
Commentationes Mathematicae Universitatis Carolinae

L. Karchevska; Taras Radul
On extension of functors

Commentationes Mathematicae Universitatis Carolinae, Vol. 53 (2012), No. 2, 269--279

Persistent URL: http://dml.cz/dmlcz/142889

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142889
http://project.dml.cz


Comment.Math.Univ.Carolin. 53,2 (2012) 269–279 269

On extension of functors

L. Karchevska, T. Radul

Abstract. A. Chigogidze defined for each normal functor on the category Comp
an extension which is a normal functor on the category Tych. We consider this
extension for any functor on the category Comp and investigate which properties
it preserves from the definition of normal functor. We investigate as well some
topological properties of such extension.
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Classification: 18B30, 54B30, 57N20

Introduction

The general theory of functors acting in the category Comp of compact Haus-
dorff spaces (compacta) and continuous mappings was founded by E.V. Shchepin
[15]. He distinguished some elementary properties of such functors and defined
the notion of normal functor that has become very fruitful. The class of normal
functors includes many classical constructions: the hyperspace exp, the functor of
probability measures P , the power functor and many other functors (see [13], [9]
for more details). But some important functors do not satisfy some of the prop-
erties from the Shchepin list. Omitting some properties we obtain wider classes
of functors such as weakly normal functors and almost normal functors.

The properties from the definition of normal functor could be easily generalized
for the functors on the category Tych of Tychonov spaces and continuous maps.
Let us remark that Tych contains Comp as a subcategory. A. Chigogidze defined
for each normal functor on the category Comp an extension which is a normal func-
tor on the category Tych [6]. This extension could be considered for any functor
on the category Comp. But the situation is more complicated for wider classes
of functors. For example, the extension of the projective power functor (which is
weakly normal) does not preserve embeddings, which makes such extension use-
less (see for example [13, p. 67]). However, if we apply the Chigogidze extension
to such weakly normal functors as the functor O of order-preserving functionals,
the functor G of inclusion hyperspaces, the superextension, we obtain functors on
the category Tych which preserve embeddings.

The main aim of this paper is to investigate which properties from the defini-
tion of normal functor are preserved by Chigogidze extension, specially we con-
centrate our attention on the preserving of embeddings. The results devoted to
this problem are contained in Section 2. We define in this section the 1-preimages



270 L. Karchevska, T. Radul

preserving property which is crucial for preserving of embeddings. In Section 3
we consider which functors have the 1-preimages preserving property.

T. Banakh and R. Cauty obtained topological classification of the Chigogidze
extension of the functor of probability measures for separable metric spaces. We
generalize this result to convex functors in Section 4.

§1
All spaces are assumed to be Tychonov, all mappings are continuous. All

functors are assumed to be covariant. In the present paper we will consider
functors acting in two categories: the category Tych and its subcategory Comp.

Let us recall the definition of normal functor. A functor F : Comp → Comp is
called monomorphic (epimorphic) if it preserves embeddings (surjections). For a
monomorphic functor F and an embedding i : A→ X we shall identify the space
F (A) and the subspace F (i)(F (A)) ⊂ F (X).

A monomorphic functor F is said to be preimage-preserving if for each map
f : X → Y and each closed subset A ⊂ Y we have (F (f))−1(F (A)) = F (f−1(A)).

For a monomorphic functor F the intersection-preserving property is defined as
follows: F (

⋂{Xα | α ∈ A}) = ⋂{F (Xα) | α ∈ A} for every family {Xα | α ∈ A}
of closed subsets of X .

A functor F is called continuous if it preserves the limits of inverse systems
S = {Xα, p

β
α,A} over a directed set A. Let us also note that for any continuous

functor F : Comp → Comp the map F : C(X,Y ) → C(FX,FY ) (the space
C(X,Y ) is considered with the compact-open topology) is continuous.

Finally, a functor F is called weight-preserving if w(X) = w(F (X)) for every
infinite X ∈ Comp.

A functor F is called normal [15] if it is continuous, monomorphic, epimor-
phic, preserves weight, intersections, preimages, singletons and the empty space.
A functor F is said to be weakly normal (almost normal) if it satisfies all the
properties from the definition of a normal functor except perhaps the preimage-
preserving property (epimorphicity) (see [13] for more details).

Similarly, one can define the same properties for a functor F : Tych → Tych
with the only difference that the property of preserving surjections is replaced by
the property of sending k-covering maps to surjections (recall that f : X → Y is
a k-covering map if for any compact set B ⊂ Y there exists a compact set A ⊂ X
with f(A) = B) (see [13, Definition 2.7.1]).

A. Chigogidze defined an extension construction of a functor in Comp onto
Tych the following way [6]. For any normal functor F : Comp → Comp and any
X ∈ Tych, the space

Fβ(X) = {a ∈ F (βX) | there exists a compact set A ⊂ X with a ∈ F (A)}

is considered with the topology induced from F (βX), where βX is the Stone-Čech
compactification of the space X . Next, given any continuous mapping f : X → Y
between Tychonov spaces, put Fβ(f) = F (βf)|Fβ(X). Then Fβ forms a covariant
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functor in the category Tych. Chigogidze showed that in case F is normal, the
functor Fβ is also normal.

§2
Let us modify the Chigogidze construction for any functor F : Comp → Comp.

For X ∈ Tych we put

Fβ(X) = {a ∈ F (βX) | there exists a compact set A ⊂ X

with a ∈ F (iA)(F (A))}

where by iA we denote the natural embedding iA : A →֒ X (we do not assume
that the map F (iA) is an embedding). Evidently Fβ preserves empty set and
one-point space iff F does.

Now we consider the problem when Fβ preserves embeddings. Extension of
any normal functor preserves embeddings, but, if we drop the preimage preserv-
ing property, the situation could be different. However, the examples from the
introduction show that the preimage-preserving property is not necessary. We de-
fine some weaker property which will give us a necessary and sufficient condition.

Definition 1. We say that a monomorphic functor F : Comp → Comp preserves
1-preimages , if for any f : X → Y , where X,Y ∈ Comp, any closed A ⊂ Y such
that f |f−1(A) is a homeomorphism, we have that (Ff)−1(FA) = F (f−1(A)). (Let

us remark it is equivalent to the condition that the map Ff | (Ff)−1(FA) is a
homeomorphism.)

Let us note that this definition was independently introduced by T. Banakh,
M. Klymenko and A. Kucharski [3].

Proposition 1. If F is a monomorphic functor that preserves 1-preimages in the
class of open mappings, then F preserves 1-preimages.

Proof: Take any mapping f : X → Y such that f |f−1(A) is a homeomorphism
for some closed subset A ⊂ Y . Let i1 : X → X × Y be the embedding defined
by the formula i1(x) = (x, f(x)). Denote Z = X × Y/ε, where the relation ε is
given by ε = {pr−1

Y (a) | a ∈ A} (prY : X × Y → Y is the respective projection).
Let q : X × Y → Z be the quotient mapping. The map h : Z → Y given by
the conditions h(z) = y for any z = (x, y) ∈ Z \ q(X × A) and h(z) = a for
any z = q(pr−1

Y (a)), a ∈ A, is open and satisfies the following two conditions:
prY = h ◦ q, h|h−1(A) is a homeomorphism. Apparently, the map i = q ◦ i1 is an
embedding, moreover, h ◦ i = f . Since F preserves 1-preimages in the class of
open mappings, we have (Fh)−1(FA) = F (h−1(A)), which gives us the equality
(Ff)−1(FA) = F (f−1(A)). �

Proposition 2. If F is a monomorphic functor that preserves 1-preimages, then
Fβ preserves embeddings.
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Proof: Take any embedding f : X → Y . Then the map Fβ(f) is closed as the
restriction of a closed map onto a full preimage and, moreover, injective, hence
an embedding. �

For any X ∈ Tych and any its compactification bX we can define

Fb(X) = {a ∈ F (bX) | there is a compact subset A ⊂ X

with a ∈ F (A)} ⊂ F (bX)

and consider it with the respective subspace topology.

Corollary 1. If F is a monomorphic, 1-preimage-preserving functor, then
Fβ(X) ∼= Fb(X) for any Tychonov space X and its compactification bX .

Proposition 3. If F is monomorphic, preserves 1-preimages and weight, then
Fβ preserves weight.

Proof: The statement follows from the previous corollary and the fact that for
any X ∈ Tych there exists its compactification bX which has the same weight
as X . �

As the following proposition shows, the reverse implication to that of Proposi-
tion 2 also holds.

Proposition 4. Let F be a continuous functor such that Fβ preserves embed-
dings. Then F preserves 1-preimages.

Proof: Assume the contrary. Then there exist a map f : X → Y and a
closed subset A ⊂ Y such that f |f−1(A) is a homeomorphism and Ff−1(FA) 6=
F (f−1(A)). We can suppose that the map f is open by Proposition 1. There
exist ν ∈ FA and µ ∈ FX\F (f−1(A)) such that Ff(µ) = ν. We will construct a
space S ∈ Tych and its compactification γS such that the map Fβ(id S) : Fβ(S) →
Fβ(γS) = F (γS) is not an embedding, where id S : S → γS is an identity embed-
ding.

First put Z = X×αN, where the space of natural numbers N is considered with
the discrete topology and αN = N ∪ {ξ} is the one-point compactification of N.
Define a continuous function g : Z → Y by g(x, n) = f(x) for any x ∈ X , n ∈ αN.
Let T = Z/ε be a quotient space, where ε is an equivalence relation defined by
its classes of equivalence {{x} | x ∈ (X \ f−1(A)) × N} ∪ {g−1(y) ∩ X × {ξ} |
y ∈ Y \ A} ∪ {{a} × αN | a ∈ f−1(A)}. By q : Z → T we denote the respective
quotient mapping. Then the map h : T → Y defined by the equality g = h ◦ q
is continuous. The set D = q(X × {ξ}) is compact as a continuous image of a
compact set and moreover h|D is one-to-one, hence a homeomorphism between
D and Y . We denote by j : Y → T the inverse embedding. Also, for any n ∈ N
the space Sn = q(X × {n}) is homeomorphic to X and we define jn : X → T by
jn(x) = q(x, n). Then we have h◦jn = f . Finally note that T is a compactification
of the space S = T \q((X \ f−1(A))× {ξ}).



On extension of functors 273

Put µn = F (jn)(µ) for n ∈ N. The sequence jn converges to j ◦ f in the space
C(X,T ). Since F is continuous, the sequence F (jn) converges to F (j ◦ f) in the
space C(FX,FT ). Hence the sequence µn converges to F (j ◦ f)(µ) = F (j)(ν) ∈
F (q(f−1(A) × αN)).

Now consider Fβ(S) as a subspace of F (βS). Define a map s1 : S → X by the
condition s1 ◦ jn = idX for all n. Let us show the continuity of s1. Consider any
point t ∈ S and any open neighborhood U of s1(t) in X . Since the map f is open,
the set q(U × αN) = q((U × N) ∪ (f−1(f(U)) × {ξ})) is an open set in T which
contains the point t. The set V = q(U × αN) ∩ S is an open neighborhood of t
such that s1(V ) ⊂ U .

Let s : βS → X be the extension of s1. Then Fs(µn) = µ /∈ F (f−1(A)). Then
the sequence µn does not converge to any element of F (q(f−1(A) × αN)). The
proposition is proved. �

Propositions 2 and 4 yield the following

Theorem 1. For any continuous monomorphic functor F the functor Fβ pre-
serves embeddings if and only if F preserves 1-preimages.

The proof of the following proposition is a routine checking and we omit it.

Proposition 5. Let F : Comp → Comp be a functor.

(1) If F preserves embeddings, 1-preimages and intersections then Fβ pre-
serves intersections.

(2) If F preserves embeddings and preimages then Fβ preserves preimages.
(3) If F preserves surjections then Fβ sends k-covering maps to surjections.

Now let us consider continuity of the Chigogidze extension. The following
example shows that in the absence of the preimage-preserving property of the
functor F , it is difficult to speak of continuity of Fβ , since even the extension of
such known weakly normal functor as G does not possess it.

Example. Let us define the inclusion hyperspace functor G. Recall that a closed
subset A ∈ exp2X (where X ∈ Comp) is called an inclusion hyperspace, if for
every A ∈ A and every B ∈ expX the inclusion A ⊂ B implies B ∈ A. Then GX
is the space of all inclusion hyperspaces with the induced topology from exp2X .
For any map f : X → Y define Gf : GX → GY by Gf(A) = {B ∈ expY |
f(A) ⊂ B for some A ∈ A}. The functor G is weakly normal (see [13] for more
details). In the next section we will see that the functor G preserves 1-preimages.

Let us show that the functor Gβ is not continuous. Consider the following
inverse system. For any n ∈ N put Xn = N × {1, . . . , n} (here the spaces N and
{1, . . . , n} are considered with the discrete topology). Define pmn : Xm → Xn,
where m ≥ n, in the following way: pmn (x, k) = (x,min{k, n}). We obtained
the inverse system S = {Xm, p

m
n ,N}. Then the limit space X = limS is home-

omorphic to the space N × A (here A = αN = N ∪ {ξ} is the one-point com-
pactification of N, i.e. a convergent sequence; also we put ξ to be greater than
any natural number), and the limit projections pn : X → Xn can be given by
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pn(x, k) = (x,min{k, n}), k ∈ N. The continuity of Gβ means that limGβ(pn) :
Gβ(limS) → limGβ(S) is a homeomorphism. Here both Gβ(limS) and limGβ(S)
can be thought as subspaces of G(bX), where b is a compactification ofX with the
property bX = limβS. The first inclusion follows from Corollary 1, and the sec-
ond inclusion is due to continuity of G (hence G(lim βS) = G(bX) = limG(βS))
and existence of the embedding limGβ(S) →֒ limG(βS) which is the limit of a
morphism that naturally embeds each Gβ(Xn) into G(βXn).

Now we will construct K ∈ limGβ(S) which does not belong to limGβ(pn)
(Gβ(limS)). Consider the space X embedded into its compactification bX . For
any n ∈ A\{ξ} put Kn = {1, . . . , n}×{n}. If we want to obtain a closed family of

sets, the set Kξ = N× {ξ} must be added to the family K̃ = {Kn}n∈N. Now put
K = {B ⊂ bX | Kn ⊂ B for some n ∈ A}. Then K ∈ limGβ(S). However, there
is no element C ∈ Gβ(limS) with limGβ(pn)(C) = K. Indeed, the projection of
any compact set B ⊂ X onto the factor N of N×A is finite, hence limGβ(pn)(C)
does not contain Kξ or contains some finite subsets in N ⊂ N × {ξ}. Hence,
limGβ(pn), being not surjective, is not a homeomorphism.

§3
We start this section with definitions of some functors we deal with in this

paper. Let X be a compactum. By C(X) we denote the Banach space of all
continuous functions φ : X → R with the usual sup-norm. We consider C(X)
with the natural order. Let ν : C(X) → R be a functional (we do not suppose
a priori that ν is linear or continuous). We say that ν is 1) non-expanding if
|ν(ϕ)− ν(ψ)| ≤ d(ϕ, ψ) for all ϕ, ψ ∈ C(X); 2) weakly additive if for any function
φ ∈ C(X) and any c ∈ R we have ν(φ + cX) = ν(φ) + c (by cX we denote the
constant function); 3) preserves order if for any ϕ, ψ ∈ C(X) such that ϕ ≤ ψ
the inequality ν(ϕ) ≤ ν(ψ) holds; 4) linear if for any α, β ∈ R and for any two
functions ψ, φ ∈ C(X) we have ν(αφ + βψ) = αν(φ) + βν(ψ).

Now for any space X denote V X =
∏

ϕ∈C(X)[minϕ,maxϕ]. For any mapping

f : X → Y define the map V f as follows: V f(ν)(ϕ) = ν(ϕ◦ f) for every ν ∈ V X ,
ϕ ∈ C(Y ). Then V is a covariant functor in the category Comp [11].

Let us remark that the space V X could be considered as the space of all func-
tionals ν : C(X) → R with the only condition minϕ(X) ≤ ν(ϕ) ≤ maxϕ(X) for
every ϕ ∈ C(X). By EX we denote the subset of V X defined by the condition 1)
(non-expanding functionals; see [5] for more details), by EAX the subset defined
by the conditions 1) and 2). The conditions 2) and 3) define the subset OX
(order-preserving functionals, see [10]); finally, the conditions 3) and 4) define the
well-known subset PX (probability measures, see for example [13]). For a map
f : X → Y the mapping Ff , where F is one of P , O, EA, E, is defined as the
restriction of V f on FX . It is easy to check that the constructions P , O, EA
and E define subfunctors of V . It is known that the functors O and E are weakly
normal (see [10] and [5]). Using the same arguments one can check that EA is
weakly normal too.
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The question arises naturally which of the functors defined above have the
property of preserving 1-preimages. It is easy to check that we have the inclusions
PX ⊂ OX ⊂ EAX ⊂ EX ⊂ V X . We will show that the functor EA satisfies this
property and E does not. Since subfunctors inherit the 1-preimages preserving
property, this is the complete answer. Let us also remark that the results of [11]
and [12] show that many other known functors could be considered as subfunctors
of EA, for example the superextension, the hyperspace functor, the inclusion
hyperspace functor etc. This shows that the class of functors with the 1-preimages
preserving property is wide enough.

We start with a definition of an AR-compactum. Recall that a compactum X
is called an absolute retract (briefly X ∈ AR) if for any embedding i : X → Z of
X into compactum Z the image i(X) is a retract of Z.

The next lemma will be needed in the following discussion.

Lemma 1. Let F be a monomorphic subfunctor of V which preserves intersec-
tions andB be a closed subset of a compactumX . Then ν ∈ FB iff ν(ϕ1) = ν(ϕ2)
for each ϕ1, ϕ2 ∈ C(X) such that ϕ1|B = ϕ2|B.
Proof: Necessity. The inclusion ν ∈ FB ⊂ FX means that there exists ν0 ∈ FB
with F (iB)(ν0) = ν, where iB : B → X is the natural embedding. Hence, for any
ϕ1, ϕ2 ∈ C(X) such that ϕ1|B = ϕ2|B we have ν(ϕ1) = ν0(ϕ1◦iB) = ν0(ϕ2◦iB) =
ν(ϕ2).

Sufficiency. We can find an embedding j : B →֒ Y , where Y ∈ AR. Define Z
to be the quotient space of the disjoint union X ∪Y obtained by attaching X and
Y by B. Denote by r : Z → Y a retraction mapping.

Now take any ν ∈ FX ⊂ FZ with the property ν(ϕ1) = ν(ϕ2) for each ϕ1,
ϕ2 ∈ C(X) such that ϕ1|B = ϕ2|B. We claim that F (r)(ν) = ν. Indeed, take
any ϕ ∈ C(Z). Then F (r)(ν)(ϕ) = ν(ϕ ◦ r) = ν(ϕ) since ϕ ◦ r|Y = ϕ|Y . Hence,
ν ∈ FX ∩ FY = FB. �
Proposition 6. The functor EA preserves 1-preimages.

Proof: Let f : X → Y be a continuous open map between compacta X and Y
and B be a closed subset of Y such that f |f−1(B) is a homeomorphism. Choose

any ν ∈ EA(B) ⊂ EA(Y ). Using Lemma 1 we can define µ0 ∈ EA(f−1(B))
by the condition µ0(ϕ) = ν(ψ) for each ϕ ∈ C(X) and ψ ∈ C(Y ) such that
ψ ◦ f | f−1(B) = ϕ|f−1(B).

It is enough to show that for each µ ∈ (EA(f))−1(ν) we have µ = µ0. Suppose
the contrary. Then there exist ϕ ∈ C(X) and ψ ∈ C(Y ) such that ψ ◦ f |
f−1(B) = ϕ|f−1(B) and µ(ϕ) 6= ν(ψ). We can suppose that µ(ϕ) > ν(ψ). Define

a function ψ′ : Y → R by ψ′(y) = maxϕf−1(y) for any y ∈ Y . The function ψ′

is continuous since f is open. Also, since ψ′|B = ψ|B, we have that ν(ψ′) = ν(ψ).
Put ξ = (ψ′−D)◦f , where D = sup{maxϕf−1(y)−minϕf−1(y) | y ∈ Y }. Then
d(ξ, ϕ) ≤ D but µ(ϕ) − µ(ξ) = µ(ϕ) − µ((ψ′ − D) ◦ f) = µ(ϕ) − ν(ψ′) + D =
µ(ϕ)− ν(ψ) +D > D and we obtain a contradiction. The proof is similar for the
case µ(ϕ) < ν(ψ).
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Hence, EA preserves 1-preimages in the class of open mappings, and, by Propo-
sition 1, we are done. �
Proposition 7. The functor of nonexpanding functionals E does not preserve
1-preimages.

Proof: Consider the mapping f : X → Y between discrete spacesX = {x, y, s, t}
and Y = {a, b, c} which is defined as follows: f(x) = a, f(y) = b, f(s) = f(t) = c.
Put A = {ϕ ∈ C(X) | ϕ(s) = ϕ(t)}. Define the functional ν : A → R as follows:
ν(ϕ) = min{ϕ(x), ϕ(y)} if ϕ|{x,y} ≥ 0, ν(ϕ) = max{ϕ(x), ϕ(y)} if ϕ|{x,y} ≤ 0,
and ν(ϕ) = 0 otherwise. One can check that ν is nonexpanding. Now take the
function ψ : X → R defined as follows ψ(x) = 1, ψ(y) = −1, ψ(s) = 0, ψ(t) = 4.
One can check that we can extend ν to a nonexpanding functional on A∪{ψ} by
defining its value on ψ to be −1. This new functional can be further extended to
a nonexpanding functional on the whole C(X) [5]. Denote this extension by ν̃.
Evidently, Ef(ν̃) ∈ E({a, b}). On the other hand, ν̃ /∈ E({x, y}). �

§4
We consider in this section a monomorphic continuous functor F which pre-

serves intersections, weight, empty set, point and 1-preimages. We investigate the
topology of the space FβY where Y is a metrizable separable non-compact space.
We consider Y as a dense subset of a metrizable compactum X . It follows from
Corollary 1 that FβY is homeomorphic to FbY ⊂ FX (where X is considered as
a compactification bY of Y ) and in what follows we identify FβY with FbY . Also,
the properties we impose on F imply that FβY is a dense proper subspace of FX .

T. Banakh proved in [1] that FβY is a Fσ-subset of FX when Y is locally
compact; FβY is Fσδ-subset when Y is a Gδ-subset. If Y is not a Gδ-subset, then
FβY is not analytic.

We consider in the Hilbert cube Q = [−1, 1]ω the following subsets: Σ = {(ti) ∈
Q | supi |ti| < 1}; σ = {(ti) ∈ Q | ti 6= 0 for finitely many i} and Σω ⊂ Qω ∼= Q.

It is shown in [2] that any analytic PβY is homeomorphic to one of the spaces
σ, Σ or Σω. We generalize this result for convex functors.

By Conv we denote the category of convex compacta (compact convex subsets
of locally convex topological linear spaces) and affine maps. Let U : Conv → Comp
be the forgetful functor. A functor F is called convex if there exists a functor
F ′ : Comp → Conv such that F = UF ′. It is easy to see that the functors V ,
E, EA, O and P are convex. It is shown in [14] that for each convex functor
F there exists a unique natural transformation l : P → F such that the map
lX : PX → FX is an affine embedding for each compactum X .

Lemma 2. PβY = (lX)−1(FβY ).

Proof: Take any measure µ ∈ P (X) such that lX(µ) = µ′ ∈ FβY . By the
definition of FβY it means that µ′ ∈ FB for some compactum B ⊂ Y . We
will show that µ ∈ PB ⊂ PβY . Choose a compact absolute retract T which
contains B and define Z to be the quotient space of the disjoint union X ∪ T
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obtained by attaching X and T by B. By r : Z → T denote the retraction.
Since l is a natural transformation and r is the identity on T ⊂ Z, we have that
F (r) ◦ lZ(µ) = µ′ = lT ◦ P (r)(µ). Hence, µ = P (r)(µ) ∈ P (T ) due to injectivity
of lZ. Therefore, µ ∈ PX ∩ PT = PB. The lemma is proved. �

We need some notions from infinite-dimensional topology. See [4] for more
details. All spaces are assumed to be metrizable and separable. A closed subset
A of a compactum T is called Z-set if there exists a homotopy H : T × [0; 1] → T
such that H |T×{0} = id T×{0} and H(T × (0, 1]) ∩ A = ∅; a countable union of
Z-sets of T is called a σZ-set.

We do not know if FβY is contained in a σZ-set of FX for any convex functor F .
Thus, we introduce some additional property. We consider the compactum FX
as a convex subset of a locally convex linear space.

Recall that for any subset A of a linear space L the notation aff(A) stands for
the affine hull of A, that is, the set aff(A) = {ta+ (1− t)b | a, b ∈ A, t ∈ R}.
Definition 2. A convex functor F : Comp → Comp is called strongly convex if for
each compactum X , each closed subset A ⊂ X we have (FX \FA) ∩ aff FA = ∅.
Proposition 8. Each convex subfunctor F of the functor V is strongly convex.

Proof: By Lemma 1 any element from aff FA takes the same value at any two
functions from C(X) which coincide on A, which is not true for functionals from
FX \ FA. �
Proposition 9. Let F be a strongly convex functor. Then FβY is contained in
a σZ-set in FX .

Proof: Take any y ∈ X\Y . Then FβY ⊂ Fβ(X\{y}), and X\{y} can be
represented as a countable union of its compact subsets An with the property
that An ⊂ intAn+1, hence, Fβ(X\{y}) =

⋃
n∈N F (An). Let us show that all

F (An) are Z-sets in FX . Take any ν ∈ FX \ Fβ(X \ {y}) and the set Z =
{tν + (1− t)µ | t ∈ (0, 1], µ ∈ Fβ(X \ {y})}. Since F is strongly convex, we have
Z ∩Fβ(X \ {y}) = ∅. Since Z is a convex and dense subset of FX , there exists a
homotopy H : FX× [0, 1] → FX such that H(FX×(0, 1]) ⊂ Z (see, for example,
Example 12, 13 to Section 1.2 in [4]). �

Now, we are going to obtain the complete topological classification of the pair
(FX,FβY ) whereX is a metrizable compactum and Y its proper dense Gδ-subset.
We need some characterization theorems.

Theorem A ([8]). Let C be an infinite-dimensional dense convex subspace of a
convex metrizable compactumK, C is contained in a σZ-set of K and additionally
let C be a countable union of its finite-dimensional compact subspaces. Then the
pair (K,C) is homeomorphic to (Q, σ).

Theorem B ([7]). Let K be a convex metrizable compactum, and let C ⊂ K be
its proper dense convex σ-compact subspace that contains an infinite-dimensional
convex compactum and is contained in a σZ-set of K. Then the pair (K,C) is
homeomorphic to the pair (Q,Σ).
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The following theorem follows from 5.3.6, 5.2.6, 3.1.10 in [4].

Theorem C. Let K be a convex compact subset of a locally convex linear metric
space, and let C ⊂ K be its proper dense convex Fσδ subspace such that C is
contained in a σZ-set of K, (K \ C) ∩ aff C = ∅, and additionally there exists a
continuous embedding h : Q→ K such that h−1(C) = Σω. Then the pair (K,C)
is homeomorphic to the pair (Q,Σω).

Theorem 2. Let F be a strongly convex functor, X is a metrizable compactum
and Y is its proper dense Gδ-subset. The pair (FX,FβY ) is homeomorphic to

(1) (Q, σ), if Y is a discrete subspace of X and F (n) is finite-dimensional for
each n ∈ N;

(2) (Q,Σ), if Y is a discrete subspace of X and F (n) is infinite-dimensional
for some n ∈ N or Y is a locally compact non-discrete subspace of X ;

(3) (Q,Σω), if Y is not locally compact.

Proof: It is easy to see that FβY is a convex subset of FX .
We prove the first assertion. Since X is metrizable, Y is countable. We can

represent Y =
⋃∞

n=1 Yn where |Yn| = n. Then FβY =
⋃∞

n=1 FYn. Since PYn
could be considered as an (n − 1)-dimensional subspace of FYn, the space FβY
is infinite-dimensional. Moreover, FβY is a σZ-set by Proposition 9. Since each
FYn is a finite-dimensional compactum, we can apply Theorem A.

We prove the second assertion. In the case when Y is discrete, FYn is an
infinite-dimensional convex compactum for some n. When Y is not discrete, it
contains an infinite compactum Y ′ and FY ′ is an infinite-dimensional convex
compactum. We apply Proposition 9 and Theorem B.

For the third assertion, note that the pair (PX,PβY ) is homeomorphic to
(Q,Σω) [2]. Since F is strongly convex, we have (FX \ FβY ) ∩ aff FβY = ∅. We
apply Lemma 2, Proposition 9 and Theorem C. �
Corollary 2. Suppose that F is a strongly convex functor. Then for any sepa-
rable metrizable space X

(1) X ∼= N implies Fβ(X) ∼= Qf in case F (n) is finite-dimensional for any
n ∈ N or Fβ(X) ∼= Σ otherwise;

(2) if X is locally compact non-discrete and non-compact then Fβ(X) ∼= Σ;
(3) if X is topologically complete not locally compact then Fβ(X) ∼= Σω.
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