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8th WINTER SCHOOL ON ABSTRACT ANALYSIS (1980)

ON MINIMAL POINTS WITH RESPECT TO A SET IN BANACH SPACES
by
G. GODINI ' .

Let Y be a linear subspace of the (real) normed linear
space X and x;l. We assign to each set HeY a set M;'x cX
in the following way: x€ N} y if there exists no ye Y, y # x,
such that:

py-mfl & X nx-mi for each mel,

When Y = X and A= 1 then m}l{’x is the set of minimal points
with respect to M studied by B. Beauzamy and B. Maurey in [1]
and denoted there by min M. VWhen YeX and \ = 1 then nr}'x
was introduced and studied in[2].

Por each M'CY and 14 A€ we have m% =nl NnY,
A » \ Y X
-  of
MX,X c MY,X and MY,X CMY,X , the inclusions above (as well
as Mk

Y,Y GMY,X ) being strictly in general, as examples show.
B. Beauzamy and B, Maurey [1] proved the following result:

Let X be a reflexive, strictly convex and smooth Banach space
and Y a closed linear subspace of X If min Y = Y (in our
notation Y}(,X = Y ) then there exists a (unique) norm one
linear projection of X onto Y . They also remarked that the
existegce of_a norm one linear projection of X onto Y implies
min Y = Y . In [2] we gave also a necessary and sufficient
condition for the existence of a norm one linear projection

of X onto Y , weakening the conditions on X (requiering only
the smoothness of X ) but strengthening the condition min Y = Y.
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When there are no restrictions on X we have the following
result. Let ?(X,Y, X). be the set of all mappings Tix —»Y
with the following properties:

1) PAx) =P(x) (xeX)
(2) Pt x) = & B(x) (x6X%, ki)
(3) " Plxey) =F(x)4B(y). (xeX, ya¥)
(4) NE(x)N # Anxn : (x €X)

Theorem 1. Let Y be a closed linear subspace of the norme
S . - ~
linear space X and A3l . We have %P(X,Y,A\) # g if and

only if Y%,x =Y.

Let us denote Sx = {xe X3 lixll = 1} .9 Sm Sx the set
of all x€S; such that there exists a unique x} @ Sya with
x;(x) =1, and .?(X,Y, X\) the set of all linear projections
P of X onto Y with NPUZA . '

Theorem 2.([2]). Let X be a normed linear space and Y a
closed linear subspace of X. A necessary, and if SY < sm Sx )
also sufficient condition for P(X,Y,1) # ¢ is that Yy y = Y.
If Syc<sm Sy then P(x,Y,1) contains at most one element.

When A 22 we can exhibit subspaces Y € X with ?(x.y,).)
¥ ¢ . Indeed, for Y € X and x €X let PY(x) be the set of all
best approximations of x out of ¥ , i.e., PY(x) = { yoeY -
it x=y il = dist(x,Y)} . Y is called a proximinal subspace of X
if Py(x) # ¢ for each x€X and a lebySev subspace of X if
Pr(x) contains exactly one element for each x& X. We shall
denote the elements of PY(x) by 'FI'Y(x) « Vhen Y is a proximinal
subspace of X we can choose a selection ’l'l'Y(x)GPY(x) satisfy-

ing the conditions (1)-(3),aﬁd since Uﬂ'y(x)ll %2 uxn for
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each xgX , it follows that f’ix,r,x) # ¢ for each A3 2 ,
nnq 80 Y;x =Y for each X) 2 . Using this remark and a
now classical result of J. Lindenstrauss and L. Tzafriri [3]
it follows that for X 3 2 we have not a result similar with
Theorem 2.

Some immediate consequences of the above results are:

N
Corollary 1. If Sy c sm Sy then $(Z,Y,1) = £x,1,1)
~F
and & (X,Y,1) contains at most one element.

Corollary 2. Let Y be a proximinal subspace of the mormed
linear space X such that Sye<sm Sy and WW(x)N £ uxn
for each ‘ITY(x)GPY(x) and each x&X. Then ¥ is a Eebygev sub-
space of X and 'ITY is linear. Loreover ?(X,Y.l) ={7Y}

Wle conclude this note with the followir;g p.articular case.
Let E be a normed linear space and we regard E as a subspace
of its second dual E* , 1f X = E"‘ and Y = E , then for each
K € E we denote KIN M = u%' g™ o F. Sullivan [4] called a
Banach space E to be very smooth if SE < sm SEua « Examples
of very smooth nonreflexive spaces as-well as some properties
of very smooth spaces are given in [4] « The last part of
Theorem 2 is a generalization of the following result of [4] o
If Eis a v.ery smootﬁ Banach space then ?(E‘“.E.l) contains

at most one element. An immediate consequence of Theorem 2 is$

Corollary 3.([2]). If E is a very smooth Banach space,
then P(E™,E,1) # ¢ if and only if KIN E = E.
The proofs of our results wixich are not contained in [2]

will be given elsewhere in a more general setting.
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