 1.1 - 1.5 below, we recall some of the definitions and remarks of [2], 

1.1. DEFINITION. An almost linear space (als) is a set X tonether with 

two mdjjpinqs s:X x X -*• X and m:R x X -> X satisfying the conditions L- - Lg given 

below. For x,y# X and X t R we denote s(x,y) by x+y and m(X,x) by Xx, when these 

will not lead to misunderstandings. Let x,y,z*X and X,ufeR»L)« (x+y)+z*x+(y+z); 

L j . x+y=-y+x; L j . There exists an element 0 # X such that x+0*-x for each x ^X; 

L^). 1x=x; L J . X(x+y)=Xx+Xy; L 6 ) . 0x=-0; L J . X(px) = (Xu)x; L g ) . (X+u)x=Xx+ux for 

X>.0, u>Q, 

We denote -1x by -x, when this will not lead to misunderstanding, and in 
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the sequel x-y means x+(-y). 

1.2. DEFINITION. A nonempty set Y of an als X is called an a'Unoet Hnear 
subspace of X, if for each y-,y2€Y and XeR, s(y-,y2)eY and m(X,y.,)eY. An almost 

linear subspace Y of X is called a linear subspace of X if s:Y x Y -+ Y and m:RxY •+ 

•> Y satisfiy all the axioms of a Is. 

For an als X we introduce the following two sets. 

(1.1) Vx={x£X: x-x=0} 

(1.2) Wx*-{x€ X: ̂ =--x} 

By L. - Lg it follows that Vy is a linear subsoace of X, and it is the largest 

one. The set W is an almost linear subspace of X and we have W =={x-x: xtf X}. 

Notice that Vx C\ Wx-={0}. Clearly, the als X is a Is, iff V^X, iff Wx={0}. 

1.3. DEFINITION. A norm on the als X is a functional | | . | | : X -*- R satis

fying the conditions N. - N- below. Let x,y,zcX and X*R. N ). | |x-z| |<| |x-y| | + 
+lly-z||; N 2). ||Xx||=|x| ||x||; N 3 ) . ||x||-0 iff x=0. 

Using N. we get 

0.3) l|x+y||<||x|| + ||y|| U,y«X) 

0 ^ ) l|x-y||>| ||x|Hly|l I (x,y*x) 

By the above axioms it follows that | |x| |>0 for each xeX. 

1.-». DEFINITION. An als X together with | | . | | : X ->- R satisfying N., - N_ i 

called a normed almost linear space (nals). 

Clearly, any nls is a nals. Since the norm of a nals does not generate a 

metric on X (for x € X \ V y we have | |x-x| |*-0), we shall sometimes work in a parti

cular class of normed almost linear snaces defined below. 

1.5. DEFINITION. A strong normed almost linear space (snals) is a nal* X 

together with a semi-metric p on X which satisfies M.- and M_2 below. 

M- I l|x|Hly|| |<p(x,y)<||x-y|| (x,y« X) 

M2 p(x+z,y+z)<p(x,y) (x,v,z* X) 

As we have observed in [2], if X is a nls then the only semi-metric on > 

satisfying M. and M2 is that generated by the norm (which is a metric on X). 

Now we shall give some basic facts which hold in a nals (snals). 

1.6. LEMMA. Let X be a nals and let x,y,ziX. If 

0.5) x+y*x+z 

then | | y | | H | z | i In particular if x*x+y then y*0. If X is a snals, then (1,5) 
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€ V X . 

implies that p(y,z)-»0. 

Proof. By (1.5) we net x+y+z-x+zz--x+2y, and so, x+2ny«-x+2 z for each n«N. 

Hence 

(1.6) y+2"Vz+2"nx (ncN) 

Using (1.-*), (1.6) and (1.3), we obtain that | |y | | -2~ n| |x| |*| |y+2'nx| hi | z+2"n
x| |<. 

<||z||+2"n|!x||, for each n € N. Therefore ||y||^||z||, and similarly || zIMlyll 

whence ||y||-||z||. IfX isv'a snals, then by (1.6), M£ and M. we obtain p(y.z)<. 

<p(y>2"Vy)+p(2"Vy,z)--p(y,2'Vy)+p(2"Vz,z)^p(0,2"
nx)+p(2"nx,0)^2"n||x|| + 

+fn||x| l^""*1!!*!! for each n « N, whence p(y,z)--0. 

Remarks, a). In an als X the relation x--x+y does not always imply V=0 (see 

4.1 b), A.3 b). b). In a snals X where p is not a metric on X the relation (1.5) 

does not always imply y-=z (see 4.6 b)). 

1.7. LEMMA. Let X be a nals and let x € X, w € Wx« Then max{||x||, ||w||}< 

<l|x+w||. 

Proof. We have 2||w||-||w-w||<||w-x||+||x-w||=2||x+w||, and 2||x||= 

= | |x-(-x) | |<| |x-w| | + | |»rfx] |=2| |x+w| | , whence the conclusion follows. 

1.8. LEMMA. Let X be a nals and let x,yeX. If x+y€ Vy , then both x,y.£ 

Proof. If x+y*V x then (x-x)+(y-y)=0. Since x-x e W.. , by Lemma 1.7 it 
follows that | |x-x| | = | |y-y| |-=0, and so x-x-'y-y-'O, i.e., x,y« V . 

Remark. In an als X the relation x+y * V.. , does not always imply *,ye Vx 

(see 4.2 b)). 

1.3. LEMMA. Let X be a nals, and let x,y*X, xfV.., a€R» |a|>1 such that 

x=ax+y. If a>1, then a-*1 and y=0; if a< : -1 , then a=--1 and y ^ V . 

Proof. Suppose a*>1. Then x=x+(1-a)x+y, whence by Lemma 1.6, we obtain 

(1-a)x+y=0. By Lemma 1.8 it follows that ( l - a ) x * \ l x , and since x ̂ V x , we must 

have a-»1, and so y=0. 
2 2 

Suppose a< : -1. Then x=a(ax+y)+y, and so x*a x+(ay+y). Since a £1, by the 
2 

above case we obtain a --1 and ay+y=0. Therefore a---1 and y~y--0, i.e., y^Vy. 
Remarks, a) Lemma 1.9 is no lonper true in an als (see 4.1 b), 4.2 b)). 

b) In a nals X the relations x*ax+y, x,yfe X, x f v
x and 0<|a|<1 are not contradic

tory (see 4.4 b)). 

1.10. LEMMA. Let X.be a nals. If WJ+VJ-^+V.^ , w. € W , v. fc V.. , 1-1,2, 

then wi*w2 and v . -v . . 
Proof. Suppose Wj+v.-w^+Vj. Then w-a-^+v, where v*v2-v.. Hence w.-w^-v, 

and so w2«w2-2v. By Lemma 1.6 it follows that v--0 and so w.-w^ and v."v.,. 

Remark. Lemma 1.10 is no lonper true in an als (see 4.3 b)). 

1.11. LEMMA. Let X be a snals where p is a metrios and let xf X. If 

x+w+v t Wv+Vx for some w « Wx and v * Vx then x t WX+VY. 
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Proof. Let w ^ W and v. € V.. such that 

(1.7) x+w+v=w.+v1 

Let w2=x-x€?Wx. Using (1.7) we obtain 

(1.8) 

Multiplying (1.8) by -1 and adding the obtained relation to (1.7), we get (w+w.j) + 

+ (2x+v-v1) = (w+w1) + (w2+v1-v). ̂ ince p is a metric on X, by Lemma 1.6 we obtain that 

2x=w2+2(v1-v), and so x^W +V... 

1.12. LEMMA. Let X be a snals where p is a metric, Y an almost linear 

subspace of X and x € X. Suppose that 

(1.9) tAxQ+y: A>0, y « Y } O Y = 0 

Then the relations Aix
0
+yissA2x + y2 ' *t~ 0 , Y , € Y' '~1 »2 imply'that A.j=A2 and Yi^Yo* 

Proof. Suppose A.x +y1=X2x +y2 , X.>0, y.eY, 1-1,2. If X-=0 then by (1.9) 

it follows that X2=0 and so y-̂ y-,. Without loss of generality we can suppose now 

X.,.>X2>0. Then X?x +(X1-X2)x +y1=X?x +y2 , whence by Lemma 1.6 we get (X . ,-X2)x +yis 

=y2. By (1.9) it follows that X = X? , whence yi
=y2' 

1.13. LEMMA. Let X be a nals and let x,x € X, n t N be such that 
n 

l i m | | x + x | | « 0 . Then x * V . 

Proo f . We have | | x -x | |^| | x - ( - x ) | | + | | - x - x | |=2| |xn+x| | f o r each n e N . 

Therefore | | x - x | | = 0 and so x 6 V . 

Immediate consequences o f the above lemma are the fo l lowing two r e s u l t s . 

1.1-4. LEMMA. Let X be a nals x € X \ V X , x n * X, a n € R, n e N . If 
l imMx +a x | | = 0 then 1 im a =0 . 1 ' n n ' ' n 

1 . 1 5 . LEMMA. Let X be a nals and let x , x €• X, X € R, n€ N, 1 im X =» . If 
n n n * 

the sequence {||x x+x | |} , is bounded, then x^Vy . 

2. BASES IN ALMOST LINEAR SPACES 

each x€X\{0} there exist unique sets {b-,... ,bn}cB, {X-,... ,X n)cR\{0} (n de

pending on x) such that x«J, -A.b. , where A.>0 for b. ̂ Vy . 

Clearly, if B is a basis of X then OfjB. 

In contrast to the case of a Is, there exists almost linear spaces (even 

snals) which have no basis. In Section k one can find examoles of spaces which 

have or which have not bases. 

2.2. LEMMA. If the als X has a basis B, then the sets {-b: b€>B} and 
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(abb: be B, a^O, a.>0 for b£ V } are also bases of X. 

Proof. The proof is straightforward. 

2.3. LEMMA. Let X be an als with a basis and let x-,x2€ X. Jf x.+x-t V 

then x.€ Vx , 1=1,2. 

Proof. Suppose x-j+x-eVy and let x«=-x. and x.-^-Xj. Since X has a basis B, 

there exist b1(...,b < B, b.?-b. for i^j, such that x.=T
n , a..b. , where a,.>0 if 

1 n ' J . /. ' J = 1 ij J J ij 

b.^V x , 1<?<-4. By hypothesis we get that _. = 1 x.=0 and so £?_., (J^-a. . )b.=0. Sup
pose ->-^ VY/ Tnen bi = (1+I| = 1

a - i ) b i + I n
= 2 ^ - . - : i o t < ' ) b - - s'nce b-6B, it follows that 

1 +Zj = 1
aj j*1« But a..>0, l<:f<-4, and so a.^O, 1<i<-». Consequently for each b.^V , 

1<j<n, we get a..=0, 1<i<-», which shows that *.*V » 1.-.-A. 
2.-J. LEMMA. Let X be an aZs with a basis B. Then B O \lx ts a basts Of Vy. 

Proof. Use Lemma 3. 
2.5. LEMMA. Let X be an als. The set BcX is a basis of X iff B O V is a 

basis of V , and for each x€ X N V y there exist unique b1>...tb e B\V , v€ V 

and X,,..., X >0 such that x=5\ ..X.b.+v. 
1 n ^ 1 = 1 1 1 

Proof. Use Lemmas 2.-*, 2.3 and Definition 2.1. 

2.6. LEMMA. Let B be a basis of the als X. Then for each b€ B\V there 

exist unique \j;(b)€ B W . . , v(b)€V and X(b)>0 such that -b=X (b)ij;(b)+v(b). 

Proof. Let b€ B\V . Then _ b 4 V y and by Lemma 2.5 we net 

(2.1) -b=y^ ..X.b.+v 
L \ = \ 1 1 

where b1,...,b,€ B \ V , k>1, b.-^b. for M j , v e V . and X.>0, 1<i<k, are uniquely 

determined. Clearly the lemma is proved if we show that k=1. Let e.,...,e f B W . , 

e.?-e. for i?-j, v. € Vv , u..>0, 1<i<k, 1<j<.m, such that IJ
 J 1 X 1 j J 

(2.2) -b.^? .vK.e.+v. (1<i<k) 
1 --j-1 IJ j i 

Multiplying (2.1) by -1 and using (2.2) we net 

(2-3) b-IjVli-lVij^i-lVi^ 

Since b € B \V , there exists an index Jo€{1---..m} - say jQ=1 - such 

that b=e- and we must have ft , X.u..=0, 2<j<m. Since A .>0 and u. .*>0 it follows 
1 Li = 1 1 ij • 'J 

that P..--0 for each 1<i<.k and each 2<jsm. Consequently, we get by (2.2) 

(2.-0 -bv-ii|1e1^v| (1-51-Sk) 

and y n > 0 since - b ^ V ^ 1._î k. Suppose k>V By (2.4) for 1-1,2 we get that 

e 1 - ( - b r v 1 ) / y . ( l - - ( - b 2 - v 2 ) / y 2 1 and so b-*(v- y h l y )b2+( (
v2/y21 ̂ V ^ l i)} ' contra

dicting Lemma 2.5. 
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Let i^:B\V -+ B\ V be defined as in Lemma 2.6. Then if; is well-defined and 

we have: 

2.7. LEMMA. The mapping ty:B\ V •+ B W defined as above is infective and 

ijj(*Hb))=b for each be B\Vy. In particular ty is surjective. 

Proof. Let b ^ b ^ B W such that ty (b1 )=i|; (b2)=b€ B W . Then -b.=X.b+v. , 

X.>0, v.£V , i = 1,2, and similarly with the proof qiven at the end of Lemma 2.6, 

this contradicts Lemma 2.5. 

Let now b * B \ V v . Then -b=Xi|; (b)+v, where X>0, v e Vv and i|/(b)€BWv are 

given by Lemma 2.6. Then -ij, (b) = (b/X) + (v/X) , and so, again by Lemma 2.6 we get 

^ ( b ) ) = b . 

The main result of this section is the following. 

2.8. THEOREM. Let B be a basis of the als X. Then there exists a basis B' 

of X with the property that for each b'e B'Wy w& have -b'« B'W... Moreover 

card (BW x)=card (B'\ V ). 

Proof. Let B,«{b-^(b) :b € B\ Vx> \J (B A V ). Then for b€ B \ Vx we net by 

Lemma 2.3 that b'=b-if;(b)« B*\V . Hence by Lemma 2.7 we obtain that -b'=^(b)-

-i|>(i|>(b)) € B ' W . To show that B' is a basis, we use Lemma 2.5. Clearly, B'nV x= 

=B n V is a basis of V (by Lemma 2.-4). Let now x e X \ Vy. Then there exist unique 

b,,...^ C B W V , n>1, b.?-b. for i*-J, v € Vv and X.,...,X >0 such that x=Y
I? •1X.b.+ I n X 'J X I n Li=1ii 

+v. By Lemmas2.6 and 2.7, for each b £ B W we have -ty (b)=u (b) b+v(b) , where ij/(b)> 
x 

>0 and v(b)eV are uniquely determined. Then b-ij; (b) = (u (b) + 1) b+v(b) , whence 

Let bi=b.-i|j(b.)€ B ,\ v
x » 1<i<n, and let us put u(b.)=u. and v(b.)=v.. We have by 

(2.5) that 

x=) . , prbi+v L\-\ u.+l 1 
1 

where v € V y . We show now t h a t t h i s r e p r e s e n t a t i o n is un ique . Suppose x = ^ . _ 1 X . b i + 
+ v l " I I l J - . 1 v i b i + v 2 » w h e r e b i € B ' W x , b| j -b j f o r i ? - j , X . , v { > 0 , 1^ i<n , v

r
v 2 ^ v x • 

Then t h e r e e x i s t b .e B v ^ v
x » 1< i < n , such t h a t b i=b. - i j j ( b . ) . Here b.=^b. f o r i?-j s i n 

ce bi?-bi , i ^ j . Using (2 .5 ) where u ( b . ) = u . and v ( b . ) = v . , we get 

x=^? = 1 X. ( ( y . + O b . + v p + v ^ ^ ^ ^ . ( ( u | + l ) b . + v . ) + v 2 . By Lemma 2.5 i t f o l l o w s t h a t 

X j t v . + l j - V j O i j + l ) , 1<.i<n and I " . 1
x | v i + v 1 " E " f , 1 v | v | + v 2 . Since u { > 0 , i t f o l l o w s 

from the former e q u a l i t y t h a t X .=v . , and so v 1 = v 2 . Hence the mapping x * B W x -> 

•> B ' \ Vy d e f i n e d by x (b ) *b - i j > (b ) , be B W X i s a one - to -one mapping, and so card 

( B W x ) = c a r d ( B ' W y ) , which completes the p r o o f . 

2.9. COROLLARY. If tfre als X has a basis then Wx has a basis. 

Proo f . Let B be a bas is o f X. By the above theorem we can suppose t h a t 

f o r each b € B W x we have - b € B \ V x . Let B ^ C b - b i b e B W x > C W... We show t h a t B1 
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i s a bas is o f Wv . Let w € W w \ { 0 } . By Lemma 2 . 5 , w=T? , X . b , + v , where b.€ B W V , 
X X u Is-1 I I [ A 

b.?-b. f o r i ? - j , X . > 0 , 1< i<n , v t Vx . Then - w - J " m l X . ( -b . ) -v and so w - ( l / 2 ) (w-w) -

-\. , (X . / 2 ) ( b . - b . ) . To show the uniqueness o f t h i s r e p r e s e n t a t i o n , suppose 

W--K' ^ . ( b . - b . ) - ^ - v . f b . - b . ) , b . * B \ V V , b . -b .? -b . -b . f o r i ? - j , and X . , y . A 0 , 1<j<k. L\-\ \ i r ^1 = 1 i i i i X i i j j J * i ' T 
Then b .^+b. f o r M j * , and s ince f o r each b * B \ V v , -b€ B \ V V we must have X.=y, , 

I — J A A II 

1<i<k. 

Remarks, a) The converse to Corollary 2.9 is not true (see k.6 c), k.B c)). 

b) An almost linear subspace Y of an als X with a basis, has not in general a ba

sis (see *,.8 c)). 

Another consequence of Theorem 2.8 is 

2.10. COROLLARY. If X is an als with a basis3 then there exist a norm 

||.|| and a metric p on X for which X is a snals. 
Proof. Choose a basis B with the property from Theorem 2.8. For an element 

x € X \ { 0 } , use the unique representation given by Definition 2.1, x=J\ ,X.b. and 

define ||x||--J? Jx.l. Observino that if x-T? ̂ .b.-T^ .X.b.+T? , .X.b. , 1 • • ' -.|*1 ' i ' - Li-"lii £ >i--1ii £-i=k+1 I i 
b.e BNV for 1<i<k, b.€ BfiV for k+1<i<n and X .>0 for 1<i<.k, then the unique 

representation for -x is -x-=T. ,X.(-b.)+y. , . . j ( - X . ) b . , it is easy to show that ^ L i = 1 i I - - 1 = ^ + 1 . . ' 7 

||.|| satisfies N.-N-. Let now x,y€X. Then x-=j[ ,_X. b. , y=][. _ •• P . b. , X.,y.r>0 for 

b.€ B \ V , b.^b. for Mj*, and define p (x,y)-=£. , | X. -y. | . Then p is a metric on X 

satisfying H1 and M«. Therefore X is a snals. 

Though the norm and the metric defined as above are not easy to be handled, 

we can use their existence to conclude that all the results of Section 1 involving 

algebraic structure are also true in an als with a basis. We shall make references 

only to two of them, which we collect in a lemma. 

2.11. LEMMA. Let X be an als with a basis. 

i) The relations x+y*x+z, x,y,zeX imply that -/-z. 

ii) The relations wi + vi- w2 + v2 * wi € WX * v i € V X * J = 1 »2 imply that w-'-w-

and v=v„. 

2.12. COROLLARY. Let X be an als. If W has a basis then W +V has a basis. 

Proof. Let B- be a basis of Wv and B« a basis of the linear space Vy. By 

Lemma 2.11 ii), 8, U B~ is a basis of ^v+Vy/ 

3. ALMOST LINEAR FUNCTIONALS AND THE DUAL SPACE 

Up to 3.7 (except for 3.*0 we recall definitions and results from [2], 

3.1. DEFINITION. Let X be an als. A functional f.X -* R is called an almost 

linear functional if the conditions (3.1)~(3.3) are satisfied. 

(3.D f(x+y)-f(x)+f(y) (x.yCX) 

(3.2; fUx)-Af(x) (X>0, x € X ) 
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(3.3) f(w)>0 (w«W x) 

The functional f:X -> R is called a linear functional on X if it satisfies (3.1), 

and (3.2) for each Xe R. Then (3.3) is also satisfied. 

Let X* be the set of all almost linear functionals defined on the als X. 

For f-»f2
€ x* » 1et s(f-,f2) be the functional on X defined by s(f1,f2)(x)= 

=f- (x)+f«(x), x€X, and for f € >C and X « R let m(X,f) be the functional on X de

fined by m(X,f)(x)--f (Xx), x€ X. Then s t f ^ f ^ e X* , m(X,f)€ X r , and s:X* x X* -+• 

-»- X^ , m:R x X* -* X* satisfy L^Lg , where 0€ X* is the functional which is 0 at 

each x€ X. Therefore X is a*i als. Notice that for each f£ X we have that f|Vy 
is linear. We denote sff.-f*) by f-i+f? and m(X,f) by Xof. 

3.2. LEMMA. Let X be an als and let f£X#. We have f *Vy# iff f is line

ar on X, iff -l0f*-f, iff f|W «0. 

3.3. DEFINITION. Let X be an als. An almost linear subspace r of X* s 

said to be total over X if the relations x ^ x ^ e X , f(x«)-=f(x2) for each f € F jmpiy 

that x^x^. 

The als X may be not total over X (see Section 4 V. 
3.4. LEMMA. Let X be an als. If X=-W then X# =W # . If X--V \ then X* =VV# . 

^ A A A A 

If in addition X is total over X then the converse to the above statements is 

also true. 

Proof. Suppose X-=W and let f€ X # . Then for each x e X we have (-l0f)(x) = 

=f(-x)--f(x) and so -lof=-f, i.e., feW # ..Suppose X=V . Then Wx«-{0} and for each 

f* X # we have f|W»0. By Lemma 3.2 it follows that f feV # . 
•# dt 

Assume now that X is total over X and let x€ X. If X =WX.# then for 

each f€ X^ we have that -lof-=f and so (-lof) (x)--f (-x)=f (x), whence by our assump

tion it follows that x*-x, i.e., xfeWy. If X
 x^y$ tnen by Lemma 3.2, we qet 

f(x-x)--O--f(0) for each f€ X* and so x-x=0, i.e., x € V . 

Let now X be a nals and for f€ X define 

(3.4) l|f||-sup{|f(x)|: x€X, ||x||sl} 

Let X*=*{f€ X # :||f| | o h 

3.5. THEOREM. X* together with ||.|| defined by (3.4) is a nals. 

3.6. DEFINITION. The space X* together with ||.|| defined by (3.4) is 

called the dual space of the nals X. 

Remark. We recall that for any nals X, the dual space X Is a "snals for 

the metric p defined by 

p(f1,f2)-sup{|fl(x)-f2(x)|: xex, ||x||<n} (ft,f2€X*) 

3.7. LEMMA. For any nals X, Vy* is a Banaoh space. 
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Proof. Since V * is a nls for the norm defined by (3.*0, and by Lemma 3.2 

each f € V * is linear on X, the proof that V * is complete, Is similar with the 

proof that the dual space of a nls is comolete. 

Remark. The snals X where p is the metric defined in the above remark, is 

complete in the metric p. 

In contrast to the case of.a Is, when X is an als it is possible that 

X ^ i 0 } (see -..1 d), -».2 d)). On the other hand in all our examples when X is a 

nals, even X ?-{0} and an open question is whether X may be {0}. The main part 01 

this section is devoted to this question but unfortunately we were not able to 

prove or disprove it. Now, when the nals X has a basis, then X ̂ {0}. (Hence by 

Corollary 2.10, for any als X with a basis X~* ̂ {0}). To show thiswe need the fol

lowing lemma. 

3.8. LEMMA. Let X be a nals with a basis B. Then for eaoh b e B W V there 
* ° X 

exists f € X* suoh that f(b ) = 1 and f(b)=0 for each be B\{b }. If b € Wv then 
o J o o X 

f « X*. 
Proof. Let xeXMO}. Then x=T'? ^ . b . , where b.^b. for i =--j and X.>0 for 

-* i = 1 I I i j J i 
b.€ B \ V Y . Def ine f ( x ) = 0 i f b t {b , b } and f ( x )=X . i f b.=b f o r some i 6 
i A c • i n i i o o 

6 {1,...,n}. Define also f(0)=0. Then f satisfies (3-1)-(3-3) (notice that (3.3) 
holds since f>0), and so f £ X . Suppose now that b €W . By Lemma 2.2 we can 

suppose ||bj|-1. Let x € X such that f(x)>0. Then x=X b +7^ .X.b. where X. >0, • o' o o L 1=1 i i o 
b.9-b. for i == j. By Lemma 1.7 we have f(x)=XQ=||XQbJ |<||x|| and so fe X*, ||f||-1. 

3.9. THEOREM. Let X be a nals suoh that Wx has a basis. Then X*?-{0}. 

Proof. Since Wx has a basis, by Lemma 3.8 there exists f*(W )*\{0}. Let 

x*X and define f. (x)=f (x-x). Then f-€ X , f.j-0 and for each x e X we have that 

O^f^x^llfllllx-xll^Hfllllxll, i.e., f « X * \ { 0 } . 

3.10. COROLLARY. If the nals X has a basis, then X*?-{0}. 

Proof. Use Corollary 2.9 and Theorem 3.9. 

3.11. PROPOSITION. Let X be a nals with a basis B suoh that card(B\V )o>. 

Then X*={f€ X* :f | V X«(V X)*}. 

Proof. Clearly we must prove only the inclusion O . Let f6 X , f|V € 

* (Vx)*. If f ̂ X*, then there exist x^ X, | |xj |<1 , neN such that |f(xj | -> » . 

Let B\Vx={b-,.. .,bk}. By Lemma 2.5, we have that xn=J.s5.jXn.b.+vn , X n J>0, vp e V , 
n*N. By Lemma 1.15 the sequences {X .} « , 1<J<k, are all bounded, and since 

|f(x n)H^ = 1X n |f(b.) + f(vn)| •* » , ft follows that |f(vj| -* ». since f|VX t (V x)* 

we must have | |v | | -* «. On the other hand | |vn| \<>\ |xn| | + | |£.^X^b. | | , for each 
n£ N, a contradiction since the rlqht hand inequality is bounded. Therefore fe X . 

3.12. COROLLARY. If the nals X has a basis B suoh that card B<» then 

X*-X*. 

As we have mentioned in the Introduction, In a nals X a theorem of Hahn-

-Banach type is no longer true. In a nals X there could exist an almost linear 

subspace Y C X and f'*Y such that: a) f can not be emended to a functional f.. « X 
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(see -..5 d)); b) f has a unique extension f 1 € X* but f-^X* (see -».5 e)); c) f 

has a unique extension f.6X but ||fJ|>||f|| (see -».5 f)). In view of a), any 

conditions on X, Y<:X and f «Y M O } which guarantee the existence of an extension 

as those from b), c), or norm-preserving extension, are of interest. In the sequel 

we shall deal with this problem taking into account our main problem whether 

X%{0}. 

The almost linear subspace W CX has the property that for each f € (\l ) 

there exists a norm-preserving extension to X while for Vv this is an open question. 

3.13. PROPOSITION. Let X be a nals and let ff (W ) . Then there exists 

f1 € X* suoh that f1 I Wx=f, llf-M-llfll and f-|Vx--0. 

Proof. Clearly, the functional defined by f. (x)=f (x-x)/2, x « X has all Jtstoe 

required properties. 

An immediate consequence of this result is: 

3.1-.. COROLLARY. Let X be a nals. If (Wx)*?-{0} then X*V{0}. 

In view of this result, to solve the problem whether for a nals X we have 

X =/{0}, it is enough to solve it for a nals X such that X=W (and X has no basis). 

If the converse to Corrolary 3.1** were true in the class of nals X such 

that X?-Vy then for each nals X, X ?-{0} as one can see from the next result. For 

this result our assumption from the introduction that X is a nals which Is not a 

Is, is essential. 

3.15. PROPOSITION. The following assertions are equivalent: 

i) There exists a nals X suoh that X ={0}. 

ii) There exists a nals X suoh that X ̂ {0} and X =Vy* (i.e., X is a Ba-

naoh spaoe). 

Proof. 1) -^ ii). Suppose X is a nals such that X*={0}. Let Y={(x,a): 

x* X,a« R} and let s:Y x Y -*» Y and m:R x Y + Y be defined by s((x- fb.), (x2,a2)) = 

= (x1+x2,a.|+a2) and m(X, (x,a)) = (Xx,Xa). Let 0 *Y be the element (0,0). Then Y is 

an als and we have V ={ (v,a) :v t Vy,a e R} and W ={ (w,0) :w 6 W.A. Since XT-VV then Y?-

9-Vy. Define a norm on Y by | | (x,a) | ̂  = 1 |x| | + |a| . Then Y together with | |.| \} is 

a nals. Clearly the functional f defined on Y by f ((x,a))=a, (x,a) € Y, belongs 

to Vy* and HfJlj-1. We show that Y*=Vy*. Let f 6Y \Vy*. By Lemma 3.2 there 

exists (w ,0)«WW , w e W,, such that f((w ,0))>0. Define the functional f- on X 
o Y o X o 1 

by f1(x)=f((x,0)), X6X. Then f ^ X and by 1), f-=0, a contradiction since 

f,(w )-f ( (w ,0))>0. Therefore VV*=Y*. l o o T 
il) *->i). Let X be a nals such that X*=V *?-{0}. Since X is not a Is, 

W^{0} and we have (Wx)*={0}. 

In the theory of Banach spaces it is well-known that there exist Banach 

spaces which have no preduals. Proposition 3.15 suggest -.in case a nals X With 

X ={0} exists - the following question. Is it true that for each Banaoh space E 

there exists a nals Xsuoh that X =E ? We can also ask the following question 

which makes sense for any solution to the main problem whether X j-{0}.Jd it tx^e 
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that for eaah Banaah spaae E there exists a nals X suah that V
Y*=-- ? 

We study now the extension property of functionals defined on the linear 

subspace Vy. Here we notice that in a nals it can happen that V -={0} and V *?-{0} 

(see -».8 e)). When X is an als, it is possible that Vx?-{0} and Vx*-={0} (see k.3 e)), 
but in all our examples when X is a nals, if VY^{0} then VY*?-{0}. The same pheno

menon appears in all our results on extensions of functionals defined on V Y , when 

we always get linear functionals on X. 

3.16. PROPOSITION. Let X be a nals with a basis B. 

i) For eaah f € (v
x)*^ there exists f., « V -r , fjv «f. 

i i) If card (BW )<• then for eaah f € (V ) there exists f - € V * suah that 
f i l V f. 

Proof. By Theorem 2.8 we can suppose that B has the nroperty that for 

each b€ B W we have -be B W . 
-it 

i) Let f € (Vx) \ {0} and let x6 X W . By Lemma 2.5, there exist unique 

b1,...,bn€ B W , X.>0, l<i<.n and v # V x such that 

(3.5) *-Ci xi b| + v 

Define f1(x)=f(v) and for v« Vx define f1(v)=f(v). Then clearly f-feX
#and fj is 

an extension of f. To show that f.^V f , by Lemma 3.2 we must show that f- (-x) = 

--~f.,(x) for each x € X W . If x has the representation aiven In (3.5) then 

-x-^^A.^b^-v and so f 1 (-x)--f (-v)---f} (x). 

ii) Suppose card ( B W X ) < » and let f f ( V j \ { 0 } . Then by i) above there 

exists f. e MJt , f1|VY=-f, whence the result follows by Proposition 3.11. 

3.17. COROLLARY. Let X be a nals with a basis B suah that card (BWY)<«>. 

Then X is total over X. 

Proof. Suppose B W x=
s{b. ,... ,b } and let x.,x 2€X such that f(x«)»f(x2) 

for each ft X*. By Lemma 2.5 we have that x.=T? -X-.b.+v. , A..>0, 1<j<.n, v . * V v , ' 1 Lj--1 ij j 1 ' IJ
 J i X 

i--1,2. By Lemma 3.8, for each b . f e B W there exists f. 6 X such that f.(b.) = 1 

and f.(b)=-0 for be B\{b.}. By Proposition 3.11, f.e X , whence by our assumption 

it follows A-."-A*, for 1<J^n. Consequently, for each f * X we net f (v-)--f (v«). 

Since V is a nls, by Proposition 3.16 ii) it follows that v^v^. Therefore x.-x.. 

3.18. PROPOSITION. Let X be a nals suah that X-=W +VX- Then for eaah 

f € (V ) there exists a norm-preserving extension f - € V..* . 

Proof. Let f # (VY) \ { 0 } . By Lemma 1.10, for each x * X there exist unique 

» # W x and v € V x such that x=w+v. Define f - (x)-*f (v). Clearly f 1 € X and by Lemma 

3.2, f}€ V x # . By Lemma 1.7 we net | f 1 (x) |-| f (v) |<J | f | | | | v| |<;| | f | |.| |x| | and so 

I IMHMI-
3.19. PROPOSITION. Let X be a snals suah that p ie a metria and let 

x Q e X \ (W x+V x). Suppose 
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X={Xx +u(-x )+w+v : X,u>0, w é W . v é U 
o o X Y 

\* i) For eaoh f € (Vj there exists f- c V * , f |v =f. 
ii) Vx*?-{0}. 

iii) For eaoh ft (W X+Vx>* there exists f}€ X* , f-1(Wx
uVx)=f. 

Proof. We show first that 

(3.6) x=XjU x2 u (wx+vx) 

where X..--f AxQ+w+v : X>0, w€ Wx , v * V } , X 2 = { - A X Q + W + V : X>0, w* W , v€V^}.'» and 

that we have X. r> X2=0, X . n ^ + V ^ - 0 , ! - l f 2 . Since the inc lusion r> in 0 . 6 ) Is 

obvious, l e t x€ X, say x=Xx +u( -x )+w+v, X,u>0, w* Wy , v e V y . I f X=u, then since 

X(x -x ) 6 W , i t fo l lows that x t W +V . I f X>u, then x=(X-y)x +u (x -x )+w+ve X- . 
O O X X X o o o i 

S i m i l a r l y , i f X<y then x < X 0 . This proves ( 3 . 6 ) . Since +x i Wv+Vv , by Lemma 1.11 
Z — O T A A 

i t fo l lows that X. C\ (Uy+Vy)=Q> » = 1,2. Let now x € X. O X2 . Then the re e x i s t 
X : >0, w.« Wv , v : € Vv , 1 = 1,2 such that x=X.x +w1+v1=-X0x +w0+v0 . Hence, 

I I A i X 1 0 l l 2 o . c Z 
(X.+X0 )x +w1+v l=X0 (x -x )+w0+v0« Wv+Vv , whence by Lemma 1.11 i t fo l lows 

i z o i i z o o z z x x 
( X . + X j x e Wv+Vv , a cont rad ic t ion since X.,+Xo>0 and x £ Wv+Vv. The refore 

l Z o X X 1 Z o ' X X 

X. A X2=0. Using Lemma 1.12 ( f o r Y=Wy+V ) and Lemma 1.10 we net that any x e X can 

be uniquely represented in the form 

(3 .7 ) X=XXQ+W+V (X€ R, w«Wx , v * V x > 

i ) Let f € (V ) \ { 0 } . I f xfeX has the representat ion given by ( 3 . 7 ) , de

f ine f . j (x ) = f ( v ) . C l e a r l y f}€ V ^ . I f f ^ V y * then the re ex is t x n € X, | I x J | < 1 , 

n e N such that I f . (x ) I •* » . Suppose x =\ x +w +v , X € R, w € Wv , v te V , 
' I n 1 r n n o n n ' n n X n X 

ntN. Suppose that for an infinity of n we have \ >0, and without loss df Genera
lity we can suppose X >0 for all ntN. By Lemma 1.7 it follows that ||X x +v I |< 

rr n ' n o n' 
<||x ||<1 for each neN, and so by Lemma 1.15 the seauence {\ } , is bounded. 

Then | | v | .-*1+X | | x | | , n*N, whence the sequence {'v '. ; }" , is bounded. We qet 

the same conclusion If \ <0, nt N, since then we work with -x instead of x . Now, n o o 
since If-U^ |-|f (vn)| •* - and f fc (V )* , we obtain that vn •* » , a contra

diction. Therefore f.k V * . 
ii) If Vx?-{0} then by i) above we net V *#\0"-. Supoose now V =\0'- a\nd let 

x€ X. Then by (3.7) there exist unique \iR, w *W . such that x=.\x +w. Define 

f (x)-x| |xQ| | . Clearly we have f t Vx# . By Lemma I. "• we net fix) » \x £ 

SlI^o+w.HMI and so f « v x * \ { o > . 
iii) Let f t (Wx+Vx)*\{0>. If V »{0> then the result follows by Proposition 

3.13. Suppose now Vx>{0}. By i) above, there exists f 2*X* such that
 f2.vx*1,,VX 

and f2|Wx-0. By Proposition 3.13, there exists f . U * such that V;
wx m f | WX ^ 

f3|Vx-0. Let
 f
1-

f
2
+f3» Then f }k X* and we have f. | (Wx+Vx)-f. 

3.20. PROPOSITION. Let X«W be a a*uile ai^h vhav o i$ a metrtox Y an 
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almost linear subspaoe of X and x € X N Y. Suppose that X={XxQ+y : X>0, ye Y} and 

let f€ Y* \ f 0 } . 1 / the re e x t s t no y 1 , y 2 € Y such that y2=x +y- » *herc there 

exists a norm-preserving extension of f to X. 

Proo f . By hypothesis and Lemma 1.12 i t fo l l ows that each x ^ X has a unique 

rep resen ta t ion o f the form x=Xx +y , X>0, y € Y . Define f . ( x ) = f ( y ) • Then f ^ X and 

by Lemma 1 .7 we have 0 < f ] ( x ) = f ( y ) < j | f | | | | y | | < | | f | | | | x | | , i . e . , | I f - I | = | | f | | • 

3 .21 . PROPOSITION. Let X=W " be a nals, Y an almost linear subsvaoe of X 

and x € X N Y. Suppose X={Xx +y : X>0, y e Y} and l e t f« Y * \ { 0 } . T/ the re ea:tst 
0 0 * i 

y-»y 2 €Y swc?h that y2=^0+y1 &w<* f (y 2 )>f (y 1 ) then there exists f - € X , f-|Y=f. 

P roo f . Suppose y2=xQ+y1 , y ^ y ^ Y and f (y2)*>f ( y - ) . Let R=f ( y 2 ) - f (y- )>0 , 

and f o r xe X, x=Xx +y , X>0, y£ Y def ine f 1 (x)=X$+f ( y ) . In order that f^ be w e l l -

- d e f i n e d we must show that i f Xx +y=ux +z , X,y>0, y , z t Y then 

(3.8) X3+f(y)=u6+f(z) 

Since (3.8) is clear if X=y=0, suppose now X>0. Then Xx +y+uy1
s=uxo+uy1+z=uy2+z and 

so xQ+y3=y^ where y.= (y+vjy1 )/X ̂ Y and y^=(viy2+z)/X * Y. Then xQ+-y 1+y^=y.j+y^ and 

since x +y.=y2 it follows that y2+y?
=yi+yii- Hence f (yJ + f (yj = f (yj )+f (yj,) i.e., 

^~f (y/,)"f (y-j) • Using the above expressions of y- and y, we obtain (3.8). Conse-
"it 

quently f. is well-defined and we have that f.tXff . 

Suppose f. { X . Then there exist x e X, ||x ||<1, ntN, such that f. (x )+ 

•* ». Suppose x =X x +y , X >0, y e Y, nfiN. By Lemma 1.15, the sequence {X } , K K n n o 7n n 7n 7 n n=1 
is bounded and so, since ||y ||-̂ ||x | |+X ||x || for each neN, the sequence 

{||y I I}°° 1 is bounded. On the other hand f. (x )=X 8+f(y ) •* °° and so f(y )-•«>, M ' n M n=l l n n n n 
a contradiction since {My II} . is bounded and f£Y . 

''7 n'' n=1 

Remark. We can not improve the conclusion of Proposition 3.21 to obtain 

a norm-preserving extension (see -..5 f)). 

-t. EXAMPLES 

In this section we give examoles of almost linear spaces, normed almost 

linear spaces and strong normed almost linear spaces, mainly for exhibltinp 

counterexamples related to the content of this paper. Some examples are from [2], 

others are new and we send the interested reader for more examples, information 

and proofs to consult [2]. We draw attention that we do not know an example of 

a nals which is not a snals. 

In all the examples below s and m are the mappings defined in Section 1. 

In the sequel we shall sometimes denote s(x,y) by x + y and m(X,x) by Xox. The 

norm of a nals will be denoted by |I|•||I• 

k.). EXAMPLE, a) Let X»{x« R : x>0}. Define s(x,y)-*max{x,y} and m(X,x)«x 

for X?-0, m(0,x)--0. The element 0€X is 0 6 R. Then X is an als. We have V »{0} and 
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W =X. Clearly, there exísts no norm on X. 

b) Let x,ye X, 0<y<x. Then x=x + y and x=aox + y for a^O. Notice that the 
conclusion of Lemma 1.8 holds in X. 

c) X has no basis. 
d) We háve X* ={0}. 

4.2. EXAMPLE. a) Let L be a 1s and let X=L where s(x,y)=x+y, m(\,x)-|x|x 
and O é X is the element 0 é L. Then X ís an als and we háve ^={0} and W =X. There 
exi sts no norm on X. 

b) Let x é L \ { 0 } and let y=-x (this operation is understanded in L). Then 
x,y* X and we háve x + y=0 č V and both x,yi- V . We also háve x=2ox + y and so 
the conclusion of Lemma 1.9 does not hold. Notice that in this example the rela-
tion (1.5) implies y=z. 

c) X has no basis. 
d) We háve X* ={0}. 
4.3. EXAMPLE. a) Let L be a ls dim L>2, and let ^ é L ^ , <M0. Let X= 

={xéL : (j)(x)>0} and let X +={x*X : <j>(x)>0}, X ={x € X : <j>(x)=0}. Define s(x,y)= 
=x+y if both x,y*X or both x,yéX , s (x,y)=s (y ,x)=x if x é X and y é X , and 
m(X,x) = |x|x if xeX, , m(X,x)=Xx if X É X . Let O é X be the element 0 é-L. Then X Ís + o 
an als and we háve V =X , W =X U {0}. There exists no norm on X. X o X + 

b) Let w * W \{0}. Then w=w + v for each včV v. 
c) X has no basi s. 
d) Let f=<J>|X. We háve X* ={Xof :Xé R}={Xf : X>0} and X * is not total oveč-

X. 
e) We háve V ^{0} and V J ={0}. 
4.4. EXAMPLE. a) Let R be endowed with the Euclidean norm ||*|| and let 

e ^ d . 0 ) , e2=.(0,l). Let A.={Xe. : X>0}, i = 1,2 and let X=A1 U A ^ Define s(x,y) = 
=x+y if both x ^ e A j , 1=1,2, s(x,y)«s(y,x)«(| |x| | + | |y| | )e£ if x č A ^ Í O } , 
y € A . \ í ° K î j and m(X,x) = |x|x. Let 0 é X be the element O é R . Then X is an als 
and we háve Vx*{0}, WX«X. Let |||x|||-||x||. Then X together with | | |*| | | is a 
nals. It is a snals for the semi-metric p(x,y)=| |||x|||-|||y||| |. 

b) Let x=(0,2)éX, y-(1,0)*X and let a=1/2. We háve x=(l/2)ox + y anc 
y^x/2. 

c) X has no basis. 
d) Let f(x)-|||x|||, xiX. We háve X*={Xof : XéR}«{Xf : X£0} and X* is 

not total over X. 
4.5. EXAMPLE. a) Let L be a ls and ^ L * , <f>̂ 0. Let X={xéL : f(x)>0} U 

VJ {0}. Define s(x,y)»x+y and m(X,x)«|x|x. The element 0*X ls the element 0 6 L. 
Then X is an als and we háve V\*{0} and W »X. Define | | |x| | | - Ý ( X ) . Then X Is a 
nals. For the semi-metric defined by p (x,y)«|<j>(x)-<j> (y) | it ls a snals. 

b) X has no basis if dim L>2. 

c) Let f«<j>|X. We háve X*«X*-{Xof : XéR}»{Xf :X£0}. Clearly X* is not 
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total over X if dim L>2. 

d) There exists a snals X- , an almost linear subspace Y C X . and f e Y , 

f^O such that f can not be extended to an almost linear functional f., € XI* . Indeed, 
2 tt 

let L=R and tJ>-=(Q,l) « L* and define X as in a) above. Let X---{(a,0)*X : a>0,8>0} 

and Y={(a,B)6X1 : 3>a}. Then X. is an almost linear subspace of X and so it is a 

snals, and Y is an almost linear subspace of X.. Let f be the functional defined 

on Y by f ((a,6) )=3-a, (a,3)<?Y. Clearly f t Y* and we have 0<f ((a,B) )=0-a<8= 

= | | | (a,6) | | | . Therefore f € Y*. Suppose there exists f € X * such that f . j | Y = f . Let 

y 1-(l,2)6Y f y2=(3,3) ̂  Y and X Q = ( 2 , 1) e X..N Y. We have y2=xQ+y1 and so f 1 (y2) = 

^ - ( x )+f,(y,). It follows that f, (x )=-1, which is not possible since x € Wv =X, . 
l o l l l o o X . , 1 

Notice that for the snals X ={Ax +y : X>0, y € Y} and f£Y defined as above, we 

have y2=x +y1 and f(y2)<f(y1) (see Proposition 3-21). 

e) There exist a snals X1 , an almost linear subspace Y C X1 and f 6-Y 

such that there exists a unfoue f.feX, with fjY=f and f. £X . Indeed, let X be 

as in d) above and let X ={(a,8)*X : a<0}, Y={(a,6)^X1 : O<a<0} . Then X1 is a 

snals and Y is an almost linear subspace of X- . Let f € Y be defined by 

f((c.,6))=B-a, (a,e)eY. Then the functional f ((a,0)=0-a, (a,B)*X1 belongs to X* 

and f t | Y=f. Let f ^ X ^ such that f 21 Y=f, and let x ^ a - , 0 - ) * X - N Y. Then a ^ O and 

so ( - a 1 , - a . J ) e Y , and we also have that (0,8,-aJ^Y. Therefore f2((-a1 ,-a^))=0 

and f2((O,0 -a 1))=6 1-a r Since we have (a.. ,0., ) + (-a.. ,-a- )« - (O,0 1 -a . j) it follows that 

f2((a1,81))=B--a1-
sf1((a1,31)). i.e., f2=f... Therefore f has a unique extension 

f ^ X * . Let x n=(-n,l)^X 1 , n*-N. We have |||xn|||-l and f 1 (xn)=n+1 , i.e., f-f X*. 

f) There exist a snals X. , an almost linear subspace Y C X. anf f€• Y* 

such that there exists a unique f ^ X * , f-J|Y=f and | | | f ] | | |>| | | f | | | . Indeed, let 

X be as in d) above and let X---{(af0) e X : |a|<Bh Y={(a,8) ̂  X] : a>0}. Then X] is 

a snals and Y is an almost linear subspace of X1. Let f * Y be defined by f((a,8))= 

=8-a,- (a,0)£Y. As in e) above f ^ X j defined by f1 ((a ,8) )=0-a, (a,8)€X1 is the 

unique extension of f to X,. We have |||f1|||=2>|| jf|||=1. Observe that we have 

X1={Axo+y : A>0, y€ Y} where X Q = ( - 1 , 1 ) € X.. 

^•.6. EXAMPLE, a) Let (E,||-||) be a nls and let X be the collection of 

all nonempty, bounded and convex subsets A of E. Define s(A. ,A«)=A1+A«={a1+a-) : 

: a.* A.}, 1 = 1,2 and m(A,A)=AA={Aa : a ( A } . Let 0*X be the set {0}. Then X is an 

als, and we*have V\,={{x} : x £ E } = E and W.. is the set of those A«-X, A symmetric 

with respect to 0 * E. For A * X, let | | |A| | |=sup A| |a| | . Then X together with 

|||'||| is a nals. It is a snals for the Hausdorff semi-metric defined by 

(J..1) p(A1,A2)=max { sup inf ( l a ^ a ^ l , sup inf ||a.|-a2||} 
a.tc M» dnc o a*.»c n* a*£ M« 

b) Let a be an arbitrary non-zero element of E. Let A..«A..»{aa : -1<a<1} 

and A2«{aa : -1:_Sa<.1}. Then A.* X, i»1,2,3 and we have A J + A ^ A J + A . , A 2^
A3 • 
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c) Tne,snals X has no basis, indeed, this is a consequence nf b* above and 

Lemma 2.11 a;. cdP..E=R and X defined as in a) above, W x has the basis {(-1,1) 

[-1,1]}. 
* 

d) We do hot have a complete description of X and V * but we know that 
* * * 

they are both #{0}. Moreover for each <f>6(Vx)*(=E ) , <M0 there exist f £ X \ Vx* 

and f 2^V x* , IMf-llhlll^llhllUIII such that f 1 | Vx=f£ | V ^ . Indeed, define 

fi(A)=sup A<f>(a), A e X , and f2(A) = (f 1 (A)-f- (-A))/2, A « X. Then f ^ ^ satisfy the 

required conditions. We do not know whether X is, or is not total over X. 

4.7. EXAMPLE, a) Let (E,||>||) be a nls and let X be the collection of all nonempty, bounded, closed, convex subsets A of E. Define s(A.,A„)=A7+AT , and de

fine m,0£X as in Example k.6 a). Then X is an als, and Vy,Wy have a similar des

cription as in k.6 a). Endowed with the same norm as in k.6 a ) , the als X is a 

nals. Together with p defined by [k.]) it is a snals. Notice that now p is a.metric 

on X. 

b) Let E=R and define X as above. We have that X=W +V . Since a basis for 

W is the set B1={[-1,1]}, by Corollary 2.12, X has a basis. It seems to us that 

for dim E>2 the corresponding X has no basis. 

c) We can repeate word for word what was said in k.6 d) but now we know 

that X* is total over X (see [2]). 

4.8. EXAMPLE, a) Let (E,||.||) be a nls and let <f> € E* ||<i>||=1, <f> attains 

its norm. Then H={x«E : <f>(x)=0} is proximinal in E, i.e., for each x e E the set 

P H ( x M V H : Mx-holl-....heHl 
that there exists a linear selection pu (x) 6 Pu(x) , x£E. Let X={x* E : <j>(x)>0}. 

n H 

Define s(x,y)=x+y, m(x,x)=Xx for X>0 and m(-1 ,x)=x-2pu(x). The element 0*X is 
H 

0* E. Then X is an als and we have V =H, W ={xfeE : <j> (x)>0,pH(x)=0} . For xfeX let 

| | |x| | |~<f>(x)+| |pH(x) | | . Then X is a nals and for the semi-metric on X defined by 

p(x,y) = |<f>(x)-<My)| +! I |pH(x) | |-| |pH(y) | | | it is a snals. If H is a semi L-summand 

in E (i.e., for each x £ £ we have that P (x) is a singleton and | |x| | = | |x-p (x) | | + 

+ | |pH(x) | | (see [3])) then | | |x| | | = | |x| | for each xe X and for the metric on X de

fined by P(x,y)=||x-y|| (where x-y is understanded in E ) , X is a snals. 

b) Let xQfc W x \ { 0 } . Then W = { X X Q : X>0} and so Wx has the basis { X Q } . Sin

ce X=WX+VX by Corollary 2.12, X has a basis. 

c) Suppose dim E£2, X defined as in a) above, and let Y={x£E: <|>(x)>0> U 

VJ {0}. Then Y is an almost linear subspace of X and Y has no basis. Notice that 

WY-=WX has a basis. d) Let x Q e W x \ { 0 } . Then X*«{<fr-|X : ct-t E*, <{>- (X Q)>0> and Vx*= 

: M E*' •l<xo>-° 
e) Let Y be defin 

f|Y£Vy* , i.e., Vy*~*{0}. 

{^IX : ̂ e E , $-(x )•()}. Here X* is total over X. 

e) Let Y be defined as in c) above. We have VY-*{0} and for each f €V X* 



50 G GODINI 

REFERENCES 

rd DAY, M.M. "Normed Linear Spaces", 3 «d., Springer-Verlan, New York-Heidelberg-

-Berlin, 1973. 

GOD INI» G. "A framework for best simultaneous approximation: normed almost linear 

spaces", INCREST, Preprint Series in Mathematics, No.30/1983. 

LIMA. A. "Intersection properties of balls and subspaces in Banach spaces, Trans. 

Amer. Math. Soc. 227 (1977), 1-62. 

SINGER, I". "Best approximation in normed linear spaces by elements of linear sub-

spaces", Publ. House Acad. Soc. Rep. Romania, Bucharest and Springer Verlap, Ber

lin-Heidelberg-New York, 1970 

G. GODINI 

DEPARTMENT OF MATHEMATICS 

INCREST, Bd. PAC11 220 

79622 BUCHAREST, ROMANIA 


		webmaster@dml.cz
	2012-10-08T16:38:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




