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Enumeration of nilpotent loops up to isotopy

Lucien Clavier

Abstract. We modify tools introduced in [Daly D., Vojtěchovský P., Enumeration
of nilpotent loops via cohomology , J. Algebra 322 (2009), no. 11, 4080–4098] to
count, for any odd prime q, the number of nilpotent loops of order 2q up to
isotopy, instead of isomorphy.
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Classification: 20N05

1. Introduction

Recall that a set Q equipped with a binary operation · is a loop if it possesses
a neutral element and if for each a, b in Q there exist unique x, y such that

a · x = b and y · a = b.

As usual, we write these respectively as x = a\b and y = b/a. We abbre-
viate x · y as xy, and adopt the usual convention that multiplication should be
performed first between contiguous elements, and then between dotted elements.
For instance, xy · z is the same as (x · y) · z.

Recall that groups are exactly associative loops. Also, normalized latin squares
are exactly multiplication tables of finite loops.

The center Z(Q) of a loop Q consists of all elements x in Q such that

xy = yx, xy · z = x · yz, yx · z = y · xz and yz · x = y · zx

for every y, z in Q.
Normal subloops are kernels of loop homomorphisms. The center Z(Q) is a

normal subloop of Q. The upper central series Z0(Q) ≤ Z1(Q) ≤ . . . is defined
inductively by

Z0(Q) = 1, Q/Zi+1(Q) = Z(Q/Zi(Q)).

If Zn−1(Q) < Zn(Q) = Q for some n, we say that Q is (centrally) nilpotent of
class n.

A triple t = (α, β, γ) of bijections between two loops (L1, ·) and (L2, ∗) is an
isotopism if

α(x) ∗ β(y) = γ(x · y)
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for each x, y in L1. If such a triple exists, L1 and L2 are said to be isotopic.
Isotopy defines a relation of equivalence; if two loops are isomorphic, they must
be isotopic (it is the case when we can choose α = β = γ). We write ∼= for the
relation of isomorphy and ≃ for the relation of isotopy.

An autotopism of a loop L is an isotopism from L to L. We write Atp(L) for
the set of all autotopisms of a loop L; it is a group with respect to the law of
composition.

We believe the present article is more or less self-contained, but we invite the
reader to see [DV09] for any shortcut we may have used. Also, since both articles
have the same scheme, most ideas here will appear more natural to those readers
that are already well acquainted with [DV09].

Here is a summary of the paper, with A an abelian group, F a loop.
Section 2. This section is identical to Section 2 in [DV09], and was added for

the sake of completeness. Namely, central extensions of A by F are in one-to-one
correspondence with (normalized) cocycles. If two cocycles differ by a coboundary,
their associated loops are isomorphic.

Section 3. The group Atp(F,A) = Atp(F ) × Aut(A) acts on C(F,A) via, for
t = (α, β, γ):

(t, h) : θ 7→ N(hθ(α−1, β−1))

where N is the “normalizing” projection defined by

N(m)(x, y) = m(x, y)−m(x, 1)−m(1, y) +m(1, 1).

This induces an action on H(F,A); every orbit under this action consists of cocy-
cles whose associated loops are isotopic.

Section 4. For a given cocycle θ, if every central extension of A by F isotopic
to the loop Q(F,A, θ) is in the orbit of θ, we say that θ is separable. We provide
some conditions under which cocycles are separable.

Section 5. We define (starred) invariant spaces of subgroups of Atp(F,A) in
the same way as in [DV09]. Therefore, if every cocycle is separable, we can count
the number of central extensions of A by F up to isotopy, as soon as we know
the subgroup structure of Atp(F,A) and the cardinality of the starred invariant
space of each subgroup of Atp(F,A).

Section 6. We study the case where A = Z2, F = Zq with q an odd prime.
In that case, we know from [Cla12] the subgroup structure of Atp(F ) (see Sub-
section 6.1). Thus, we only have left to compute the invariant (resp. starred
invariant) spaces of such subgroups. This is done in Subsection 6.2 (resp. 6.3).

Subsequently, we can compute the number Ñ (2q) of nilpotent loops of order

2q up to isotopy (Theorem 6.10), and describe the asymptotic growth of Ñ (2q)
(Corollary 6.11).

Section 7. We provide some ideas related to the present work. See also Section
10 in [DV09].
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2. Central extensions, cocycles and coboundaries

Let A be an abelian group and F a loop. A loop Q is a central extension of A
by F if A ≤ Z(Q) and Q/A ∼= F .

A mapping θ : F × F → A is a (normalized) cocycle if it satisfies for every
x ∈ F

θ(1, x) = θ(x, 1) = 0.

For a cocycle θ, define Q(F,A, θ) to be F ×A equipped with the multiplication:

(x, a)(y, b) = (xy, a+ b+ θ(x, y)) .

The following characterization of central loop extensions is folklore, and is in
complete analogy with the associative case:

Theorem 2.1. The loop Q is a central extension of A by F if and only if there
is a cocycle θ such that Q ∼= Q(F,A, θ).

The cocycles form an abelian group C(F,A) with respect to the natural addi-
tion; when A is a field, C(F,A) is a vector space over A with the natural scalar
multiplication.

Define

Map0(F,A) = {τ : F → A; τ(1) = 0},
Hom(F,A) = {τ : F → A; τ is a homomorphism of loops}.

Lemma 2.2. The mapping ̂ : Map0(F,A) → C(F,A), τ 7→ τ̂ defined by

τ̂ (x, y) = τ(xy) − τ(x) − τ(y)

is a group homomorphism with kernel Hom(F,A).

The image

B(F,A) = Ĉ(F,A) ∼= Map0(F,A)/Hom(F,A)

is a subgroup (subspace) of C(F,A); its elements are referred to as coboundaries .
Coboundaries play a prominent role in classifications due to this simple observa-
tion:

Lemma 2.3. Let τ̂ ∈ B(F,A). Then f : Q(F,A, θ) → Q(F,A, θ + τ̂ ) defined by

f(x, a) = (x, a+ τ(x))

is an isomorphism of loops.

Thus, it is sufficient to consider cocycles modulo coboundaries, and we define
the second cohomology

H(F,A) = C(F,A)/B(F,A).
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3. Action of autotopism groups

Following [DV09], we are going to define an action of Atp(F,A) on C(F,A)
and H(F,A). For any cocycle θ and any autotopism t = (α, β, γ) of F , we would
like to define something like the map

(x, y) 7→ θ(α−1(x), β−1(y))

but this is usually not a normalized cocycle.
Instead, let N be the function defined for any m : F × F → A by

N(m)(x, y) = m(x, y)−m(x, 1)−m(1, y) +m(1, 1).

Notice that N(m) is always a cocycle, and that N restricted to C(F,A) is the
identity map; thus, when A is a field, N is a projection from Map(F ×F,A) onto
C(F,A).

Now, let

Atp(F,A) = Atp(F )×Aut(A).

Write for every t = (α, β, γ) ∈ Atp(F ) and every h ∈ Aut(A)

(t,h)θ = N(hθ(α−1, β−1)).

By convention, θ(α−1, β−1) stands for the element of Map(F × F,A) defined by
θ(α−1, β−1)(x, y) = θ(α−1x, β−1y).

Lemma 3.1. The group Atp(F,A) acts on C(F,A) via

(t, h) · θ =(t,h) θ.

Proof: The proof is straightforward. Nevertheless, we would like to prove as-
sociativity here, considering the following computation to be non-trivial from
the formal point of view. For all (t1, h1), (t2, h2) ∈ Atp(F,A), θ ∈ C(F,A) and
x, y ∈ F , (t1,h1)

(
(t2,h2)θ

)
(x, y) decomposes into 16 terms. Namely, it equals after

unpacking (t1,h1)
(
(t2,h2)θ

)
into (t1,h1)

(
(x, y) 7→

(
(t2,h2)θ

)
(x, y)

)
:

h1h2θ
(
α−1
2 α−1

1 (x) , β−1
2 β−1

1 (y)
)

− h1h2θ
(
α−1
2 α−1

1 (x), β−1
2 (1)

)

− h1h2θ
(
α−1
2 (1), β−1

2 β−1
1 (y)

)
+ h1h2θ

(
α−1
2 (1), β−1

2 (1)
)

− h1h2θ
(
α−1
2 α−1

1 (x), β−1
2 β−1

1 (1)
)

+ h1h2θ
(
α−1
2 α−1

1 (x), β−1
2 (1)

)

+ h1h2θ
(
α−1
2 (1), β−1

2 β−1
1 (1)

)
− h1h2θ

(
α−1
2 (1), β−1

2 (1)
)

− h1h2θ
(
α−1
2 α−1

1 (1), β−1
2 β−1

1 (y)
)

+ h1h2θ
(
α−1
2 α−1

1 (1), β−1
2 (1)

)

+ h1h2θ
(
α−1
2 (1) , β−1

2 β−1
1 (y)

)
− h1h2θ

(
α−1
2 (1) , β−1

2 (1)
)

+ h1h2θ
(
α−1
2 α−1

1 (1), β−1
2 β−1

1 (1)
)

− h1h2θ
(
α−1
2 α−1

1 (1), β−1
2 (1)

)

− h1h2θ
(
α−1
2 (1) , β−1

2 β−1
1 (1)

)
+ h1h2θ

(
α−1
2 (1), β−1

2 (1)
)

which becomes after cancellation:

h1h2θ
(
α−1
2 α−1

1 (x), β−1
2 β−1

1 (y)
)
− h1h2θ

(
α−1
2 α−1

1 (x), β−1
2 β−1

1 (1)
)

−h1h2θ
(
α−1
2 α−1

1 (1), β−1
2 β−1

1 (y)
)
+ h1h2θ

(
α−1
2 α−1

1 (1), β−1
2 β−1

1 (1)
)
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We recognize
(
(t1t2,h1h2)θ

)
(x, y), and we are done. It is also easy to check that

(t,h)(θ1 + θ2) =
(t,h) θ1 +

(t,h) θ2. �
We provided this heavy computation to emphasize that, at this point, the

reason why N gives rise to an action of Atp(F,A) on B(F,A) seems to lie on a
lucky coincidence. N is actually far more that just a naively-defined projection,
and we will see in the proof of Theorem 4.1 that it expresses well the relation
between central extensions and their principal isotopes.

Moreover, it is easy to check that

(t,h)τ̂ = τ̂ ′

where τ ′ ∈ Map0 is defined by

τ ′(x) = hτγ−1(x) − hτγ−1(1).

Therefore, the action of Atp(F,A) on C(F,A) induces an action on B(F,A)
and H(F,A).

The following lemma asserts that any orbit for the action of Atp(F,A) is con-
stituted of loops with the same isotopism type.

Lemma 3.2. For any t = (α, β, γ) ∈ Atp(F ), h ∈ Aut(A), the triple t = (α, β, γ)
defined by





α(x, a) =
(
α(x), ha+ hθ(x, β−1(1))

)

β(y, b) =
(
β(y), hb+ hθ(α−1(1), y)

)

γ(z, c) =
(
γ(z), hc+ hθ(α−1(1), β−1(1))

)

is an isotopism from Q(F,A, θ) to Q(F,A,(t,h) θ).

Proof: Let ·θ be the multiplication in Q(F,A, θ) and ·(t,h)θ the multiplication in
Q(F,A,(t,h) θ). Then

α(x, a) ·(t,h)θ β(y, b) =
(
α(x), ha+ hθ(x, β−1(1))

)

·(t,h)θ

(
β(y), hb+ hθ(α−1(1), y)

)

=
(
α(x)β(y), ha + hb+ hθ(x, β−1(1)) + hθ(α−1(1), y)

+N(hθ(α−1, β−1))(α(x), β(y))
)

=
(
γ(xy), ha+ hb+ hθ(x, y) + hθ(α−1(1), β−1(1))

)

= γ(xy, a+ b+ θ(x, y))

= γ((x, a) ·θ (y, b)).

�

4. Separability

As in [DV09], we define isotopy separability in the following way:
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Write θ ∼ µ if µ =(t,h) θ + τ for some (t, h) ∈ Atp(F,A), τ ∈ B(F,A). ∼ is
an equivalence relation on C(F,A), and by Lemmas 2.3 and 3.2, if θ ∼ τ , then
Q(F,A, θ) ≃ Q(F,A, µ). We say that θ is (isotopy) separable if the converse also
holds, i.e. if whenever Q(F,A, θ) ≃ Q(F,A, µ) for some cocycle µ, we also have
θ ∼ µ.

Theorem 4.1. Let θ ∈ C(F,A). Set Qθ = Q(F,A, θ). If Aut(Qθ) acts transi-
tively on

{K ≤ Z(Qθ); K ∼= A, Qθ/K ≃ F}
then θ is isotopy separable.

Proof: Let t = (α, β, γ) be an isotopism between Qθ and Qµ = Q(F,A, µ), for
some cocycle µ.

The first step of the proof is to consider the splitting of t into an isomor-
phism and a principal isotopism (i.e. an isotopism that has identity as its third
component, see [Pfl90]).

Thus, let (L, ∗) be the loop defined on F ×A so that γ is an isomorphism from
Qθ to (L, ∗). Then (α = αγ−1, β = βγ−1, Id) is a principal isotopism between L
and Qµ.

Qθ
(γ, γ, γ)- (L, ∗)

Qµ

(α, β, γ)

?� (α
, β
, I
d)

We would like to understand the multiplication in L.
Let e be the neutral of the loop L. Write (x0, a0) = β(e), (y0, b0) = α(e). t is

a isotopism, thus

α(x, a) ·µ β(y, b) = (x, a) ∗ (y, b).
In particular,

{
α(x, a) ·µ (x0, a0) = (x, a) ∗ e = (x, a)

(y, b) ·µ β(y, b) = (y, b) ∗ e = (y, b)
.

We can invert this system to find

{
α(x, a) = (x/x0, a− a0 − µ(x/x0, x0))

β(y, b) = (y0\y, b− b0 − µ(y0, y0\y))
.
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Therefore, the multiplication in L is simply

(x, a) ∗ (y, b) = α(x, a) ·µ β(y, b)

=
(
x/x0.y0\y, a+ b− a0 − b0 − µ(x/x0, x0)− µ(y0, y0\y)

+ µ(x/x0, y0\y)
)
.

To put it in a more familiar form, let us write (z0, c0) = e. Now since

α(e) ·µ β(e) = e ∗ e = e

i.e.

(y0, b0) ·µ (x0, a0) = (y0x0, a0 + b0 + µ(y0, x0)) = (z0, c0)

we must have {
y0x0 = z0

−a0 − b0 = µ(y0, x0)− c0
.

Thus the multiplication in L takes the form:

(x, a) ∗ (y, b) = (x/x0.y0\y, a+ b− c0 + µ̃(x, y))

for µ̃ defined by

µ̃(x, y) = µ(x/x0, y0\y)− µ(x/x0, y0\z0)− µ(z0/x0, y0\y) + µ(z0/x0, y0\z0).

The second step of the proof is now to recognize some subgroup of Qθ on which
we can apply the hypothesis.

Notice that we always have

(z0, a+ c0) ∗ (z0, b+ c0) = (z0, a+ b + c0).

Thus the map a 7→ (z0, a+ c0) is an isomorphism from A onto

K0 = {(z0, a); a ∈ A},

K0 being equipped with the multiplication ∗.
Similarly, it is easy to check that K0 ≤ Z(L). In particular, L/K0 is a loop,

and F is isotopic to it via the triple of bijections F → L/K0:





x 7→ (xx0, 0) ∗K0

y 7→ (y0 y, 0) ∗K0

z 7→ (z, 0) ∗K0

.

Therefore, γ−1 being an isomorphism between L and Qθ, we can apply the
hypothesis to γ−1(K0); thus there exists some automorphism g of Qθ such that
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g(1 × A) = γ−1(K0). As a conclusion, precomposing with g if necessary, we can
always assume that

γ(1×A) = K0.

Now, what we have left to do is simply to express this fact with mappings.
This is in direct analogy with [DV09].

Define a map h : A → A by

γ(1, a) = (z0, h(a) + c0).

Notice that

γ(1, a) ∗ γ(1, b) = (z0, h(a) + c0) ∗ (z0, h(b) + c0) = (z0, h(a) + h(b) + c0).

Since γ is an isomorphism between Qθ and L, this is also

γ((1, a) ·θ (1, b)) = γ(1, a+ b) = (z0, h(a+ b) + c0).

Thus, h ∈ Aut(A).
Define also k : F → F and τ : F → A by

γ(x, 0) = (k(x), τ(x) + c0).

We have of course γ(1, 0) = e = (z0, c0), so k(1) = z0 and τ(1) = 0; in particular
τ ∈ Map0(F,A).

Moreover, computing in two ways γ(xy, 0) = γ(x, 0)∗γ(y, 0) yields the following
identity for k:

k(x)/x0.y0\k(y) = k(xy).

We can now express γ in term of these maps:

γ(z, c) = γ((z, 0) ·θ (1, c)) = (k(z), τ(z) + c0) ∗ (z0, hz + c0)

= (k(z), hz + τ(z) + c0).

Recall that we also know the expression of α = αγ−1 and β = βγ−1, so by
composition with γ, we get:

{
α(x, a) = (k(x)/x0, hx+ τ(x) + c0 − a0 − µ(k(x)/x0, x0))

β(y, b) = (y0\k(y), hy + τ(y) + c0 − b0 − µ(y0, y0\k(y)))
.

After writing explicitly that α(x, a)·µβ(y, b) is always equal to γ((x, a)·θ (y, b)),
we get

hθ + τ̂ = N(µ(α̃, β̃))
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where t̃ = (α̃, β̃, γ̃) is defined to be the triple




α̃(x) = k(x)/x0

β̃(y) = y0\k(y)
γ̃(z) = k(z)

.

Now t̃ ∈ Atp(F ), h ∈ Aut(A) and τ ∈ Map0(F,A), so θ ∼ µ.
Thus θ is separable. �
We leave to the reader to check that the following results, proved in [DV09,

3.3–3.7], still hold in our setting, thanks to Theorem 4.1 (we recall that if a loop
is isotopic to a group, then it is isomorphic to it, see [Pfl90]).

Proposition 4.2. If Q(F,A, θ) is an abelian group, and A = Zp for p a prime
integer, then θ is isotopy separable.

Lemma 4.3. Let Q = Qθ, A = Zp, p a prime. Assume further that one of the
following conditions is satisfied:

(i) |Q| = p,
(ii) |Q| = pq, where q is a prime,
(iii) [Q : Z(Q)] ≤ 2,
(iv) |Q| < 12.

Then θ is isotopy separable.

5. The invariant subspaces

Following [DV09], define for (t, h) ∈ Atp(F,A):

Inv(t, h) = {θ ∈ C(F,A); θ −(t,h) θ ∈ B(F,A)}

and for ∅ 6= H ⊂ Atp(F,A):

Inv(H) =
⋂

(t,h)∈H

Inv(t, h).

We state the following, the proof of which is exactly the same as in [DV09]:

Lemma 5.1. Let ∅ 6= H ⊂ Atp(F,A). Then

Inv(H) = Inv(〈H〉).

Corollary 5.2. Let H,K ≤ Atp(F,A). Then

Inv(H) ∩ Inv(K) = Inv(〈H ∪K〉).

For t, u ∈ Atp(F ) and h, k ∈ Aut(A), let ut = utu−1, kh = khk−1.

Lemma 5.3. Let (t, h), (u, k) ∈ Atp(F,A). Then

θ ∈ Inv(t, h) if and only if (u,k)θ ∈ Inv(ut,k h).
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For H ≤ Atp(F,A), let

Inv∗(H) = {θ ∈ C(F,A); θ ∈ Inv(t, h) if and only if (t, h) ∈ H},
Inv∗c(H) =

⋃

(t,h)∈Atp(F,A)

Inv∗((t,h)H).

If G is a group and H ≤ G, let NG(H) = {a ∈ G; aH = H} be the normalizer
of H in G.

Lemma 5.4. Let H ≤ G = Atp(F,A). Then

| Inv∗c(H)| = | Inv∗(H)| · [G : NG(H)].

For a group G, denote by Subc(G) a set of subgroups of G such that for every
H ≤ G there is precisely one K ∈ Subc(G) such that K is conjugate to H .

Theorem 5.5. Let F be a loop and A an abelian group. Assume that θ is
separable for every θ ∈ C(F,A). Let G = Atp(F,A). Then there are

∑

H∈Subc(G)

| Inv∗c(H)|
|B(F,A)| · [G : H ]

=
∑

H∈Subc(G)

| Inv∗(H)|
|B(F,A)| · [NG(H) : H ]

central extensions of A by F , up to isotopism.

6. Nilpotent loops of order 2q, q prime

We now investigate the 2q order case, with q an odd prime integer throughout.
The discussion in [DV09] showing that we can suppose A = Z2, F = Zq and that
each cocycle is admissible is still valid; we can therefore use fully Theorem 5.5 in
the computation of the number of nilpotent loops of order 2q. In order to do so,
the first step is to understand the structure of Atp(F ).

6.1 Subgroup structure of Atp(Zq). We recall the following proposition from
[Cla12].

Proposition 6.1. Let G be a finite abelian group. Then

φ : Aut(G)⋉G2 → Atp(G)

(h, x0, y0) 7→ th,x0,y0

is an isomorphism, where the multiplication on Aut(G) ⋉G2 is given by

(h,X)(h′, X ′) = (hh′, hX ′ +X)

and where the autotopisms th,x0,y0 are defined by




x 7→ hx+ x0

y 7→ hy + y0

z 7→ hz + x0 + y0

.
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Let us introduce some notation. For m a generator of F \ {0} ∼= Zq−1, d a
divisor of q − 1, X ∈ F 2 and y ∈ F , define





HX
d = 〈(md, X)〉 = {(mkd, 1−mkd

1−md X); k ∈ Z}
Ky = 〈(1, (1, y))〉 = {(1, (k, ky)); k ∈ Z}
K̃ = 〈(1, (0, 1))〉 = {(1, (0, k)); k ∈ Z}

.

Since by [Cla12] for a fixed d all HX
d are conjugate (see Table 1), we simply

write Hd instead of H
(0,0)
d . Note that this notation is consistent with the one

in [DV09].
Here are now all subgroups of Atp(F ), up to conjugacy

subgroup H normalizer NG(H) conjugates [NG(H) : H ]

{1} Atp(F ) only itself q2(q − 1)
Hd, d 6= q − 1 Aut(F ) every HX

d d

Ky or K̃ Atp(F ) only itself q(q − 1)
Hd ·Ky, d 6= q − 1 Aut(F ) ·Ky every HX

d ·Ky d

Hd · K̃, d 6= q − 1 Aut(F ) · K̃ every HX
d · K̃ d

Hd ⋉ F 2 Atp(F ) only itself d

Table 1. Representatives for conjugacy classes of F = Atp(Zq)
and their normalizer.

Proof: See [Cla12, Example 3.4]. �
6.2 dim(Inv(H)), H ≤ Atp(Zq). In the next proposition, we compute the dimen-
sions of the invariant spaces of the subgroups of Atp(F ), with as before A = Z2,
F = Zq and q an odd prime (see Subsection 6.1 for notations).

Proposition 6.2. The dimensions of the invariant spaces of the subgroups of
Atp(F ) are indicated in Table 2 below, where d is any divisor of q − 1.

subgroup H Hd Hd ·Ky, y /∈ {0,−1} other
dim(Inv(H)/B(F,A)) (q − 2)d d 0

Table 2. Representatives for conjugacy classes of F = Atp(Zq)
and dimension of their invariant subspaces.

Proof: The proof will take us the entire subsection, and will be divided in lem-
mas and corollaries as much as possible.

Note that since the action of Atp(F,A) we defined on C(F,A) coincides (by
restriction) with the action of Aut(F,A) defined in [DV09], the first column of
Table 2 directly follows from [DV09]. Thus, let us start with the case H = Ky.
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For every y0 ∈ F , define on C(F,A) the operator S (depending on y0) by:

S : C(F,A) → C(F,A)

θ 7→(1,t1,1,y0 ) θ − θ

using the notation of Proposition 6.1; otherwise put, S is defined for every θ ∈
C(F,A) by

Sθ(x, y) = θ(x+ 1, y + y0)− θ(x+ 1, y0)− θ(1, y + y0) + θ(1, y0)− θ(x, y).

Similarly, define on the space Map(F × F,A) of non-normalized cocycles the

operator S̃ by:

S̃ : Map(F × F,A) → Map(F × F,A)

µ 7→ µ(·+ 1, ·+ y0)− µ

i.e. for every µ ∈ Map(F × F,A):

S̃µ(x, y) = µ(x+ 1, y + y0)− µ(x, y).

Like in [DV09], since Inv(Ky0) = S−1(B(F,A)), we are interested in computing
the kernel KerS first. In analogy with [DV09], we are going to prove that it is
spanned by these cocycles Λi that take the value 1 on exactly one orbit of the
action on F 2 by the translation (x, y) 7→ (x+ 1, y+ y0); or rather by their image
N(Λi) under N (this is the content of Corollary 6.5).

Namely, for 0 ≤ i ≤ q − 1, define Λi ∈ Map(F × F,A) by

Λi(k, ly0) = δl−k,i =

{
1 if l − k = i mod q

0 otherwise
.

Note that these span Ker S̃. Also,

KerS = N(Ker S̃ + V )

where V is some vector space spanned by particular solutions to the systems

S̃µ = ν

for every ν in a chosen basis of KerN .

Lemma 6.3. For any y0 ∈ F , we can choose V so that V ⊂ KerN .

Proof: We have to separate two cases.
Suppose first that y0 6= 0. For 0 ≤ i, j ≤ q − 1, define Li, Cj by

{
Li(x, y) = δx,i

Cj(x, y) = δy,j
.
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Note that these elements of Map(F×F,A) are in KerN ; write 1 =
∑

i Li =
∑

j Cj

for the constant map equalling 1 everywhere. Now, KerN is easily seen to have
dimension 2q − 1, with basis for instance

{1, L1, . . . , Lq−1, C1, . . . , Cq−1}

or, better,

{1, L0 − L1, . . . , Lq−2 − Lq−1, C0 − Cy0 , . . . , C(q−2)y0
− C(q−1)y0

}.

Therefore, we can choose Li+1 (resp. C(j+1)y0
), with 0 ≤ i, j ≤ q − 2 as solutions

to

S̃µ = Li − Li+1 (resp. Cjy0 − C(j+1)y0
)

and V has dimension at least 2(q − 1). Let us show that it cannot be more, by
showing that the constant map 1 does not have any solution in Map(F × F,A).

Indeed, if it were the case, an easy induction for such a solution µ would imply
that for every integer k ≥ 1

µ(k, ky0) = µ(0, 0) + k.

In particular for k = q,

µ(0, 0) = µ(q, qy0) = µ(0, 0) + q = µ(0, 0) + 1.

This is absurd, so V has dimension 2(q− 1), and can be chosen to be included in
KerN .

Now, assume y0 = 0. This case is similar, but here no Cj for 0 ≤ j ≤ q− 1 has
a solution in Map(F × F,A). Indeed, were it the case,

µ(k, j) = µ(0, j) + k

would hold for every integer k ≥ 1; taking k = q, we would have µ(q, j) =
µ(0, j) + 1, absurd. Thus we can choose V = Span1≤i≤q−1(Li), and we are
done. �

Lemma 6.4. For any y0 6= 0, Ker S̃ ∩KerN = Span(1).

Proof: Suppose we have some µ ∈ Ker S̃ ∩ KerN . Then for every integers
k, l ≥ 1, we have

µ(k + 1, (l + 1)y0) = µ(k + 1, 0) + µ(0, (l + 1)y0)− µ(0, 0).

But this is also

µ(k, ly0) = µ(k, 0) + µ(0, ly0)− µ(0, 0).

Thus µ(k + 1, 0)− µ(k, 0) does not depend on k, i.e.

µ(k + 1, 0) = µ(k, 0) + c
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for some constant c ∈ A. Then by a quick induction

µ(0, 0) = µ(q, 0) = µ(0, 0) + qc = µ(0, 0) + c

so c = 0. Therefore µ(k + 1, 0) = µ(k, 0) for all k.
Similarly, µ(0, (l+1)y0) = µ(0, ly0) for all l. But then µ must be constant, and

we are done. �

Corollary 6.5. If y0 = 0, then KerS = 0. Else, KerS has dimension q − 1 and
basis {NΛi}1≤i≤q−1.

Proof: This is a direct corollary of Lemmas 6.3 and 6.4. �
The last step is now to compute the intersection KerS ∩B.

Lemma 6.6. If y0 = −1 then KerS ⊂ B. Else, KerS ∩B = 0.

Proof: In this proof, we use A = Z2 without warning. For convenience, we also
define z0 = y0 + 1.

First, if y0 = −1, every Λi is in B. Thus, let us suppose y0 is neither 0 nor −1,
and take some

τ̂ =
∑

c 6=0

λcτ̂c

that verifies Sτ̂ = 0, where as in [DV09] we define every τc by

τc(x) = δx,c

Since

Sτ̂c =

{
τ̂c−z0 + τ̂c if c 6= z0∑

c′ 6=0, c′ 6=z0
τ̂ ′c otherwise

we have

Sτ̂ =
∑

c 6=0, c 6=z0

λc(τ̂c−z0 + τ̂c) + λz0 ·
∑

c 6=0, c 6=z0

τ̂c

=
∑

c 6=0, c 6=z0, c 6=−z0

(λc+z0 + λc + λz0)τ̂c

+ λ2z0 τ̂z0 + (λz0 + λ−z0)τ̂−z0 .

Because the τc for c 6= 0 form a basis of B(F,A), we must conclude that

λ2z0 = 0 = 2λz0

λ3z0 = λ2z0 + λz0 = 3λz0

. . .

λ(q−1)z0 = (q − 1)λz0 = 0

λ−z0 = λz0 .
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Thus λz0 = 0, so λkz0 = 0 for every k, hence τ̂ = 0. �
As a quick corollary, we are done for the second column of Table 2, in the case

d = q − 1:

Corollary 6.7. dim(Inv(Ky)/B(F,A)) = q−1 whenever y /∈ {0,−1}. Moreover,

the invariant spaces of K0, K−1 and K̃ are null mod B(F,A).

Proof: The only case that was not already investigated is H = K̃, but this is
symmetric to the case H = K0. �

Note that any subgroup H in the third column of Table 2 has either K0, K−1

or K̃ as a subgroup. Thus, its invariant space is also null mod B(F,A).
The only remaining cases in Proposition 6.2 are H = Hd ·Ky, for y /∈ {0,−1}

and d 6= q − 1. Start with a cocycle θ ∈ Span1≤i≤q−1(NΛi)⊕ B(F,A)

θ =
∑

i6=0

λiNΛi + τ.

Then (h,(0,0))θ − θ ∈ B(F,A) if and only if

∑

i6=0

λi(NΛhi −NΛi) ∈ B(F,A)

but since the Λi are linearly independent over KerN , this is equivalent to
∑

i6=0

λi(Λhi − Λi) = 0

i.e. ∑

i6=0

Λi(λh−1i − λi) = 0

i.e. λi = λhi for all i. Thus for any y /∈ {0,−1},

dim
(
Inv

(
{(h, (0, 0))} ∪Ky

)
/B(F,A)

)
=

q − 1

|h|
and all the cases in Proposition 6.2 are covered. �

6.3 | Inv∗(H)|, H ≤ Atp(Zq) and Ñ (2q). Before computing the number of nilpo-
tent loops of order 2q up to isotopism, we still have to compute the cardinalities
of the starred invariant spaces for the subgroups of Atp(F,A). This is the content
of Proposition 6.8.

Proposition 6.8. The cardinalities of the starred invariant spaces for the sub-
groups of Atp(F,A) are provided in Table 3 below, where as in [DV09], we define
for every integer d:

Pred(d) = {d′; 1 ≤ d′ < d, d/d′ is a prime}.
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subgroup H cardinality | Inv∗(H)|
{1} 2(q−2)(q−1) + q2 ·

∑

D⊂Pred(q−1)

(−1)|D|2(q−2) gcd(D)

−(q − 2)
(
2q−1 + q2 ·

∑

D⊂Pred(q−1)

(−1)|D|2gcd(D)
)

−(q − 3)(q − 1)(q + 1)

Hd, d /∈ {1, q − 1} 2(q−2)d +
∑

D⊂Pred(d)

(−1)|D|2(q−2) gcd(D)

−(q − 2)
(
2d +

∑

D⊂Pred(d)

(−1)|D|2gcd(D)
)

H1 2q−2 − (q − 1)

Ky, y /∈ {0,−1} 2q−1 + q ·
∑

D⊂Pred(q−1)

(−1)|D|2gcd(D) + q − 1

Hd ·Ky, d /∈ {1, q − 1} 2d +
∑

D⊂Pred(d)

(−1)|D|2gcd(D)

y /∈ {0,−1}
H1 ·Ky, y /∈ {0,−1} 1
Atp(F,A) 1
other 0

Table 3. Representatives for conjugacy classes of F = Atp(Zq)
and their starred invariant spaces.

Proof: The proof is straightforward, using the following expression, together
with Proposition 6.2 and a standard inclusion/exclusion argument.

Inv∗(H) = Inv(H) \
⋃

K

Inv(K)

= (Inv(H) \ {0}) \ (
⋃

K

Inv(K) \ {0})

where the union is taken for subgroups K such that H is a maximal subgroup
of K; Table 4 below provides for each subgroup H the subgroups K in which H
is maximal.

Details are left to the reader. �
For convenience, let us write Ñ (n) for the number of nilpotent loops of order

n counted up to isotopism, and N (n) the number of nilpotent loops of order n
counted up to isomorphism. This notation is consistent with the one in [DV09],
and we recall the following:
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subgroup H subgroups K in which H is maximal

{1} every HX
d for d ∈ Pred(q − 1), any X

every Ky for y ∈ {1, . . . , q − 2}
Hd, d 6= q − 1 every Hd′ for d′ ∈ Pred(d),

every Hd ·Ky for y ∈ {1, . . . , q − 2}
Ky, y ∈ {1, . . . , q − 2} every HX

d ·Ky for d ∈ Pred(q − 1) and
X ∈ {(0, 0), . . . (q − 1, 0)}

Hd ·Ky, y ∈ {1, . . . , q − 2} every Hd′ ·Ky for d′ ∈ Pred(d) and
y ∈ {1, . . . , q − 2}

Table 4. Representatives for conjugacy classes of F = Atp(Zq)
and the non-null invariant-space subgroups in which they are
maximal.

Theorem 6.9. Let q be an odd prime. Then the number N (2q) of nilpotent
loops of order 2q counted up to isomorphism is

N (2q) =
∑

d divides q−1

1

d

(
2(q−2)d +

∑

D⊂Pred(d)

(−1)|D|2(q−2) gcd(D)

)
.

Proof: See [DV09, Theorem 7.1]. �
We have now all ingredients in hand for Theorem 6.10.

Theorem 6.10. Let q be an odd prime. Then the number Ñ (2q) of nilpotent
loops of order 2q counted up to isotopism is

Ñ (2q) =
2(q−2)(q−1)

q2(q − 1)
+

1

q − 1

∑

D⊂Pred(q−1)

(−1)|D|2(q−2) gcd(D)

+
∑

d strictly divides q−1

1

d

(
2(q−2)d +

∑

D⊂Pred(d)

(−1)|D|2(q−2) gcd(D)

)

+
1

q2

(
(q − 2)2q−1 + 3)

)

= N (2q) +
1

q2
(
− (q + 1)2(q−2)(q−1) + (q − 2)2q−1 + 3

)
.

Proof: Combine Theorem 5.5 and Proposition 6.8. �
Recall from [DV09] the following theorem.

Theorem 6.11. Let q be an odd prime. Then the number of nilpotent loops of
order 2q counted up to isomorphism is approximately 2(q−2)(q−1)/(q − 1). More
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precisely,

lim
q prime, q→∞

N (2q) · q − 1

2(q−2)(q−1)
= 1.

Proof: See [DV09, Theorem 7.3]. �

We can now compare the estimates for N (2q) and Ñ (2q), this is the purpose
of the following corollary.

Corollary 6.12. Let q be an odd prime. Then the number of nilpotent loops of
order 2q counted up to isotopism is approximately 2(q−2)(q−1)/q2(q − 1). Thus,
the ratio between the number of such loops counted up to isomorphism and up
to isotopism is approximately q2. More precisely,

lim
q prime, q→∞

Ñ (2q) · q2(q − 1)

2(q−2)(q−1)
= 1,

lim
q prime, q→∞

N (2q)

q2 · Ñ (2q)
= 1.

Proof: This is immediate from Theorems 6.10 and 6.11. �
Table 5 below provides Ñ (2q) for any odd prime q ≤ 17. Like in [DV09], it is

not a problem to compute Ñ (2q) for bigger primes, but this would not fit nicely
in a table.

q Ñ (2q)
3 2
5 63
7 3,658,003
11 1,023,090,941,561,683,953,759,579
13 2,684,673,506,279,593,406,254,437,209,960,379,083
17 382,103,603,974,564,085,117,495,134,243,710,834,769,544,696,954,218,618,882,023,686,506,659

Table 5. Number Ñ (2q) of nilpotent loops of order 2q up to
isotopism, for odd primes q ≤ 17.

7. Conclusion

We invite the reader desiring to know about related works and topics to check
Section 10 in [DV09].

Note that in the present paper we did not compute the number of nilpotent
loops of small order (say less that 24) up to isotopy. Undertaking such counting
appears of interest to us. Possible trouble could be the isotopy non-invariance of
the set of large center cocycles (see Section 8 in [DV09]), since isotopy does not
preserve centers.

Also of interest is the enumeration of nilpotent loops of small order in Bol-
Moufang varieties (see [PV05]) up to isomorphy, and up to isotopy (here also,
isotopy invariance should be a concern).
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The computation of Table 5 was undertaken using the GAP System for Compu-
tational Discrete Algebra (see http://www.gap-system.org/). This paper comes

with the code used for Table 5 and a file containing the numbers Ñ (2q) of nilpo-
tent loops of order 2q for every odd prime q less than 100. The two files can be
downloaded at http://www.math.cornell.edu/∼lpc49/.
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