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A GENERALIZATION OF AN EKELAND-LEBOURG THEOREM AND THE DIFFERENTI-
ABILITY OF DISTANCE FUNCTICNS

L.Zajigek

Ekeland and Lebourg [4] (see also [3]) proved that in a Banach
space X which admits a Frechet smooth bump function under some
conditions a function which is defined as pointwise infimum of a
family of Frechet smooth functions is Frechet differentiable at
any point of a residual subset of X . This theorem can be applied
to all continuous concave functions and also to many nonconcave
functions.

Our main observation is that any such "infimum function" has
an "almost superdifferential® at any point and that the proof of
the Fkeland-Lebourg theorem (and also of a slightly more general
theor@m) can be based on this property only. Using an idea from

[1] we improve the Ekeland-Lebourg theorem in the case of X
with a separable dual space showing that the set of nondifferenti-
ability is even G -porous. Using the Gregorys idea of the separable
reduction (see [5] ,p.141) we prove fhat the Ekeland-Lebourg theo=-
rem holds in an arbitrary Asplund space. Note, however, that it is
not known wheather there exists an Asplund space which does not
admit a Frechet smooth bump function. An analogical result on
the Gateaux differentiability of functions which are defined as
pointwise infima is formulated. As corollaries some theorems on
differentiability of distance functions are obtained.

The Ekeland-Lebourg theorem mentioned above is essentialy
the following theorem.

Theorem EL. Let X be a real Banach space which admits a
Frechet differentiable bump function and let GcX be an open
set. Let (fo( ,o('eA} be a system of functions on G for which
the following conditions hold:

(i) There exists K>O such that all fig are K-Lipschitz,.

(ii) Any fo¢ is Frechet differentiable on G and the functio-
ns X => f‘;(x) , & A , are equicontinuous on G .
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(1i1) F(x) : = inf fy(x) > -oo for x €G .
Then F 1is Frechet differentiable at any point of a residual sub-
set of G .
Our result which improves and generalizes the preceeding the-
orem is the following.
Theorem 1, Let X be a Banach space, GC X an open set and

ECG a subset of G . Let {f,‘ ;o(e.A} be a system of functions
on G such that the following conditions hold.

(i) There exists K>O such that any £, is K-Lipschitz.

(ii) Any ft is Frechet differentiable at any point of
G-E and for any x & G-E the limit
lim  (fg (x+hv) = £(x) ) b7
hao
is uniform with respect to (X,v) € A x {v; vl = 1} .
(i1i) PF(x): = inf fu(x) > -o0 for x €6 .
Then (a) If X is separable and E is @ -porous (resp.
a first category set) then F 1is Frechet differentiable on G
at all points except those which belong to a G-porous set (resp.
a first category set) .
(b) If X is an Asplund space and E = & then F is
Frechet differentiable at any point of a residual subset of G .

Proof. It follows immediately from the following Lemma 1,
Theorem 2 and Theorem 3.

Note 1, (i) The conditin (ii) of Theorem EL clearly impli-
es the condition (ii) of Theorem 1 for E =42 .

(i1) I do not know wheather the assertion (b) of
Theorem 1 holds if E is an arbitrary first category set.

At first we give a brief discussion of the DolZenkos [d] con-
cept of G -porous sets and then we define the notion of an almost
superdifferential which is basic for our work.

Let X be a metric space. The open ball with the center

x eX and the radius r > 0 is denoted by B (x,r) . Let
McX, xeX R >0 ‘be given., Then we denote the supremum of the
set of all r>C for which there exists zeX such that
B(z,r) C. B(x,R) - M by @(x,R,M) . The number

1im sup ¥(x,R,M) R™'  is called the porosity of M at x .
R0 +

If the porosity of M at x is positive we say that M is porous
at x . A set is said to be porous if it is porous at all its poin-
ts. A set is termed @ -porous if it can be written as a union of
countably many porous sets. It is easy to see that amy porous set
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is nowhere dense and therefore any G -porous set is a first catego-
ry set. Clearly any G'-porous subset of R is of Lebesgue mea-
sure zero. Using this fact, one easily notes (cf. the proof of
Lemma 3.4. from [83)that, whenever X is a Banach space, peX*,
p# 0 and KCR is a nowhere dense set of positive Lebesgue
measure, then p'1(K) gives an example of a first category set
in X which is not G -porous .

Definition 1. Let X ©be a Banach space and let F be a re-
al function defined in X . We say that ge X* is an almost super-
differential of F at =xeX if

-1
11 F(x+h) - F - g(h) )Ih £ o0 .
Lin sup (Fle+n) - F(x) - g(m) In |

Note 2. (i) 1If gex* is a superdifferential of a concave
function F at x

» then g is an almost superdifferential of F
at x .

(ii) If g 4is the Frechet derivative of F at x ,
then g 1is an almost superdifferential of F at x .

(iii) If we define the notion of an almost subdifferen-
tial by the natural way, then it is easy to see that F 1is Frechet
differentiable at x iff it has at x an almost subdifferential
and an almost superdifferential.

(iv) g is an almost subdifferential of F at x
iff it is the § -support of F at x (see |’_4J) for any £>0 .

Lemma 1. Let X,G,E, {fu« ,*X€A}, F Dbe as in Theorem 1,
Then F has an almost superdifferential at any x & G-E.

Proof. Let x &€ G-E Dbe fixed. Denote by }" the filter
on X with the filter basis

{a®) 5 (D <P +€} ; €0} .
Since any function fz is K-Lipschitz , we have | f (]J4K
and since .( gex* ; el & K} is w* -compact

’

, there
exists ge x¥, el £K which is a point of accumulation
of in  w* - topology. We shall show that g is an almost

superdifferential of F at x . Let ®W>O0 be given. By the
condition (ii) of Theorem 1 we can choose J>O such that
for any €A and ) vl =1

Q) I(fol(x+hv) - £,.(x)) - (v, f;(x)”( w/2  for

any 0<|nhl<d .

Let veX , JJvll =1 - be fixed. Since g 1is a point of
accumulation of ? in  w® -topology , we can for any "l >0
choose & EA such that

(2) fa((x) < F(x) + 1 and ‘(V ’ fo'((x) - g)l <wy2
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Iet h*0 , Jh|]<J be given. By (1) we have

T (x+hv) £ f(x) + (£ (x) hv) + |hjw /2
and using (2) we obtain
F(x+hv) £ fu(x+hv) € F(x) +7 + (hv,g) + |njw/2 + hlw/2 .
Since 'Z>O is an arbitrary number, we have

(F (x+hv) - F(x) - (hv,g)) |h]"T & W ,
which shows that g is an almost superdifferential of F at x.

The following theorem was independently proved by D.Preiss

(an oral communication).

Theorem 2. Let X be a Banach space with a separable dual spa-
ce and let GCX be an open set. Let f ©be a Lipschitz functi-
on on G . Then the set A of the all points x € G at which

f has an almost superdifferential and at which f is not Fre-
chet differentiable is @ -porous.

Proof. Let f be K-Lipschitz on G , K>1. For any x € A
choose an almost superdifferential s* . For any natural m put

Ap = { xeA; 1im sup (sx(h) - (f(x+h) - f(x)))uhll'1 > m-1_} .
Clearly A = U A, . Since X is separable we can choose for

any m a sequence (Am,k) such that A = U Am,x and
ls* - Y|l € 1/10m whenever X,y eAm K We can further
choose for any m,k a sequence (Am X,s, t) s, t=1 such that
w .
-1
Anx = U Ank,s,t ? diam Apy st < S and
st=1
(f (x+h) - £(x%) -(h,sx)) "h"'1 < 1/10m whenever |l h || £ 1/s
and X €A, x g.¢t » Now it is sufficient to show that each of
L ?

the sets Am k,s,t is porous. Let m,k,s,t, x € Am,k,s,t and
r>»0 be flxed Since X e A y We can choose ye& B(x,r)
such that ((y x , s¥) - (f(y) - f(x)))" y-xu > t/m .
To prove that Al k.8t is porous at x it is sufficient
’ ’ ’
to show that
B (v, Nly-xfl /10km) n Apxst = & -
Suppose on the contrary that there exists z €& Am K.s.t such
P9y
that |y-2]] < Jy-xf /10Km . By the choice of 'y we have
I(y) -f® < (v-x, s¥) - Jy-x] /m
and since f is K-Lipschitz,
J£(y) - £(2)| <|ly-x |} /10m . Consequently we have

(3 f(z) - £(x) ¢ (y-x, sx) - 9ly-x|]/ 10m .
On the other hand, since x,z ¢ Ay ,8,t » we have
f(x) - £(z) - (x-2, s%) ¢ ”x-z”/ 10m which implies

“) f(®-1f(2) < UIx-z)/10m + (x-y, s ) + (x-y,sz-sx)+(y-z,sz).
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since |lz=x< 2))y-xll , Us*N &€k and Js®-s*N< 1/10m ,
we obtain, adding (3) and (4) ,
0 < 2Ny-xll/1om - 9 fly-x|l /10m + fJy-xJI/10m + Jly-x |[/10m
and this is a contradiction.

Theorem 3. Let X be an Asplund space, GCX an open set and
f: GR a function which has an almost superdifferential at all
points of G . Then f 1is Frechet differentiable at all points of
a residual subset of G .

Proof. For a natural number n let Dn be the set of points
x € G for which there exists a neigbourhooh U of x such that
for any yeU, veX, k,h >0, for which JJvif= 1, y-hvelU, y+kve U,
the inequality l(f(y+kv) - £(y) L (£(y-hv) -£(v)) h'1'é 1/n
holds. All sets Dn are obviously open and it is easy to see (usi-
ng the fact that f has at any point an almost superdifferential)
that f 1is Frechet differentiable at any point of n D, . Con-
sequently it is sufficient to prove that all Dn are dense. Suppo-
se on the contrary that there exists n and an open set £ ¢# HC G
such that HN Dn = & . Using the Gregorys method of the separa-
ble reduction([S] sy Do 14‘1) it~is easy to constrbct a~separable
subspace X such that H: =XNH## and H ND =4 ,
where D is defined for T :=£/X and T =6n%X in the
same way as Dn is defined for f and G . In fact, we define
inductively an increasing sequence (Yi) of separable subspaces
of X . First choose a separable subspace Y, , Y,A H# @ .
Now given a subspace Yi define a subspace Yi+1 as follows.
Choose in Yin H . a cguntagle d:nse subset T . For any te T
choose sequences yj , v‘j , kj ’
t Lt

j
t
tvle B(1/9) o yi e xivieB(61/9) o vyll= 1 and

y Jj=1424++. , such that
t

: = h
Y3

(2 (95 + x5 v8) - 2(vD)/ K§ o+ (v - n vi) - £(v3)/ nj] >

>1/n .

Then let Yi+1 denote the closed subspace spanned by Yi and
t

a‘J:’I points of the form yg » vj . Now it is sufficient to put
X = UYi o For a natural number m~1et A denote the set
of all xeX such that for any ve X , NIvi =1 and
0<k<1/m , 0<h<1/m , the inequality

, (£(x+kv) - £(x))/k + (f(x-hv) - £(x))/h | > 1/n does not hold.
From the continuity of f follows that alL A, are clos:z'd.
Let M denote the set of all points xeg H at which f is

Frechet differentiable. Obviously, ¥ has an almost superdiffere-
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ntial at any point of ‘I:I' » and since X 1is Asplund, '5(, has a se-

parable dual space. Therefore by Theorem 2 M is a residual sub-

set of H . Clearly M C UAm and therefore there exists

an indgx m such that Am contains a nonempty open suﬁset
VCH . But this ’ivs a’vcontradiction since clearly vc Dn

and we know that H I]Dn =4 .

Since it is not difficult to prove that for an arbitrary con-
tinuous funetion f any point of n Dn is a point of the Fre-
chet differentiability, we have proved in fact the following asser-
tion.

Proposition 1. Let X be a Banach space, GC X an open set

and f a continuous function on G . If for any separable sub-

space X , Ine # & , the function T:- f/X is Frechet diff-
~

erentiable at all points of a residual subset of XANG , then f

is Frechet differentiable at all points of a residual subset of G .
Note 3. If we writte in the preceeding proposition "dense"

instead of "residual" , the new propcsition also holds [6] .
Let X be a Banach space and let Z# MC X be an arbi-
trary set. Then for the distance function dM we have
dy (x) =  inf {fee(x) ; xe& M} ,
where fx (x) =il x-x )] . If G is an open nonempty subset of
X-M , then there exists a bounded set ACM such that
d, (x) = dy (%) ’ for x e G . The functions fot are
1=-Lipschitz and if X has uniformly Frechet differentiable norm
(a.e. if the limit %i_;no("xﬂ;v - uxn)/t is uniform with res-

pect to (x,v) € Sy xS, , where S, =f{yeX; Uyl = 1}) ,
then it is easy to see that for the system { o ; Le A} the
condition (ii) of Theorem 1 is satisfied. Therefore Theorem 1
yields the following propositions.

Corollary 1. Suppose that X is a Banach space with a separa-
ble dual and X has uniformly Frechet differentiable norm. Then
any distance funetion dM is Frechet differentiable at all points

of the set X-M except those which belong to a & -porous
set.

Corollary 2. Suppose that X has uniformly Frechet differen-
tiable norm. Then any distance function im X 1is Frechet differen-
tiable at any point of a residual subset of X .

Theorem EL has the following "Gateaux" analogy.

Theorem 4. Let X be a Banach space, GC X an open set and

Ec G a subset of G . Let .(f“ ;ke A} be a system of
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real functicns on G such that the following conditions hold.
(i) There exists K> O such that any fx 1is K-Lipschitz,
(ii) At any X & G-E any function f is Gateaux differen-
tiable and for any xeG-E and veX the 1limit
ii;no (fo((x+tv) - d(x)) / t is uniform with respect
to €A .
(11i) F(x) : = inf fu(x) > -0 for any x€G .

Then _ (a) The one-sided directional derivative D/ F(x) exists
for any x € G-E and veX , and for any fixed x€G-E the
function v D F(x) is  K-Lipschitz concave function on X .

(b) If on X exists a Lipschitz bump function whieh is
uniformly differentiable at any direction (a.e. supp £ # & is
a bounded set and for any ve X the limit
tl-iymo (f(x+tv) - f(0)/ ¢t is uniform with respect to xeX),
then F 1is Gateaux differentiable at all points of G-E except at
those which belong to a first category set.

Note 4. The proof of Theorem 4 will be given in a subsequent
article. The proof of (a) is straitforward and essentially known.
The Asplunds method([1]) shows that (a) implies (b) .

Corollary 3. Suppose that X has uniformly Gateaux differen-
tiable norm. Then any distance function in X is Gateaux differen-
tiable at any point of a residual subset of X .
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