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EIGHTH WINTER SCHOOL (19&0)
ON METRIC PROJECTICNS AND DISTANCE FUNCTIONS IN BANACH SPACES

L.Zajidek

We shall consider a real Bunach spsce X "and a nonempty
closed subset FC X, For x€& X denote by dF(x) the distance
from the point % to the sét F . The metric projection PF(x)
on the set F is defined as the (possibly) multivalued operstor
Pp(x) ={ y€ Filx-y|= dp(x)} . The set of all x for which Pp(x)
contains at least two points will be denoted by AF . The function
is termed J - convex if %t is the difference of two convex functie
ons. The hypersurface in. X 1is termed Lipschitz(resp.5'—convex)
if it is described by a Lipschitz(reSp.Lipschitz J -convex) func-
ticn(see[7] or [5] and [6]). The sets Ap was studied e.g. in
[21,[4],[3],[5]. If X 1is a separable strictly convex Banach
space then AF can be covered by countsbly mary Lipschitz hyper-
surfaces [5] o« Iff X 1s a separeble Hilbert spmce then Lhere exi-
sts [1] s tonvex e (namely f£a(x) = 1/2 ([ x “2 - dg(x) ) )
such thst PF(x)C.E)fF(x). Using a result on the differentiation

of coavex functions from[GJ we immediately obtain the following

Theorem 1. Let X be a separable Hilbert space. Then Aé’ can

be covered by countebly many 5;convex hypersurfaces. s

Question 1. Let A be a d -convex hypersurf'ace in R%. Does

there exist ¥ such that A C AF ?

Note that it is not difficult tc prove that a boundary of a
convex body in B? is a subset of an AF.

Slightly modifying the Asplundé cbservation concerning the
function fF we can obtain the following theorem.

Theorem 2. Let X ©be a Hilbert space or a finite dimeasio-
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nal Banach space such that [x[ € c3(x -{0}). Then dp(x) is a

locally d -convex function in X~F.
This theorem has the following consequences.

Theorem 3.  Let X be finite dimensional and [ x[ & C2(X-{G}).
Then dp(x) 1is twice differentiable a.e. in X-F.

Theorem 4. Let X be finite dimensional end [ x| € C2(X-{c}).
Then AF can.bé covered b& countably many of d -convex hypersur-
facese. . -

Question 2. VFor Which X each AF can be covered by countably
“many of ¢ -convex hypeisurfaces?' '
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