USA 12

Gliceria Godini

An approach to generalizing Banach spaces: normed almost linear spaces

In: Zdeněk Frolík (ed.): Proceedings of the 12th Winter School on Abstract Analysis, Section of Analysis. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplement No. 5. pp. [33]--50.

Persistent URL: http://dml.cz/dmlcz/701813

Terms of use:

© Circolo Matematico di Palermo, 1984
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

AN APPRCACH TO GENERALIZING BANACH SPACES: NORMED ALMOST LINEAR SPACES
G. Godini

INTRODUCTION

This paper is a sequel to [2] in which we have introduced the normed almost linear spaces, a generalization of normed linear spaces. All spaces involved in this paper are over the real field R. Rouchly speakinn, a normed almost linear space (nals) is a set X together with two mappincs $s: X \times X \rightarrow X$ and $m: R \times X \rightarrow X$ which satisfy some of the axioms of a linear space - called an almost linear space (als) - and on the set X there exists a functional $\|\|:. X \rightarrow R-c a l l e d$ a norm which satisfies all the axioms of an usual norm on a linear space (ls), as well as some additional ones, which in the case of a normed linear space (nls) are consequences of the axioms of the norm. Due to the fact that we have weakened the axioms of a ls, but we have strenathened the axioms of the norm, some results involvinç only algebric structure, which are not true in an als, hold in a nals (see Section 1). Since the norm of a nals X does not generate a metric on X, in [2] we considered the stronc normed almost linear spaces, which also generalize the normed linear spaces. Roughly speakinc, a strona normed almost linear space (snals) is a nals X together with a semi-metric on X which is related in a certain way to the norm of X.

To support the idea that the nals is a good concent, we introduced in [2] the concept of a dual space of a nals X, where the functionals on X are no longer linear but "almost linear", which is also a nals. When X is a $n l s$, then the dual space defined by us is the usual dual space X^{*}.

The nals and snals were not introduced for the sake of generalization. We have proved in [2] that they constitute the natural framework for the theory of best simultaneous approximation, by showina that this theory is a particular case of the theory of best approximation in a nals (snals).

The present paper has a more general interest, since here we want to extend for a nals (snals) some aeneral results from the theory of normed linear spaces ([1]). Now, in the theory of normed linear spaces an imnortant tool'fs the Hahn-Banach theorem. A similar theorem is no lonner true in a nals. Consenuently,

This paper is in final form and no version of it will be submitted for publication elsewhere.
we do not know whether the dual space of a nals X may be reduced to the only functional $f=0$. Though the algebric dual of an als X may be $\{0\}$, in all our examples when X is a nals, the dual space of X is not $\{0\}$. The main objective of this paper is to give sufficient conditions on the nals X in order that its dual space have non-zero almost linear functionals.

We draw attention that in the definition of the norm of a nals (the same for the semi-metric of a snals), in. [2] we have considered all the axioms oiven in this paper, as well as an additional one. Since this latter axiom is surely of no use for solving our main problem (whether the dual space of a nals is, or is not $\{0\}$), here we omit it. On the other hand, the dual space defined by us, as well as all the examples of (strong) normed almost linear soaces in Section 4 satisfy all the axioms required in [2].

This paper is organized as follows. Section 1 contains basic results, the most of them being used throughout this paper. Section 2 deals with bases in almost linear spaces. Not all of them have a basis, and when they do then there exist a norm and a metric such that they are snals. Section 3 is devoted to the question whether the dual space of a nals contains non-zero almost linear functionals. If X has a basis then this is surely true, and we also qive some sufficient conditions for an affirmative answer to the above nuestion. We also examine the extension property of almost linear functionals defined on an almost linear subspace of the nals X. Finally, Section 4 contains examples related to the subject matter of this paper.

We did not change the terminoloay (and notation) from the theory of norms. ed linear spaces ([1]), except for the linear functional which we extended it in two ways to an als.

The most part of the results of this paper makes sense only when the nals (als) X is not a ls . From our results which make sense ir. nls (ls) E, we recover either trivial or known results in E . That is why throuchout this paper, if otherwise not stated, the als X is not $a \mathrm{ls}$.

1. BASIC PROPERTIES OF A NORMED ALMOST LINEAR SPACE

In 1.1 - 1.5 below, we recall some of the definitions and remarks of [2]. 1.1. DEFINITION. An almost linear space (als) is a set X tonether with two majpings $s: X \times X \rightarrow X$ and $m: R X X X$ satisfying the conditions $L_{1}-L_{8}$ given below. For $x, y \in X$ and $\lambda \in R$ we denote $s(x, y)$ by $x+y$ and $m(\lambda, x)$ by λx, when these will not lead to misunderstandings. Let $x, y, z \in X$ and $\left.\lambda, \mu \in R . L_{1}\right) .(x+y)+z=x+(y+z)$; L_{2}). $x+y=y+x ; L_{3}$). There exists an element $0 \in X$ such that $x+0=x$ for each $x \in X$; L_{4}). $1 x=x ; L_{5}$). $\left.\left.\left.\lambda(x+y)=\lambda x+\lambda y ; L_{6}\right) .0 x=0 ; L_{7}\right) . \lambda(\mu x)=(\lambda \mu) x ; L_{8}\right) .(\lambda+\mu) x=\lambda x+\mu x$ for $\lambda \geq 0, \mu \geq 0$.

We denote $-1 x$ by $-x$, when this will not lead to misunderstanding, and in
the sequel $x-y$ means $x+(-y)$.
1.2. DEFINITION. A nonempty set Y of an als X is called an almost linear subspace of X, if for each $y_{1}, y_{2} \in Y$ and $\lambda \in R, s\left(y_{1}, y_{2}\right) \in Y$ and $m\left(\lambda, y_{1}\right) \in Y$. An almost linear subspace Y of X is called a Zinear subspace of X if $s: Y \times Y \rightarrow Y$ and $m: R \times Y \rightarrow$ $\rightarrow Y$ satisfiy all the axioms of a ls.

For an als X we introduce the following two sets.

$$
\begin{align*}
& V_{X}=\{x \in X: x-x=0\} \tag{1.1}\\
& W_{X}=\{x \in X: x=-x\} \tag{1.2}
\end{align*}
$$

By $L_{1}-L_{8}$ it follows that V_{X} is a linear subsoace of X, and it is the largest one. The set W_{X} is an almost linear subspace of X and we have $W_{X}=\{x-x: x \in X\}$. Notice that $V_{X} \cap W_{X}=\{0\}$. Clearly, the als X is a ls, iff $V_{X}=X$, iff $W_{X}=\{0\}$.
1.3. DEFINITION. A norm on the als X is a functional $\|\|:. X \rightarrow R$ satisfying the conditions $N_{1}-N_{3}$ below. Let $x, y, z \in X$ and $\left.\lambda \in R . N_{1}\right) .\|x-z| | \leq| | x-y\|+$

Using N_{1} we get

$$
\begin{array}{ll}
\|x+y| | \leq||x||+||y| \| & (x, y \in X) \\
\|x-y\| \geq|\|x| |-||y \|| & (x, y \in X) \tag{1.4}
\end{array}
$$

By the above axioms it follows that $\|x\| \geq 0$ for each $x \in X$.
1.4. DEFINITION. An als X tonether with $\|\|:. X \rightarrow R$ satisfying $N_{1}-N_{3} i$ called a normed almost linear snace (nals).

Clearly, any nls is a nals. Since the norm of a nals does not generate a metric on X (for $x \in X \backslash V_{X}$ we have $\|x-x\| \neq 0$), we shall sometimes work in a parti. cular class of normed almost linear snaces defined below.
1.5. DEFINITION. A strong normed almost linear space (snals) is a nala X together with a semi-metric ρ on X which satisfies M_{1} and M_{2} below.
$M_{1} \quad|\|x\|-\|y\|| \leq \rho(x, y) \leq\|x-y\| \quad(x, y \in X)$
$M_{2} \quad \rho(x+z, y+z) \leq \rho(x, y) \quad(x, y, z \in X)$
As we have observed in [2], if X is a $n l s$ then the only semi-metric on X satisfying M_{1} and M_{2} is that generated by the norm (which is a metric on X).

Now we shall give some basic facts which hold in a nals (snals).
1.6. LEMMA. Let X be a nals and let $x, y, z \in X$. If
$x+y=x+z$
then $||y||=||z| y$ In particular if $x=x+y$ then $y=0$. If X is a snals, then (1.5)
implies that $\rho(y, z)=0$.
Proof. By (1.5) we net $x+y+z=x+2 z=x+2 y$, and so, $x+2^{n} y=x+2^{n} z$ for each $n \in N$.

Hence

$$
\begin{equation*}
y+2^{-n} x=z+2^{-n} x \tag{1.6}
\end{equation*}
$$

$$
(n \in N)
$$

Using (1.4), (1.6) and (1.3), we obtain that $\| y| |-2^{-n}| | x| | \leq\left|\left|y+2^{-n} x\right|\right|=\left|\left|z+2^{-n} x\right|\right| \leq$
 whence $||y||=||z||$. If x is"a snals, then by (1.6), M_{2} and M_{1} we obtain $\rho(y, z) \leq$ $\leq \rho\left(y, 2^{-n} x+y\right)+\rho\left(2^{-n} x+y, z\right)=\rho\left(y, 2^{-n} x+y\right)+\rho\left(2^{-n} x+z, z\right) \leq \rho\left(0,2^{-n} x\right)+\rho\left(2^{-n} x, 0\right) \leq 2^{-n}| | x| |+$ $+2^{-n}\|x\|=2^{-n+1}\|x\|$ for each $n \in N$, whence $\rho(y, z)=0$.

Remarks. a). In an als X the relation $x=x+y$ does not always imoly $y=0$ (see 4.1 b), 4.3 b). b). In a snals X where ρ is not a metric on X the relation (1.5) does not always imply $y=z$ (see 4.6 b)).
1.7. LEMMA. Let X be a nals and let $x \in X, w \in W_{X}$. Then $\max \{\|x\|,\|w\|\}$

Proof. We have $2||w||=||w-w|| \leq||w-x||+||x-w||=2| | x+w| |$, and $2||x||=$

1.8. LEMMA. Let X be a nals and let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. If $\mathrm{x}+\mathrm{y} \in \mathrm{V}_{\mathrm{x}}$, then both $\mathrm{x}, \mathrm{y} \in$ $\in V_{X}$.

Proof. If $x+y \in V_{X}$ then $(x-x)+(y-y)=0$. Since $x-x \in W_{X}$, by Lemma 1.7 it tollows that $||x-x||=||y-y||=0$, and so $x-x=y-y=0$, i.e., $x, y \in V_{X}$.

Remark. In an als X the relation $x+y \in V_{X}$, does not always imply $x, y \in V_{X}$ (see 4.2 b)).
1.9. LEMMA. Let X be a nals, and let $x, y \in X, x \& V_{X}, \alpha \in R,|\alpha| \geq 1$ such that $x=\alpha x+y$. If $\alpha \geq 1$, then $\alpha=1$ and $y=0$; if $\alpha \leq-1$, then $\alpha=-1$ and $y \in V_{X}$.

Proof. Suppose $\alpha \geq 1$. Then $x=x+(1-\alpha) x+y$, whence by Lemma 1.6 , we obtain $(1-\alpha) x+y=0$. By Lemma 1.8 it follows that $(1-\alpha) x \in V_{X}$, and since $x \$ V_{X}$, we must have $\alpha=1$, and so $y=0$.

Suppose $\alpha \leq-1$. Then $x=\alpha(\alpha x+y)+y$, and so $x=\alpha^{2} x+(\alpha y+y)$. Since $\alpha^{2} \geq 1$, by the above case we obtain $\alpha^{2}=1$ and $\alpha y+y=0$. Therefore $\alpha=-1$ and $y-y=0$, i.e., $y \in V_{X}$.

Remarks. a) Lemma 1.9 is no longer true in an als (see 4.1 b), 4.2 b)).
b) In a nals X the relations $x=\alpha x+y, x, y \in X, x \notin V_{X}$ and $0<|\alpha|<1$ are not contradictory (see 4.4 b)).
1.10. LeMMA. Let X.be a nals. If $w_{1}+v_{1}=w_{2}+v_{2}, w_{i} \in W_{X}, v_{i} \in V_{X}, i=1,2$, then $w_{1}=w_{2}$ and $v_{1}=v_{2}$.

Proof. Suppose $w_{1}+v_{1}=w_{2}+v_{2}$. Then $w_{1}=w_{2}+v$, where $v=v_{2}-v_{1}$. Hence $w_{1}=w_{2}-v$, and so $w_{2}=w_{2}-2 v$. By Lemma 1.6 it follows that $v=0$ and so $w_{1}=w_{2}$ and $v_{1}=v_{2}$.

Remark. Lemma 1.10 is no longer true in an als (see 4.3 b)).
1.11. LEMMA. Let X be a snals where ρ is a metric, and let $x \in X$. If $x+w+v \in W_{X}+V_{x}$ for some $w \in W_{X}$ and $v \in V_{x}$ then $x \in W_{X}+V_{X}$.

Proof. Let $W_{1} \in W_{X}$ and $v_{1} \in V_{X}$ such that

$$
\begin{equation*}
x+w+v=w_{1}+v_{1} \tag{1.7}
\end{equation*}
$$

Let $W_{2}=x-x \in W_{X}$. Using (1.7) we obtain

$$
\begin{equation*}
w_{1}+v_{1}-x=w_{2}+w+v \tag{1.8}
\end{equation*}
$$

Multiplying (1.8) by -1 and adding the obtained relation to (1.7), we get $\left(w+w_{1}\right)+$ $+\left(2 x+v-v_{1}\right)=\left(w+w_{1}\right)+\left(w_{2}+v_{1}-v\right)$. Since ρ is a metric on X, by Lemma 1.6 we obtain that $2 x=w_{2}+2\left(v_{1}-v\right)$, and so $x \in W_{X}+V_{X}$.
1.12. LEMMA. Let X be a snals where ρ is a metric, Y an almost linear subspace of X and $x_{0} \in X$. Suppose that

$$
\begin{equation*}
\left\{\lambda x_{0}+y: \lambda>0, y \in Y\right\} \cap Y=\emptyset \tag{1.9}
\end{equation*}
$$

Then the relations $\lambda_{1} x_{0}+y_{1}=\lambda_{2} x_{0}+y_{2}, \lambda_{i} \geq 0, y_{i} \in Y, i=1,2$ imply that $\lambda_{1}=\lambda_{2}$ and $y_{1}=y_{2}$.
Proof. Suppose $\lambda_{1} x_{0}+y_{1}=\lambda_{2} x_{0}+y_{2}, \lambda_{i} \geq 0, y_{i} \in Y, i=1,2$. If $\lambda_{1}=0$ then by (1.9) it follows that $\lambda_{2}=0$ and so $y_{1}=y_{2}$. Without loss of generality we can suppose now $\lambda_{1} \geq \lambda_{2}>0$. Then $\lambda_{2} x_{0}+\left(\lambda_{1}-\lambda_{2}\right) x_{0}+y_{1}=\lambda_{2} x_{0}+y_{2}$, whence by Lemma 1.6 we get $\left(\lambda_{1}-\lambda_{2}\right) x_{0}+y_{1}=$ $=y_{2}$. By (1.9) it follows that $\lambda_{1}=\lambda_{2}$, whence $y_{1}=y_{2}$.
1.13. LEMMA. Let X be a nals and let $x, x_{n} \in X, n \in N$ be such that $\lim \left|\left|x_{n}+x\right|\right|=0$. Then $x \in V_{x}$.

Proof. We have $||x-x|| \leq\left|\left|x-\left(-x_{n}\right)\right|\right|+\left|\left|-x_{n}-x\right|\right|=2| | x_{n}+x| |$ for each $n \in N$. Therefore $||x-x||=0$ and so $x \in V_{X}$.

Immediate consequences of the above lemma are the following two resu!ts.
1.14. LeMmA. Let X be a nals $x \in X \backslash V_{X}, x_{n} \in X, \alpha_{n} \in R, n \in N$. If $\lim \left|\left|x_{n}+\alpha_{n} x\right|\right|=0$ then $\lim \alpha_{n}=0$.
1.15. LEMMA. Let X be a nals and let $x, x_{n} \in X, \lambda_{n} \in R, n \in N, \lim \lambda_{n}=\infty$. If the sequence $\left\{\left\|\lambda_{n} x+x_{n}\right\|\right\}_{n=1}^{\infty}$ is bounded, then $x \in V_{X}$.
2. BASES IN ALMOST LINEAR SPACES
2.1. DEFINITION. A subset B of the als X is called a basiss of X if for each $x \in X \backslash\{0\}$ there exist unique sets $\left\{b_{1}, \ldots, b_{n}\right\} \in B,\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset R \backslash\{0\}$ (n depending on x) such that $x=\sum_{i=1}^{n} \lambda_{i} b_{i}$, where $\lambda_{i}>0$ for $b_{i} \& V_{x}$.

Clearly, if B is a basis of X then $0 \& B$.
In contrast to the case of a ls, there exists almost linear spaces (even snals) which have no basis. In Section 4 one can find examples of spaces which have or which have not bases.
2.2. LEMMA. If the $a l_{s} X$ has a basis B, then the sets $\{-b: b \in B\}$ and
$\left\{\alpha_{b} b: b \in B, \alpha_{b} \neq 0, \alpha_{b}>0\right.$ for $\left.b \notin v_{X}\right\}$ are also bases of X.
Proof. The proof is straightforward.
2.3. LEMMA. Let X be an als with a basis and let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$. If $\mathrm{x}_{1}+\mathrm{x}_{2} \in \mathrm{~V}_{\mathrm{X}}$ then $\mathrm{X}_{\mathrm{i}} \in \mathrm{V}_{\mathrm{X}}, \mathrm{i}=1,2$.

Proof. Suppose $x_{1}+x_{2} \in V_{X}$ and let $x_{3}=-x_{1}$ and $x_{4}=-x_{2}$. Since X has a basis B, there exist $b_{1}, \ldots, b_{n} \in B, b_{i} \neq b_{j}$ for $i \neq j$, such that $x_{i}=\sum_{j=1}^{n} \alpha_{i} j_{j}^{b}$, where $\alpha_{i j} \geq 0$ if $b_{j} \notin v_{x}$, $1 \leq i \leq 4$. By hypothesis we get that $\sum_{i=1}^{4} x_{i}=0$ and so $\sum_{j=1}^{n} j_{j}^{4}\left(\sum_{i=1}^{\alpha_{i j}}\right) b_{j}=0$. Suppose $b_{1} \notin v_{x}$. Then $b_{1}=\left(1+\sum_{i=1}^{4} \alpha_{i}\right) b_{1}+\sum_{j=2}^{n}\left(\sum_{i=1}^{4} \alpha_{i j}\right) b_{j}$. Since $b_{1} \in B$, it follows that $1+\sum_{i=1}^{4} \alpha_{i 1}=1$. But $\alpha_{i 1} \geq 0,1 \leq i \leq 4$, and so $\alpha_{i 1}=0,1 \leq i \leq 4$. Consequently for each $b_{j} \notin v_{x}$, $1 \leq j \leq n$, we get $\alpha_{i j}=0,1 \leq i \leq 4$, which shows that $x_{i} \in V_{x}, 1 \leq 1 \leq 4$.
2.4. LemMA. Let X be an als with a basis B . Then $\mathrm{B} \cap \mathrm{v}_{\mathrm{x}}$ is a basis of v_{x}. Proof. Use Lemma 3.
2.5. LemMA. Let X be an als. The set BCX is a basis of X iff $\mathrm{B} \cap \mathrm{V}_{\mathrm{X}}$ is a basis of v_{x}, and for each $\mathrm{x} \in \mathrm{X} \backslash \mathrm{v}_{\mathrm{x}}$ there exist unique $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}} \in \mathrm{B} \backslash \mathrm{v}_{\mathrm{x}}$, $\mathrm{v} \in \mathrm{V}_{\mathrm{x}}$ and $\lambda_{1}, \ldots, \lambda_{n}>0$ such that $x=\sum_{i=1}^{n} \lambda_{i} b_{i}+v$.

Proof. Use Lemmas 2.4, 2.3 and Definition 2.1.
2.6. LEMMA. Let B be a basis of the als X . Then for each $\mathrm{b} \in \mathrm{B} \backslash \mathrm{V}_{\mathrm{X}}$ there exist unique $\psi(b) \in B \backslash V_{X}, v(b) \in V_{X}$ and $\lambda(b)>0$ such that $-b=\lambda(b) \psi(b)+v(b)$.

Proof. Let $b \in B \backslash V_{X}$. Then $-b \notin V_{X}$ and by Lemma 2.5 we get

$$
\begin{equation*}
-b=\sum_{i=1}^{k} \lambda_{i} b_{i}+v \tag{2.1}
\end{equation*}
$$

where $b_{1}, \ldots, b_{k} \in B \backslash V_{x}, k \geq 1, b_{i} \neq b_{j}$ for $i \neq j, v \in V_{X}$ and $\lambda_{i}>0,1 \leq i \leq k$, are uniquely determined. Clearly the lemma is proved if we show that $k=1$. Let $e_{1}, \ldots, e_{m} \in B \backslash V_{X}$, $e_{i} \neq e_{j}$ for $i \neq j, v_{i} \in V_{X}, \mu_{i j} \geq 0,1 \leq i \leq k, 1 \leq j \leq m$, such that

$$
\begin{equation*}
-b_{i}=\sum_{j=1}^{m} 1_{i j} e_{j}+v_{i} \tag{2.2}
\end{equation*}
$$

Multiplying (2.1) by -1 and using (2.2) we net

$$
\begin{equation*}
b=\sum_{j=1}^{m}\left(\sum_{i=1}^{k} i_{i}{ }_{i j}\right) e_{j}+\sum_{i=1}^{k} \lambda_{i} v_{i}+v \tag{2.3}
\end{equation*}
$$

Since $b \in B \backslash V_{X}$, there exists an index $j_{0} \in\{1, \ldots, m\}$ - say $j_{0}=1$ - such that $b=e_{1}$ and we must have $\sum_{i=1}^{k} \lambda_{i} \mu_{i j}=0,2 \leq j \leq m$. Since $\lambda_{i}>0$ and $\mu_{i j} \geq 0$ it follows that $\mu_{i j}=0$ for each $1 \leq i \leq k$ and each $2 \leq j \leq m$. Consenuently, we get by (2.2)

$$
\begin{equation*}
-b_{i}=\mu_{i 1} e_{1}+v_{i} \tag{2.4}
\end{equation*}
$$

and $\mu_{i 1}>0$ since $-b_{i} \& v_{x}, 1 \leq i \leq k$. Suppose $k>1$. By (2.4) for $i=1,2$ we get that $e_{1}=\left(-b_{1}-v_{1}\right) / \mu_{11}=\left(-b_{2}-v_{2}\right) / \mu_{21}$ and so $b_{1}=\left(\mu_{11} / \mu_{21}\right) b_{2}+\left(\left(v_{2} / \mu_{21}\right)-\left(v_{1} / \mu_{11}\right)\right)$, contradicting Lemma 2.5.

Let $\psi: B \backslash V_{X} \rightarrow B \backslash V_{X}$ be defined as in Lemma 2.6. Then ψ is well-defined and we have:
2.7. LEMMA. The mapping $\psi: B \backslash V_{X} \rightarrow B \backslash V_{X}$ defined as above is injective and $\psi(\psi(b))=b$ for each $b \in B \backslash V_{X}$. In particular ψ is surjective.

Proof. Let $b_{1}, b_{2} \in B \backslash V_{X}$ such that $\psi\left(b_{1}\right)=\psi\left(b_{2}\right)=b \in B \backslash V_{X}$. Then $-b_{i}=\lambda_{i}{ }^{b+v_{i}}$, $\lambda_{i}>0, v_{i} \in V_{X}, i=1,2$, and similarly with the proof aiven at the end of Lemma 2.6, this contradicts Lemma 2.5.

Let now $b \in B \backslash V_{X}$. Then $-b=\lambda \psi(b)+v$, where $\lambda>0, v \in V_{X}$ and $\psi(b) \in B \backslash V_{X}$ are given by Lemma 2.6. Then $-\psi(b)=(b / \lambda)+(v / \lambda)$, and so, again by Lemma 2.6 we aet $\psi(\psi(\mathrm{b}))=\mathrm{b}$.

The main result of this section is the following.
2.8. THEOREM. Let B be a basis of the als X . Then there exists a basis B , of X with the property that for each $b^{\prime} \in B^{\prime} \backslash V_{X}$ we have $-b^{\prime} \in B^{\prime} \backslash V_{X}$. Moreover $\operatorname{card}\left(B \backslash \vee_{X}\right)=\operatorname{card}\left(B^{\prime} \backslash \vee_{X}\right)$.

Proof. Let $B^{\prime}=\left\{b-\psi(b): b \in B \backslash V_{X}\right\} \cup\left(B \cap V_{x}\right)$. Then for $b \in B \backslash V_{X}$ we get by Lemma 2.3 that $b^{\prime}=b-\psi(b) \in B^{\prime} \backslash V_{X}$. Hence by Lemma 2.7 we obtain that $-b^{\prime}=\psi(b)-$ $-\psi(\psi(b)) \in B^{\prime} \backslash V_{X}$. To show that B^{\prime} is a basis, we use Lemma 2.5. Clearly, $B^{\prime} \cap V_{X}=$ $=B \cap V_{X}$ is a basis of V_{X} (by Lemma 2.4). Let now $x \in X \backslash V_{X}$. Then there exist unique $b_{1}, \ldots, b_{n} \in B \backslash V_{X}, n \geq 1, b_{i} \neq b_{j}$ for $i \neq j, v \in V_{X}$ and $\lambda_{1}, \ldots, \lambda_{n}>0$ such that $x=\sum_{i=1}^{n} \lambda_{i} b_{i}+$ $+v$. By Lemmas 2.6 and 2.7, for each $b \in B \backslash V_{X}$ we have $-\psi(b)=\mu(b) b+v(b)$, where $\psi(b)>$ >0 and $v(b) \in V_{X}$ are uniquely determined. Then $b-\psi(b)=(\mu(b)+1) b+v(b)$, whence

$$
\begin{equation*}
b=\frac{b-\psi(b)}{\mu(b)+1}-\frac{v(b)}{\mu(b)+1} \quad\left(b \in B \backslash v_{x}\right) \tag{2.5}
\end{equation*}
$$

Let $b_{i}^{\prime}=b_{i}-\psi\left(b_{i}\right) \in B^{\prime} \backslash v_{X}, 1 \leq i \leq n$, and let us put $\mu\left(b_{i}\right)=\mu_{i}$ and $v\left(b_{i}\right)=v_{i}$. We have by (2.5) that

$$
x=\sum_{i=1}^{n} \frac{\lambda_{i}}{\mu_{i}+1} b_{i}^{\prime}+\bar{v}
$$

where $\bar{v} \in V_{X}$. We show now that this renresentation is unique. Suppose $x=\sum_{i=1}^{n} \lambda_{i} b_{i}^{\prime}+$ $+\bar{v}_{1}=\sum_{i=1}^{n} v_{i} b_{i}^{\prime}+\bar{v}_{2}$, where $b_{i}^{\prime} \in B^{\prime} \backslash v_{x}, L_{i}^{\prime} \neq b_{j}^{\prime}$ for $i \neq j, \lambda_{i}, v_{i} \geq 0,1 \leq i \leq n, \bar{v}_{1}, \bar{v}_{2} \in v_{x}$. Then there exist $b_{i} \in B \backslash V_{x}, 1 \leq i \leq n$, such that $b_{i}^{\prime}=b_{i}-\psi\left(b_{i}\right)$. Here $b_{i} \neq b_{j}$ for $i \neq j$ since $b_{i}^{\prime} \neq b_{j}^{\prime}, i \neq j$. Using (2.5) where $\mu\left(b_{i}\right)=\mu_{i}$ and $v\left(b_{i}\right)=v_{i}$, we get $x=\sum_{i=1}^{n} \lambda_{i}\left(\left(\mu_{i}+1\right) b_{i}+v_{i}\right)+\bar{v}_{1}=\sum_{i=1}^{n} v_{i}\left(\left(\mu_{i}+1\right) b_{i}+v_{i}\right)+\bar{v}_{2}$. By Lemma 2.5 it follows that $\lambda_{i}\left(\mu_{i}+1\right)=v_{i}\left(\mu_{i}+1\right), \quad 1 \leq i \leq n$ and $\sum_{i=1}^{n} \lambda_{i} v_{i}+\bar{v}_{1}=\sum_{i=1}^{n} v_{i} v_{i}+\bar{v}_{2}$. Since $\mu_{i}>0$, it follows from the former equality that $\lambda_{i}=\nu_{i}$, and so $\bar{v}_{1}=\bar{v}_{2}$. Hence the mapping $X: B \backslash V_{X} \rightarrow$ $\rightarrow B ' \backslash V_{X}$ defined by $X(b)=b-\psi(b), b \in B \backslash V_{X}$ is a one-to-one mapping, and so card $\left(B \backslash V_{X}\right)=$ card $\left(B^{\prime} \backslash V_{X}\right)$, which completes the proof.
2.9. COROLLARY. If the als X has a basis then W_{X} has a basis.

Proof. Let B be a basis of X. By the above theorem we can suppose that for each $b \in B \backslash V_{X}$ we have $-b \in B \backslash V_{X}$. Let $B_{1}=\left\{b-b: b \in B \backslash V_{X}\right\} \subset W_{X}$. We show that B_{1}
is a basis of W_{X}. Let $w \in W_{X} \backslash\{0\}$. By Lemma 2.5, $w=\sum_{i=1}^{n} \lambda_{i} b_{i}+v$, where $b_{i} \in B \backslash V_{X}$, $b_{i} \neq b_{j}$ for $i \neq j, \lambda_{i}>0, \quad 1 \leq i \leq n, v \in V_{x}$. Then $-w=\sum_{i=1}^{n} \lambda_{i}\left(-b_{i}\right)-v$ and so $w=(1 / 2)(w-w)=$ $=\sum_{i=1}^{n}\left(\lambda_{i} / 2\right)\left(b_{i}-b_{i}\right)$. To show the uniqueness of this representation, suppose $w=\sum_{i=1}^{k_{i}} \lambda_{i}\left(b_{i}-b_{i}\right)=\sum_{i=1}^{k} \mu_{i}\left(b_{i}-b_{i}\right), b_{i} \in B \backslash v_{X}, b_{i}-b_{i} \neq b_{j}-b_{j}$ for $i \neq j$, and $\lambda_{i}, \mu \geqslant 0,1 \leq i \leq k$. Then $b_{i} \neq \pm b j$ for $i \neq j$, and since for each $b \in B \backslash V_{X},-b \in B \backslash V_{X}$ we must have $\lambda_{i}=\mu_{i}$, $1 \leq i \leq k$.

Remarks. a) The converse to Corollary 2.9 is not true (see 4.6 c), 4.8 c)). b) An almost linear subspace Y of an als X with a basis, has not in general a basis (see 4.8 c)).

Another consequence of Theorem 2.8 is
2.10. COROLLARY. If X is an als with a basis, then there exist a norm
$\|$.$\| and a metric \rho$ on X for which X is a snals.
Proof. Choose a basis B with the property from Theorem 2.8. For an element $x \in X \backslash\{0\}$, use the unique representation given by Definition $2.1, x=\sum_{i=1}^{n} \lambda_{i} b_{i}$ and define $\|x\|=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. Observing that if $x=\sum_{i=1}^{n} \lambda_{i} b_{i}=\sum_{i=1}^{k} \lambda_{i} b_{i}+\sum_{i=k+1}^{n} \lambda_{i} b_{i}$, $b_{i} \in B \backslash V_{X}$ for $1 \leq i \leq k, b_{i} \in B \cap V_{X}$ for $k+1 \leq i \leq n$ and $\lambda_{i}>0$ for $1 \leq i \leq k$, then the unique representation for $-x$ is $-x=\sum_{i=1}^{k} \lambda_{i}\left(-b_{i}\right)+\sum_{i=k+1}^{n}\left(-\lambda_{i}\right) b_{i}$, it is easy to show that $\|$.$\| satisfies N_{1}-N_{3}$. Let now $x, y \in X$. Then $x=\sum_{i=1}^{n} \lambda_{i} b_{i}, y=\sum_{i=1}^{n} \mu_{i} b_{i}, \lambda_{i}, \mu_{i} \geq 0$ for $b_{i} \in B \backslash V_{X}, b_{i} \neq b_{j}$ for $i \neq j$, and define $\rho(x, y)=\sum_{i=1}^{n}\left|\lambda_{i}-\mu_{i}\right|$. Then ρ is a metric on x satisfying M_{1} and M_{2}. Therefore X is a snals.

Though the norm and the metric defined as above are not easy to be handled, we can use their existence to conclude that all the results of Section 1 involvino algebraic structure are also true in an als with a basis. We shall make references only to two of them, which we collect in a lemma.
2.11. LEMMA. Let X be an als with a basis.
i) The relations $x+y=x+z, x, y, z \in X$ imply that: $:=:=z$.
ii) The relations $w_{1}+v_{1}=w_{2}+v_{2}, w_{i} \in W_{X}, v_{i} \in V_{X}, i=1,2$ imply that $w_{1}=w_{2}$ and $v_{1}=v_{2}$.
2.12. COROLLARY. Let X be an als. If W_{X} has a basis then $W_{X}+V_{X}$ has a basis. Proof. Let B_{1} be a basis of W_{X} and B_{2} a basis of the linear space V_{X}. By Lemma $2.11 \mathrm{i} i), B_{1} \cup B_{2}$ is a basis of $W_{X}+V_{X}$.

3. ALMOST LINEAR FUNCTIONALS AND THE DUAL SPACE

Up to 3.7 (except for 3.4) we recall definitions and results from [2].
3.1. DEFINITION. Let X be an als. A functional $f: X \rightarrow R$ is called an almost linear functional if the conditions (3.1)-(3.3) are satisfied.

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \quad(x, y \in X) \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
f(\lambda x)=\lambda f(x) \quad(\lambda \geq 0, x \in X) \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
f(w) \geq 0 \quad\left(w \in W_{X}\right) \tag{3.3}
\end{equation*}
$$

The functional $f: X \rightarrow R$ is called a linear functional on X if it satisfies (3.1), and (3.2) for each $\lambda \in R$. Then (3.3) is also satisfied.

Let X^{*} be the set of all almost linear functionals defined on the als X. For $f_{1}, f_{2} \in X^{\#}$, let $s\left(f_{1}, f_{2}\right)$ be the functional on X defined by $s\left(f_{1}, f_{2}\right)(x)=$ $=f 1(x)+f_{2}(x), x \in X$, and for $f \in X^{\#}$ and $\lambda \in R$ let $m(\lambda, f)$ be the functional on X defined by $m(\lambda, f)(x)=f(\lambda x), x \in X$. Then $s\left(f, f, f_{2}\right) \in X^{\#}, m(\lambda, f) \in X^{\#}$, and $s: X^{\#} x X^{\#} \rightarrow$ $\rightarrow X^{\#}, m: R \times X^{\#} \rightarrow X^{\#}$ satisfy $L_{1}-L_{8}$, where $0 \in X^{\#}$ is the functional which is 0 at each $x \in X$. Therefore X^{\neq}is an als. Notice that for each $f \in X^{\neq}$we have that $f \mid V_{X}$ is linear. We denote $s\left(f_{1}, f_{2}\right)$ by $f_{1}+f_{2}$ and $m(\lambda, f)$ by $\lambda_{\text {op }} f$.
3.2. LEMMA. Let X be an als and let $f \in X^{\#}$. We have $f \in V_{X} \#$ iff f is linear on X , iff $-l_{0} \mathrm{f}=-\mathrm{f}$, iff $\mathrm{f} \mid \mathrm{W}_{\mathrm{X}}=0$.
3.3. DEFINITION. Let X be an als. An almost linear subspace Γ of $X^{\#}$ s said to be total over X if the relations $x_{1}, x_{2} \in X, f\left(x_{1}\right)=f\left(x_{2}\right)$ for each $f \in F$ impiy that $x_{1}=x_{2}$.

The als $X^{\#}$ may be not total over X (see Section 4):
3.4. LEMMA. Let X be an als. If $X_{x}=W_{X}$ then $X^{\#}=W_{X} \#$. If $X=V_{X}$ then $X^{*}=V_{X^{\#}}$. If in addition X^{\ddagger} is total over X then the converse to the above statements is also true.

Proof. Suppose $X=W_{X}$ and let $f \in X^{\#}$. Then for each $x \in X$ we have $\left(-l_{0} f\right)(x)=$ $=f(-x)=f(x)$ and so $-l o f=f$, i.e., $f \in W_{X} \#$.. Suppose $X=V_{X}$. Then $W_{X}=\{0\}$ and for each $f \in X^{\#}$ we have $f \mid W_{X}=0$. By Lemma 3.2 it follows that $f \in V_{X^{\#}}$.

Assume now that $X^{\#}$ is total over X and let $x \in X$. If $X^{\#}=W_{X} \#$ then for each $f \in X^{\#}$ we have that $-l o f=f$ and so $(-l \circ f)(x)=f(-x)=f(x)$, whence by our assumption it follows that $x=-x$, i.e., $x \in W_{X}$. If $X^{\#}=V_{X}$ then by Lemma 3.2, we get $f(x-x)=0=f(0)$ for each $f \in X^{\#}$ and so $x-x=0$, i.e., $x \in V_{X}$.

Let now X be a nals and for $f \in X^{\#}$ define

$$
\begin{equation*}
||f||=\sup \{|f(x)|: x \in X, \| x| | \leq 1\} \tag{3.4}
\end{equation*}
$$

Let $X^{*}=\left\{f \in X^{\#}:||f||<\infty\right\}$.
3.5. THEOREM. X^{*} together with $\|$.$\| defined by (3.4) is a nals.$
3.6. DEFINITION. The space X^{*} together with $\|$.$\| defined by (3.4) is$ called the dual space of the nals X.

Remark. We recall that for any nals X, the dual space X^{*} is a snals for the metric ρ defined by

$$
\rho\left(f_{1}, f_{2}\right)=\sup \left\{\left|f_{1}(x)-f_{2}(x)\right|: x \in X, \| x| | \leq 1\right\} \quad\left(f_{1}, f_{2} \in X^{*}\right)
$$

3.7. LEMMA. For any nals $\mathrm{X}, \mathrm{V}_{\mathrm{X}}$ is a Banach space.

Proof. Since $V_{X} *$ is a nls for the norm defined by (3.4), and by Lemma 3.2 each $f \in V_{X^{*}}$ is linear on X, the proof that $V_{X^{*}}$ is complete, is similar with the proof that the dual space of a nls is comolete.

Remark. The snals X^{*} where ρ is the metric defined in the above remark, is complete in the metric ρ.

In contrast to the case of.a 1 s , when X is an als it is possible that $X^{H^{+}}=\{0\}$ (see 4.1 d), 4.2 d$)$). On the other hand in all our examples when X is a nals, even $X^{*} \neq\{0\}$ and an open question is whether X^{*} may be $\{0\}$. The main part ol this section is devoted to this question but unfortunately we were not able to prove or disprove it. Now, when the nals X has a basis, then $X^{*} \neq\{0\}$. (Hence by Corollary 2.10, for any als X with a basis $X^{\# \#} \neq\{0\}$). To show this we need the following lemma.
3.8. LEMMA. Let X be a nals with a basis B. Then for each $b_{o} \in B \backslash V_{X}$ there exists $f \in X^{\#}$ such that $f\left(b_{0}\right)=1$ and $\mathrm{f}(\mathrm{b})=0$ for each $\mathrm{b} \in \mathrm{B} \backslash\left\{\mathrm{b}_{0}\right\}$. If $\mathrm{b}_{\mathrm{o}} \in \mathrm{W}_{\mathrm{X}}$ then $f \in X^{*}$.

Proof. Let $x \in X \backslash\{0\}$. Then $x=\sum_{i=1}^{n} \lambda_{i} b_{i}$, where $b_{i} \neq b_{j}$ for $i \neq j$ and $\lambda_{i}>0$ for $b_{i} \in B \backslash V_{x}$. Define $f(x)=0$ if $b_{c} \notin\left\{b_{1}, \ldots, b_{n}\right\}$ and $f(x)=\lambda_{i}$ if $b_{i}=b_{o}$ for some $i_{o} \epsilon$ $\in\{1, \ldots, n\}$. Define also $f(0)=0$. Then f satisfies (3.1)-(3.3) (notice that (3.3) holds since $f \geq 0$), and so $f \in X^{\#}$. Suppose now that $b_{0} \in W_{X}$. By Lemma 2.2 we can suppose $\left\|b_{0}\right\|=1$. Let $x \in X$ such that $f(x)>0$. Then $x=\lambda_{0} b_{0}+\sum_{i=1}^{k} \lambda_{i} b_{i}$ where $\lambda_{0}>0$, $b_{i} \neq b_{j}$ for $i \neq j$. By Lemma 1.7 we have $f(x)=\lambda_{0}=\left\|\lambda_{0} b_{0}\right\| \leq\|x\|$ and so $f \in X^{*},\|f\|=1$.
3.9. THEJREM. Let X be a nals such that W_{X} has a basis. Then $X^{*} \neq\{0\}$.

Proof. Since W_{X} has a basis, by Lemma 3.8 there exists $f \in\left(W_{X}\right)^{*} \backslash\{0\}$. Let $x \in X$ and define $f_{1}(x)=f(x-x)$. Then $f_{1} \in X^{\#}, f_{1} \neq 0$ and for each $x \in X$ we have that $0 \leq f_{1}(x) \leq||f||| | x-x| | \leq 2| | f\| \||x| \mid$, i.e., $f \in X^{*} \backslash\{0\}$.
3.10. COROLLARY. If the nals X has a basis, then $X^{*} \neq\{0\}$.

Proof. Use Corollary 2.9 and Theorem 3.9.
3.11. PROPOSITION. Let X be a nals with a basis B such that card $\left(B \backslash V_{X}\right)<\infty$. Then $X^{*}=\left\{f \in X^{\#}: f \mid V_{X} \in\left(V_{X}\right)^{*}\right\}$.

Proof. Clearly we must prove only the inclusion D. Let $f \in X^{\#}, f \mid V_{x} \in$ $\epsilon\left(V_{X}\right)^{*}$. If $f \notin X^{*}$, then there exist $x_{n} \in X,\left\|x_{n}\right\| \leq 1, n \in N$ such that $\left|f\left(x_{n}\right)\right| \rightarrow \infty$. Let $B \backslash v_{X}=\left\{b_{1}, \ldots, b_{k}\right\}$. By Lemma 2.5, we have that $x_{n}=\sum_{i=1}^{k} \lambda_{n i} b_{i}+v_{n}, \lambda_{n i} \geq 0, v_{n} \in V_{X}$, $n \in N$. By Lemma 1.15 the sequences $\left\{\lambda_{n i}\right\}_{n=1}^{\infty}$, $1 \leq i \leq k$, are all bounded, and since $\left|f\left(x_{n}\right)\right|=\left|\sum_{i=1}^{k} \lambda_{n i} f\left(b_{i}\right)+f\left(v_{n}\right)\right| \rightarrow \infty$, it follows that $\left|f\left(v_{n}\right)\right| \rightarrow \infty$. Since $f \mid v_{X} \in\left(v_{X}\right)$ * we must have $\left\|v_{n}\right\| \rightarrow \infty$. On the other hand $\left\|v_{n}\right\| \leq\left\|x_{n}\right\|+\left\|\sum_{i=1}^{k} \lambda_{n} b_{j}\right\|$, for each $n \in N$, a contradiction since the right hand inequality is bounded. Therefnre $f \in X^{*}$.
3.12. COROLLARY. If the nals X has a basis B such that card $B<\infty$ then $x^{\# \#}=x^{*}$.

As we have mentioned in the introduction, in a nals X a theorem of Hahn--Banach type is no longer true. In a nals X there could exist an almost linear subspace $Y \subset X$ and $f^{\prime} \in Y^{*}$ such that: a) f can not be excerided to a functional $f_{1} \in X^{*}$
(see 4.5 d)) ; b) f has a unique extension $f_{1} \in X^{\#}$ but $f_{1} \notin X^{*}$ (see 4.5 e)); c) f has a unique extension $f_{1} \in X^{*}$ but $\left\|f_{1}\right\|>\|f\|$ (see $\left.4.5 f\right)$). In view of a), any conditions on $X, Y \subset X$ and $f \in Y^{*} \backslash\{0\}$ which guarantee the existence of an extensioi: as those from b), c), or norm-preservinc̣ extension, are of interest. In the sequel we shall deal with this problem taking into account our main problem whether $x^{*} \neq\{0\}$.

The almost linear subspace $W_{X} \subset X$ has the property that for each $f \in\left(W_{X}\right)^{*}$ there exists a norm-preserving extension to X while for V_{X} this is an open question.
3.13. PROPOSITION. Let X be a nals and let $f \in\left(W_{X}\right)^{*}$. Then there exists $f_{1} \in X^{*}$ such that $f_{1} \mid W_{X}=f,\left\|f_{1}\right\|=\|f\|$ and $f_{1} \mid V_{X}=0$.

Proof. Clearly, the functional defined by $f_{1}(x)=f(x-x) / 2, x \in X$ has all the required properties.

An immediate consequence of this result is:
3.14. COROLLARY. Let X be a nals. If $\left(W_{X}\right)^{*} \neq\{0\}$ then $X^{\pi} \neq\{0\}$.

In view of this result, to solve the problem whether for a nals X we have
$X^{*} \neq\{0\}$, it is enough to solve it for a nals X such that $X=W_{X}$ (and X has no basis).
If the converse to Corrolary 3.14 were true in the class of nals X such that $X \neq V_{X}$ then for each nals $X, X^{*} \neq\{0\}$ as one can see from the next result. For this result our assumption from the introduction that X is a nals which is not a ls, is essential.
3.15. PROPOSITION. The following assertions are equivalent:
i) There exists a nals X such that $X^{*}=\{0\}$.
ii) There exists a nals X such that $\mathrm{X}^{*} \neq\{0\}$ and $\mathrm{X}^{*}=\mathrm{V} \mathrm{X}^{*}$ (i.e., X^{*} is a Banach space).

Proof. i) $\Rightarrow i i)$. Supdose X is a nals such that $X^{*}=\{0\}$. Let $Y=\{(x, \alpha)$: $x \in X, \alpha \in R\}$ and let $s: Y \times Y \rightarrow Y$ and $m: R \times Y \rightarrow Y$ be defined by $s\left(\left(x_{1}, \alpha_{1}\right),\left(x_{2}, \alpha_{2}\right)\right)=$ $=\left(x_{1}+x_{2}, \alpha_{1}+\alpha_{2}\right)$ and $m(\lambda,(x, \alpha))=(\lambda x, \lambda \alpha)$. Let $0 \in Y$ be the element $(0,0)$. Then Y is an als and we have $V_{Y}=\left\{(v, \alpha): v \in V_{X}, \alpha \in R\right\}$ and $W_{Y}=\left\{(w, 0): w \in W_{X}\right\}$. Since $X \neq V_{Y}$ then $Y \neq$ $\neq V_{Y}$. Define a norm on Y by $\|(x, \alpha)\|_{1}=||x||+|\alpha|$. Then Y together with $\|: \mid\|_{1}$ is a nals. Clearly the functional f_{0} defined on Y by $f_{o}((x, \alpha))=\alpha,(x, \alpha) \in Y$, belongs to $V_{Y^{*}}$ and $\left\|f_{0}\right\|_{1}=1$. We show that $Y^{*}=V_{Y^{*}}$. Let $f \in Y^{*} \backslash V_{Y^{*}}$. By Lemma 3.2 there exists $\left(w_{0}, 0\right) \in W_{Y}, w_{0} \in W_{X}$ such that $f\left(\left(w_{0}, 0\right)\right)>0$. Define the functional f_{1} on X by $f_{1}(x)=f((x, 0)), x \in X$. Then $f_{1} \in X^{*}$ and by $\left.i\right), f_{1}=0$, a contradi,ction since $f_{1}\left(w_{0}\right)=f\left(\left(w_{0}, 0\right)\right)>0$. Therefore $V_{Y^{*}}=Y^{*}$.
 $W_{X} \neq\{0\}$ and we have $\left(W_{X}\right)^{*}=\{0\}$.

In the theory of Banach spaces it is well-known that there exist Banach spaces which have no preduals. Pronosition 3.15 sungest -. in case a nals X with $X^{*}=\{0\}$ exists - the following question. Is it true that for each Banach space E there exists a nals X such that $X^{*} \equiv \mathrm{E}$? We can also ask the following question which makes sense for any solution to the main problem whether $X^{*} \neq\{0\}$. Is it true
that for each Banach space E there exists a nals X such that $\mathrm{V}_{\mathrm{X}} \mathrm{X}$ ㅌ ?
We study now the extension property of functionals defined on the linear subspace V_{X}. Here we notice that in a nals it can happen that $V_{X}=\{0\}$ and $V_{X} * \neq\{0\}$ (see 4.8 e)). When X is an als, it is possible that $\mathrm{V}_{\mathrm{X}} \neq\{0\}$ and $\mathrm{V}_{\mathrm{X}} \boldsymbol{*}=\{0\}$ (see 4.3 e)), but in all our examples when X is a nals, if $V_{X} \neq\{0\}$ then $V_{X} * \neq\{0\}$. The same phenomenon appears in all our results on extensions of functionals defined on V_{X}, when we always get linear functionals on X.
3.16. PROPOSITION. Let X be a nals with a basis B.
i) For each $f \in\left(V_{X}\right)^{\#} \because$ there exists $f_{1} \in V_{X}, f_{1} \mid V_{X}=f$.
ii) If card $\left(B \backslash V_{X}\right)<\infty$ then for each $f \in\left(V_{X}\right)^{*}$ there exists $f_{1} \in V_{X}$ * such that $f_{1} \mid v_{X}=f$.

Proof. By Theorem 2.8 we can suppose that B has the nroperty that for each $b \in B \backslash V_{X}$ we have $-b \in B \backslash V_{X}$.
i) Let $f \in\left(V_{X}\right)^{\#} \backslash\{0\}$ and let $x \in X \backslash V_{X}$. By Lemma 2.5, there exist unique $b_{1}, \ldots, b_{n} \in B \backslash V_{X}, \lambda_{i}>0,1 \leq i \leq n$ and $v \in V_{X}$ such that

$$
\begin{equation*}
x=\sum_{i=1}^{n} \lambda_{i} b_{i}+v \tag{3.5}
\end{equation*}
$$

Define $f_{1}(x)=f(v)$ and for $v \in V_{X}$ define $f_{1}(v)=f(v)$. Then clearly $f_{1} \in X^{\#}$ and f_{1} is an extension of f. To show that $f_{1} \in V_{X \#}$, by Lemma 3.2 we must show that $f_{1}(-x)=$ $=-f_{1}(x)$ for each $x \in X \backslash V_{X}$. If x has the representation aiven in (3.5) then $-x=\sum_{i=1}^{n} \lambda_{i}\left(-b_{i}\right)-v$ and so $f_{1}(-x)=f(-v)=-f_{1}(x)$.
ii) Suppose card $\left(B \backslash V_{X}\right)<\infty$ and let $f \in\left(V_{X}\right)^{*} \backslash\{0\}$. Then by $\left.i\right)$ above there exists $f_{1} \in V_{X} \# \quad, f_{1} \mid V_{X}=f$, whence the result follows by Proposition 3.11 .
3.17. COROLLARY. Let X be a nals with a basis B such that card $\left(B \backslash V_{X}\right)<\infty$. Then X^{*} is total over X .

Proof. Suppose $B \backslash V_{X}=\left\{b_{1}, \ldots, b_{n}\right\}$ and let $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for each $f \in X^{*}$. By Lemma 2.5 we have that $x_{i}=\sum_{j=1}^{n} \lambda_{i j} b_{j}+v_{i}, \lambda_{i j} \geq 0,1 \leq j \leq n, v_{i} \in V_{X}$, $i=1,2$. By Lemma 3.8 , for each $b_{j} \in B \backslash V_{X}$ there exists $f_{j} \in X^{\#}$ such that $f_{j}\left(b_{j}\right)=1$ and $f_{j}(b)=0$ for $b \in B \backslash\left\{b_{j}\right\}$. By Proposition $3.11, f_{j} \in X^{*}$, whence by our assumption it follows $\lambda_{1 j}=\lambda_{2 j}$ for $1 \leq j \leq n$. Consequently, for each $f \in X^{*}$ we net $f\left(v_{1}\right)=f\left(v_{2}\right)$. Since v_{x} is a $n l s$, by Proposition $3.16 i i$) it follows that $v_{1}=v_{2}$. Therefore $x_{1}=x_{2}$.
3.18. PROPOSITION. Let X be a nals such that $X=W_{X}+V_{X}$. Then for each $\mathrm{f} \in\left(\mathrm{V}_{\mathrm{X}}\right)^{*}$ there exists a norm-preserving extension $\mathrm{f}_{1} \in \mathrm{~V}_{\mathrm{X}}{ }^{*}$.

Proof. Let $f \in\left(V_{X}\right)^{*} \backslash\{0\}$. By Lemma 1.10 , for each $x \in X$ there exist unique - $\in W_{X}$ and $v \in V_{X}$ such that $X=w+v$. Define $f_{1}(x)=f(v)$. Clearly $f_{1} \in X^{\#}$ and by Lemma 3.2, $f_{1} \in V_{X \#}$. By Lemma 1.7 we get $\left|f_{1}(x)\right|=|f(v)| \leq||f||| | v| | \leq||f||| | x| |$ and so $\left\|f_{1}\right\|=\| f| |$.
3.19. PROPOSITION. Let X be a snals such that ρ is a metric and let $x_{0} \in x \backslash\left(W_{x}+V_{x}\right)$. Suppose

$$
X=\left\{\lambda x_{0}+\mu\left(-x_{0}\right)+w+v: \lambda, \mu \geq 0, w \in W_{X}, v \in v_{y}\right\}
$$

i) For each $f \in\left(V_{X}\right)^{*}$ there exists $f_{1} \in V_{X}{ }^{*}, f_{1} \mid V_{x}=f$.
ii) $\mathrm{V}_{\mathrm{x}} \boldsymbol{} \neq\{0\}$.
iii) For each $f \in\left(W_{X}+V_{X}\right)^{*}$ there exists $f_{1} \in X^{*}, f_{1} \mid\left(W_{\lambda},-V_{X}\right)=f$.

Proof. We show first that

$$
\begin{equation*}
x=x_{1} \cup x_{2} \cup\left(w_{x}+v_{x}\right) \tag{3.6}
\end{equation*}
$$

where $X_{1}=\left\{\lambda x_{0}+w+v: \lambda>0, w \in W_{X}, v \in V_{X}\right\}, X_{2}=\left\{-\lambda x_{0}+w+v: \lambda>0, w \in W_{X}, v \in V_{X}\right\}$; and that we have $X_{1} \cap x_{2}=\emptyset, X_{i} \cap:\left(W_{X}+V_{X}\right)=\varnothing, i=1,2$. Since the inclusion \supset in (3.6) is obvious, let $x \in X$, say $x=\lambda x_{0}+\mu\left(-x_{0}\right)+w+v, \lambda, \mu \geq 0, w \in W_{X}, v \in V_{X}$. If $\lambda=\mu$, then since $\lambda\left(x_{0}-x_{0}\right) \in W_{X}$, it follows that $x \in W_{X}+V_{X}$. If $\lambda>\mu$, then $x=(\lambda-\mu) x_{0}+\mu\left(x_{0}-x_{0}\right)+w+v \in X_{1}$. Similarly, if $\lambda<\mu$ then $x \in X_{2}$. This proves (3.6). Since $\pm x_{0} \notin W_{X}+V_{X}$, by Lemma 1.11 it follows that $X_{i} \cap\left(W_{X}+V_{X}\right)=\emptyset, i=1,2$. Let now $x \in X_{1} \cap X_{2}$. Then there exist $\lambda_{i}>0, w_{i} \in W_{X}, v_{i} \in V_{x}, i=1,2$ such that $x=\lambda_{1} x_{0}+w_{1}+v_{1}=-\lambda_{2} x_{0}+w_{2}+v_{2}$. Hence, $\left(\lambda_{1}+\lambda_{2}\right) x_{0}+w_{1}+v_{1}=\lambda_{2}\left(x_{0}-x_{0}\right)+w_{2}+v_{2} \in W_{x}+v_{x}$, whence by Lemma 1.11 it follows $\left(\lambda_{1}+\lambda_{2}\right) x_{0} \in W_{X}+V_{X}$, a contradiction since $\lambda_{1}+\lambda_{2}>0$ and $x_{0} \notin \dot{W}_{X}+V_{X}$. Therefore $X_{1} \cap X_{2}=\varnothing$. Using Lemma 1.12 (for $Y=W_{X}+V_{X}$) and Lemma 1.10 we net that any $X \in X$ can be uniquely represented in the form

$$
\begin{equation*}
x=\lambda x_{0}+w+v \quad\left(\lambda \in R, w \in W_{X}, v \in V_{X}\right) \tag{3.7}
\end{equation*}
$$

i) Let $f \in\left(V_{X}\right)^{*} \backslash\{0\}$. If $x \in X$ has the representation aiven by (3.7), define $f_{1}(x)=f(v)$. Clearly $f_{1} \in V_{X^{*}}$. If $f_{1} \& V_{X^{*}}$ then there exist $x_{n} \in X,\left|\left|x_{n}\right|\right| \leq 1$, $n \in N$ such that $\left|f_{1}\left(x_{n}\right)\right| \rightarrow \infty$. Suppose $x_{n}=\lambda_{n} x_{0}+w_{n}+v_{n}, \lambda_{n} \in R, w_{n} \in W_{X}, v_{n} \in V_{X}$, $n \in N$. Suppose that for an infinity of n we have $\lambda_{n} \geq 0$, and without loss of cenerality we can suppose $\lambda_{n} \geq 0$ for all $n \in N$. By Lemma 1.7 it follows that $\left\|\lambda_{n} x_{0}+v_{n}\right\| \leq$
 Then $\left\|v_{n}\right\| \leq 1+\lambda_{n}\left\|x_{n}\right\|, n \in N$, whence the sequence : ' $v_{n} \cdot{ }^{\prime}:!_{n=1}^{\infty}$ is bounded. We get the same conclusion if $\lambda_{n} \leq 0, n \in N$, since then we work with $-x_{0}$ instead of x_{0}. Now, since $\left|f_{1}\left(x_{n}\right)\right|=\left|f\left(v_{n}\right)\right| \rightarrow \infty$ and $f \in\left(v_{X}\right)^{*}$, we obtain that $v_{n} \rightarrow \infty$, a cuntradiction. Therefore $f_{1} \in V_{X *}$.
ii) If $V_{x} \neq\{0\}$ then by i) above we get $V_{X^{*} \neq: 0}:$. Supoose now $V_{x}=0$: and let $x \in X$. Then by (3.7) there exist unique $\backslash \in R, W \in W_{X}$, such that $x=i x_{0}+w$. Deffine $f(x)=\lambda| | x_{0} \|$. Clearly we have $f \in V_{X} \#$. By Lemma 1 . ' we aet $f(x)=i x_{0} s$ $s\left|\left|\lambda x_{0}+w\right|\right|=||x||$ and so $f \in V_{x^{*}} \backslash\{0\}$.
iii) Let $f \in\left(W_{X}+V_{X}\right)^{*} \backslash\{0\}$. If $V_{X}=\{0$: then the result follows by Prodosition 3.13. Suppose now $V_{X} \neq(0)$. By $\left.i\right)$ above, there exists $f_{2} \in X^{*}$ such that $f_{2} ; V_{X}=1, V_{X}$ and $f_{2} \mid W_{X}=0$. By Proposition 3.13, there exists $f_{3} \in X^{*}$ such that $f_{3}: W_{X}=f i W_{X}$ and $f_{3} \mid V_{x}=0$. Let $f_{1}=f_{2}+f_{3}$. Then $f_{1} \in X^{*}$ and we have $f_{1} \mid\left(W_{X}+V_{X}\right)=f$.
3.20. PROPOSITION. Let $X=W_{X}$ be a shis siath that c is a metrics. Y an
almost linear subspace of X and $x_{0} \in \dot{X} \backslash Y$. Suppose that $X=\left\{\lambda x_{0}+y: \lambda \geq 0, Y \in Y\right\}$ and Let $\mathrm{f} \in \mathrm{Y}^{*} \backslash\{0\}$. If there exist no $y_{1}, y_{2} \in Y$ such that $y_{2}=x_{0}+y_{1}$, then there exists a norm-preserving extension of f to X.

Proof. By hypothesis and Lemma 1.12 it follows that each $x \in X$ has a unique representation of the form $x=\lambda x_{0}+y, \lambda \geq 0, y \in Y$. Define $f_{1}(x)=f(y)$. Then $f_{1} \in X^{\#}$ and by Lemma 1.7 we have $0 \leq f_{1}(x)=f(y) \leq||f| \| y||\leq||f||| x| |$, i.e., $\left\|f_{1}| |=\right\| f \|$.
3.21. PROPOSITION. Let $X=W_{X}$ be a nals, Y an almost linear subspace of X and $x_{0} \in X \backslash Y$. Suppose $X=\left\{\lambda x_{0}+y: \lambda \geq 0, y \in Y\right\}$ and let $f \in Y^{*} \backslash\{0\}$. If there exist $y_{1}, y_{2} \in Y$ such that $y_{2}=x_{0}+y_{1}$ and $f\left(y_{2}\right) \geq f\left(y_{1}\right)$ then there exists $f_{1} \in X^{*}, f_{1} \mid Y=f$.

Proof. Suppose $y_{2}=x_{0}+y_{1}, y_{1}, y_{2} \in Y$ and $f\left(y_{2}\right) \geq f\left(y_{1}\right)$. Let $B=f\left(y_{2}\right)-f\left(y_{1}\right) \geq 0$, and for $x \in X, x=\lambda x_{0}+y, \lambda \geq 0, y \in Y$ define $f_{1}(x)=\lambda \beta+f(y)$. In order that f_{1} be well--defined we must show that if $\lambda x_{0}+y=\mu x_{0}+z, \lambda, \mu \geq 0, y, z \in Y$ then

$$
\begin{equation*}
\lambda \beta+f(y)=\mu \beta+f(z) \tag{3.8}
\end{equation*}
$$

Since (3.8) is clear if $\lambda=\mu=0$, suppose now $\lambda>0$. Then $\lambda x_{0}+y+\mu y_{1}=\mu x_{0}+\mu y_{1}+z=\mu y_{2}+z$ and so $x_{0}+y_{3}=y_{4}$ where $y_{3}=\left(y+\mu y_{1}\right) / \lambda \in Y$ and $y_{4}=\left(\mu y_{2}+z\right) / \lambda \in Y$. Then $x_{0}+y_{1}+y_{3}=y_{1}+y_{4}$ and since $x_{0}+y_{1}=y_{2}$ it follows that $y_{2}+y_{3}=y_{1}+y_{4}$. Hence $f\left(y_{2}\right)+f\left(y_{3}\right)=f\left(y_{1}\right)+f\left(y_{4}\right)$ i.e., $\beta=f\left(y_{4}\right)-f\left(y_{3}\right)$. Using the above expressions of y_{3} and y_{4} we obtain (3.8). Consequently f_{1} is well-defined and we have that $f_{1} \in X^{\#}$.

Suppose $f_{1} \not \& X^{*}$. Then there exist $x_{n} \in X,\left\|x_{n}\right\| \leq 1, n \in N$, such that $f_{1}\left(x_{n}\right) \rightarrow$ $\rightarrow \infty$. Suppose $x_{n}=\lambda_{n} x_{0}+y_{n}, \lambda_{n} \geq 0, y_{n} \in Y, n \in N$. By Lemma 1.15 , the sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is bounded and so, since $\left\|y_{n}\right\| \leq\left\|x_{n}\right\|+\lambda_{n}\left\|x_{o}\right\|$ for each $n \in N$, the sequence $\left\{\left\|y_{n}\right\|\right\}_{n=1}^{\infty}$ is bounded. On the other hand $f_{1}\left(x_{n}\right)=\lambda_{n} \beta+f\left(y_{n}\right) \rightarrow \infty$ and so $f\left(y_{n}\right) \rightarrow \infty$, a contradiction since $\left\{\left\|y_{n}\right\|\right\}_{n=1}^{\infty}$ is bounded and $f \in Y^{*}$.

Remark. We can not improve the conclusion of Proposition 3.21 to obtain a norm-preserving extension (see 4.5 f)).

4. EXAMPLES

In this section we give examoles of almost linear spaces, normed almost linear spaces and strong normed almost linear spaces, mainly for exhibitina counterexamples related to the content of this pader. Some examnles are from [2], others are new and we send the interested reader for more examples, information and proofs to consult [2]. We draw attention that we do not know an example of a nals which is not a snals.

In all the examples below s and m are the mapnings defined in Section 1. In the sequel we shall sometimes denote $s(x, y)$ by $x+y$ and $m(\lambda, x)$ by $\lambda 0 x$. The norm of a nals will be denoted by $\|\|\cdot\|\|$.
4.1. EXAMPLE. a) Let $X=\{x \in R: x \geq 0\}$. Define $s(x, y)=\max \{x, y\}$ and $m(\lambda, x)=x$ for $\lambda \neq 0, m(0, x)=0$. The element $0 \in X$ is $0 \in R$. Then X is an als. We have $V_{x}=\{0\}$ and
$W_{X}=X$. Clearly, there exists no norm on X.
b) Let $x, y \in X, 0<y<x$. Then $x=x+y$ and $x=a 0 x+y$ for $a \neq 0$. Notlce that the conclusion of Lemma 1.8 holds in X.
c) X has no basis.
d) We have $X^{*}=\{0\}$.
4.2. EXAMPLE. a) Let L be a 1 s and let $X=L$ where $s(x, y)=x+y, m(\lambda, x)=|\lambda| x$ and $0 \in X$ is the element $0 \in L$. Then X is an als and we have $V_{X}=\{0\}$ and $W_{X}=X$. There exists no norm on X.
b) Let $x \in L \backslash\{0\}$ and let $y=-x$ (this operation is understanded In L). Then $x, y \in x$ and we have $x ; y=0 \in V_{x}$ and both $x, y \notin V_{x}$. We also have $x=20 x ; y$ end so the conclusion of Lemma 1.9 does not hold. Hotice that in thls example the reletlon (1.5) implles yaz.
c) X has no besis.
d) We have $X^{7}=\{0\}$.
4.3. EXAMple. a) Let L be a 1 s dim $1 \geq 2$, and let $\phi \in L^{*}, \phi \neq 0$. Let $X=$ $=\{x \in L: \phi(x) \geq 0\}$ and let $X_{+}=\{x \in X: \phi(x)>0\}, X_{0}=\{x \in X: \phi(x)=0\}$. Deflne $s(x, y)=$ $=x+y$ if both $x, y \in X_{+}$or both $x, y \in X_{0}, s(x, y)=s(y, x)=x$ If $x \in X_{+}$and $y \in X_{0}$, and $m(\lambda, x)=|\lambda| x$ if $x \in X_{+}, m(\lambda, x)=\lambda x$ if $x \in X_{0}$. Let $0 \in X$ be the element $0 \in L$. Then X is an als and we have $V_{X}=X_{0}, W_{X}=X_{+} \cup\{0\}$. There exists no norm on X.
b) Let $w \in \mathbb{W}_{X} \backslash\{0\}$. Then $w=w i v$ for each $v \in V_{X}$.
c) X has no basis.
d) Let $f=\phi \mid X$. We have $X^{7}=\{\lambda 0 f: \lambda \in R\}=\{\lambda f: \lambda \geq 0$, and X is not cotal over x .
e) We have $V_{x} \neq\{0\}$ and $V_{2}=-\{0\}$.
4.4. EXAMPLE. a) Let R^{2} be endowed with the Euclidean norm $\|\cdot\|$ and let $e_{1}=(1,0), e_{2}=(0,1)$. Let $A_{i}=\left\{\lambda e_{i}: \lambda \geq 0\right\}, i=1,2$ and let $X=A_{1} \cup A_{2}$. Define $s(x, y)=$ $=x+y$ if both $x, y \in A_{1}, i=1,2, s(x, y)=s(y, x)=\left(||x| i+||y||) e_{2}\right.$ if $x \in A_{1} \backslash\{0\}$, $y \in A, \backslash\{0\}, i \neq j$ and $m(\lambda, x)=|\lambda| x$. Let $0 \in X$ be the element $0 \in R^{2}$. Then X is an als and we have $V_{X}=\{0\}, W_{X} \times X$. Let $\|\|x\|\|=\|x\|$. Then X together with $\|\|\cdot\|\|$ is a nals. 1 it is a snals for the semi-metric $\rho(x, y)=|\|x\||-\|\mid y\| \|$.
b) Let $x=(0,2) \in X, y=(1,0) \in X$ and let $a=1 / 2$. We have $x=(1 / 2) 0 x+y$ anc $y \neq x / 2$.
c) x has no basls.
d) Let $f(x)=\| \| x\| \|, x \in X$. We have $X^{*}=\{\lambda \circ f: \lambda \in R\}=\{\lambda f: \lambda \geq 0\}$ and $X^{\prime \prime}$ is not total over x.
4.5. EXAMPLE. a) Let L be a 1 s and $\phi \in \mathrm{L}^{\text {F }}$, $\phi \neq 0$. Let $X=(x \in L: \phi(x)>0\} \cup$ \cup (0 . Define $s(x, y)=x+y$ and $m(\lambda, x)=|\lambda| x$. The element $0 \in X$ is the element $0 \in L$. Then X is an als and we have $V_{X}=\{0\}$ and $W_{X}=X$. Define $\|\|x\|=\phi(x)$. Then X is o nals. For the semi-metric defined by $\rho(x, y)=\{\phi(x)-\phi(y) \mid$ it is a snals.
b) X has no basis if dim $L \geq 2$.
c) Let $f=\phi \mid X$. We have $X^{*}=X^{*} m\{\lambda o f: \lambda \leqslant R\}-\{\lambda f: \lambda \geq 0\}$. Clearly X^{*} is not
total over X if $\operatorname{dim} L \geq 2$.
d) There exists a snals X_{1}, an almost linear subspace $Y \subset X_{1}$ and $f \in Y^{*}$, $f \neq 0$ such that f can not be extended to an almost linear functional $f_{1} \in X_{1}^{\#}$. Indeed, let $L=R^{2}$ and $\phi=(0,1) \in L^{\#}$ and define X as in a) above. Let $X_{1}=\{(\alpha, \beta) \in X: \alpha \geq 0, \beta \geq 0\}$ and $Y=\left\{(\alpha, \beta) \in X_{1}: \beta \geq \alpha\right\}$. Then X_{1} is an almost linear subspace of X and so it is a snals, and Y is an almost linear subspace of X_{1}. Let f be the functional defined on Y by $f((\alpha, \beta))=\beta-\alpha, \quad(\alpha, \beta) \in Y$. Clearly $f \in Y^{\#}$ and we have $0 \leq f((\alpha, \beta))=\beta-\alpha \leq \beta=$ $=\| \|(\alpha, \beta)\| \|$. Therefore $f \in Y^{*}$. Suppose there exists $f_{1} \in X_{1}^{\#}$ such that $f_{1} \mid Y=f$. Let $y_{1}=(1,2) \in Y, y_{2}=(3,3) \in Y$ and $x_{0}=(2,1) \in X_{1} \backslash Y$. We have $y_{2}=x_{0}+y_{1}$ and so $f_{1}\left(y_{2}\right)=$ $=f_{1}\left(x_{0}\right)+f_{1}\left(y_{1}\right)$. It follows that $f_{1}\left(x_{0}\right)=-1$, which is not possible since $x_{0} \in W_{X_{1}}=X_{1}$. Notice that for the snals $X_{2}=\left\{\lambda x_{0}+y: \lambda \geq 0, y \in Y\right\}$ and $f \in Y^{*}$ defined as above, we have $y_{2}=x_{0}+y_{1}$ and $f\left(y_{2}\right)<f\left(y_{1}\right)$ (see Proposition 3.21).
e) There exist a snals X_{1}, an almost linear subspace $Y \subset X_{1}$ and $f \in Y^{*}$ such that there exists a unlaue $f_{1} \in X_{1}^{\# \#}$ with $f_{1} \mid Y=f$ and $f_{1} \notin X_{1}^{*}$. Indeed, let X be as in d) above and let $X_{1}=\{(\alpha, \beta) \in X: \alpha \leq \beta\}, Y=\left\{(\alpha, \beta) \in X_{1}: 0 \leq \alpha \leq \beta\right\}$. Then X_{1} is a snals and Y is an almost linear subspace of X_{1}. Let $f \in Y^{*}$ be defined by $f((\alpha, \beta))=\beta-\alpha, \quad(\alpha, \beta) \in Y$. Then the functional $f_{1}\left((\alpha, \beta)=\beta-\alpha,(\alpha, \beta) \in X_{1}\right.$ belongs to $X_{1}^{\#}$ and $f_{1} \mid Y=f$. Let $f_{2} \in X_{1}^{\#}$ such that $f_{2} \mid Y=f$, and let $X_{1}=\left(\alpha_{1}, \beta_{1}\right) \in X_{1} \backslash Y$. Then $\alpha_{1}<0$ and so $\left(-\alpha_{1},-\alpha_{1}\right) \in Y$, and we also have that $\left(0, \beta_{1}-\alpha_{1}\right) \in Y$. Therefore $f_{2}\left(\left(-\alpha_{1},-\alpha_{1}\right)\right)=0$ and $f_{2}\left(\left(0, \beta_{1}-\alpha_{1}\right)\right)=\beta_{1}-\alpha_{1}$. Since we have $\left(\alpha_{1}, \beta_{1}\right)+\left(-\alpha_{1},-\alpha_{1}\right)=\left(0, \beta_{1}-\alpha_{1}\right)$ it follows that $f_{2}\left(\left(\alpha_{1}, \beta_{1}\right)\right)=\beta_{1}-\alpha_{1}=f_{1}\left(\left(\alpha_{1}, \beta_{1}\right)\right)$, i.e., $f_{2}=f_{1}$. Therefore f has a unique extension $f_{1} \in X_{1}^{\# \#}$. Let $x_{n}=(-n, 1) \in X_{1}, n \in N$. We have $\left\|x_{n}\right\| \|=1$ and $f_{1}\left(x_{n}\right)=n+1$, i.e., $f_{1} \notin X_{1}^{*}$.
f) There exist a snals X_{1}, an almost linear subspace $Y \subset X_{1}$ anf $f \in Y^{*}$ such that there exists a unique $f_{1} \in X_{1}^{*}, f_{1} \mid Y=f$ and $\left\|\left|\left|f_{1}\|| |>||f| \|\right.\right.\right.$. Indeed, let X be as in d) above and let $X_{1}=\{(\alpha, \beta) \in X:|\alpha| \leq \beta\}, Y=\left\{(\alpha, \beta) \in X_{1}: \alpha \geq 0\right\}$. Then X_{1} is a shals and Y is an almost linear subspace of X_{1}. Let $f \in Y^{*}$ be defined by $f((\alpha, \beta))=$ $=\beta-\alpha,(\alpha, \beta) \in Y$. As in e) above $f_{1} \in X_{1}^{\#}$ defined by $f_{1}((\alpha, \beta))=\beta-\alpha,(\alpha, \beta) \in X_{1}$ is the unique extension of f to x_{1}. We have $\left\|\mid f_{1}\right\|\|=2>\| f\|\|=1$. Observe that we have $X_{1}=\left\{\lambda x_{0}+y: \lambda \geq 0, y \in Y\right\}$ where $x_{0}=(-1,1) \in X_{1}$.
4.6. EXAMPLE. a) Let $(E,\|\cdot\|)$ be a n ls and let X be the collection of all nonempty, bounded and convex subsets A of E. Define $s\left(A_{1}, A_{2}\right)=A_{1}+A_{2}=\left\{a_{1}+a_{2}\right.$: $\left.: a_{i} \in A_{i}\right\}, i=1,2$ and $m(\lambda, A)=\lambda A=\{\lambda a: a \in A\}$. Let $0 \in X$ be the set $\{0\}$. Then X is an als, and we have $V_{X}=\{\{x\}: X \in E\} \equiv E$ and W_{X} is the set of those $A \in X$, A symmetric with respect to $0 \in E$. For $A \in X$, let $\|\|A\|\|=\sup _{a \in A}\|a\|$. Then X together with $\|\|\cdot\|\|$ is a nals. It is a snals for the Hausdorff semi-metric defined by

$$
\begin{equation*}
\rho\left(A_{1}, A_{2}\right)=\max \left\{\sup _{a_{1} \in A_{1}} \inf _{a_{2} \in A_{2}}\left\|a_{1}-a_{2}\right\|, \sup _{a_{2} \in A_{2}} \inf _{a_{1} \in A_{1}}\left\|a_{1}-a_{2}\right\|\right\} \tag{4.1}
\end{equation*}
$$

b) Let a be an arbitrary non-zero element of E. Let $A_{1}=A_{3}=\{\alpha a:-1<\alpha<1\}$ and $A_{2}=\{\alpha a:-1 \leq \alpha \leq 1\}$. Then $A_{1} \in x, i=1,2,3$ and we have $A_{1}+A_{2}=A_{1}+A_{3}, A_{2} \neq A_{3}$.
c) The snals X has no basis. Indeed, this is a consequence of bl above and Lemma 2.11 a). cor: $E=R$ and X defined as in a) above, W_{X} has the basts $\{(-1,1)$ $[-1,1]\}$.
d) We do not have a complete description of X^{*} and $V_{X^{*}}$ but we know that they are both $\neq\{0\}$. Moreover for each $\phi \epsilon\left(V_{X}\right)^{*}\left(=E^{*}\right), \phi \neq 0$ there exist $f_{1} \in X^{*} \backslash V_{X^{*}}$ and $f_{2} \in V^{\prime}{ }^{*},\left\|\left|f_{1}\| \|=\left\|\left|\left|f_{2}\| \|=\left\|\left|\left|\phi \|| |\right.\right.\right.\right.\right.\right.\right.\right.$ such that $\left.\left.f_{1}\right| V_{X}=f_{2}\right| V_{X=\phi}$. Indeed, define $f_{1}(A)=\sup _{a \in A} \phi(a), A \in X$, and $f_{2}(A)=\left(f_{1}(A)-f_{1}(-A)\right) / 2, A \in X$. Then f_{1}, f_{2} satisfy the required conditions. We do not know whether X^{*} is, or is not total over X.
4.7. EXAMPLE. a) Let $(E,\|;\|)$ be a nis and let X be the collection of all nonempty, bounded, closed, convex subsets A of E. Define $s\left(A_{1}, A_{2}\right)=\overline{A_{1}+A_{2}}$, and define $m, 0 \in X$ as in Example 4.6 a). Then X is an als, and V_{X}, W_{X} have a similar description as in 4.6 a). Endowed with the same norm as in 4.6 a), the als X is a nals. Together with ρ defined by (4.1) it is a snals. Notice that now ρ is a.metric on X .
b) Let $E=R$ and define X as above. We have that $X=W_{X}+V_{X}$. Since a basis for W_{X} is the set $B_{1}=\{[-1,1]\}$, by Corollary $2.12, X$ has a basis. It seems to us that for $\operatorname{dim} E \geq 2$ the corresponding X has no basis.
c) We can repeate word for word what was said in 4.6 d) but now we know that X^{*} is total over X (see [2]).
4.8. EXAMPLE. a) Let $(E,\|\cdot\|)$ be a nls and let $\phi \in E^{*}\|\phi\|=1, \phi$ attains its norm. Then $H=\{x \in E: \phi(x)=0\}$ is proximinal in E, i.e., for each $x \in E$ the set $P_{H}(x)=\left\{h_{0} \in H:\left\|x-h_{0}\right\|=i n f_{h \in H}| | x-h| |\right\}$ is nonempty. It is known (see.e.a., [4]) that there exists a linear selection $p_{H}(x) \in P_{H}(x), x \in E$. Let $X=\{x \in E: \phi(x) \geq 0\}$. Define $s(x, y)=x+y, m(\lambda, x)=\lambda x$ for $\lambda \geq 0$ and $m(-1, x)=x-2 p_{H}(x)$. The element $0 \in X$ is $0 \in E$. Then X is an als and we have $V_{X}=H, W_{X}=\left\{x \in E: \phi(x) \geq 0, p_{H}(x)=0\right\}$. For $x \in X$ let $\|\mid\| x\|=\phi(x)+\| p_{H}(x) \|$. Then X is a nals and for the semi-metric on X defined by $\rho(x, y)=|\phi(x)-\phi(y)|+\left\|\left|\left|p_{H}(x)\right|\right|-\right\| p_{H}(y) \|| |$ it is a snals. If H is a semi $L-s u m m a n d$ in E (i.e., for each $x \in E$ we have that $P_{H}(x)$ is a singleton and $\|x\|=\left\|x-p_{H}(x)\right\|+$
 fined by $\rho(x, y)=\| x-y| |$ (where $x-y$ is understanded in E), x is a snals.
b) Let $x_{0} \in W_{X} \backslash\{0\}$. Then $W_{X}=\left\{\lambda x_{0}: \lambda \geq 0\right\}$ and so W_{X} has the basis $\left\{x_{0}\right\}$. Sin ce $X=W_{X}+V_{X}$ by Corollary 2.12, X has a basis.
c) Suppose $\operatorname{dim} E \geq 2, X$ defined as in a) above, and let $Y=\{x \in E: \phi(x)>0\} \cup$ $\cup\{0\}$. Then Y is an almost linear subspace of X and Y has no basis. Notice that $W_{Y}=W_{X}$ has a basis.
d) Let $x_{0} \in W_{X} \backslash\{0\}$. Then $X^{*}=\left\{\phi_{1} \mid X: \phi_{1} \in E^{*}, \phi_{1}\left(x_{0}\right) \geq 0\right\}$ and $V_{X}{ }^{*}=$ $=\left\{\phi_{1} \mid X: \phi_{1} \in E^{*}, \phi_{1}\left(x_{o}\right)=0\right\}$. Here X^{*}, is total over X.
e) Let Y be defined as in c) above. We have $V_{Y}=\{0\}$ and for each $f \in V_{X}$. $f \mid Y \in V_{Y^{*}}$, i.e., $V_{Y^{*} \neq\{0\} \text {. } . ~ . ~ . ~}^{\text {. }}$

REFERENCES

DAY, M.M. "Normed Linear Spaces", $3^{\text {rd }}$ ed., Springer-Verlaṇ, New York-Heidelberg--Berlin, 1973.
GODINI, G. "A framework for best simultaneous approximation: normed almost linear spaces", INCREST, Preprint Series in Mathematics, No.30/1983.
LIMA. A. "Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62.
SINGER, 1: "Best approximation in normed linear spaces by elemerits of linear subspaces'', Publ. House Acad. Soc. Rep. Romania, Bucharest and Springer Verlạ, Ber-lin-Heidelberg-New York, 1970
G. GODINI
department of mathematics
INCREST, Bd. PACIII 220
79622 BUCHAREST, ROMANIA

