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Abstract. In this paper, we have investigated some properties of the first Dirichlet eigen-
value of a bicyclic graph with boundary condition. These results can be used to charac-
terize the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all
the bicyclic graphs with a given graphic bicyclic degree sequence with minor conditions.
Moreover, the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among
all the bicycle graphs with fixed k interior vertices of degree at least 3 are obtained.
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1. Introduction

In this paper, we only consider connected, simple and undirected graphs. Let

G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). Let dG(v)

denote the degree of a vertex v in G and L(G) = D(G) − A(G) be the Laplacian

matrix of G, where D(G) is the diagonal matrix whose diagonal entries are vertex

degrees and A(G) is the adjacency matrix of G. A sequence of non-negative integers

(d0, d1, . . . , dn−1) is called graphic degree sequence if there exists a simple connected

graph having π as its vertex degree sequence. Zhang [6] determined the extremal

graphs which have largest Laplacian eigenvalues among all trees with a given graphic

tree degree. Recently, the Dirichlet eigenvalues of graphs with boundary have re-

ceived much attention (see [1], [3]–[5]), since the graph Laplacian can be regarded the

discrete analog of the continuous Laplace operator on manifolds. Bıyıkoğlu and Ley-

dold in [1] characterized the graphs with the smallest first Dirichlet eigenvalue among

The research has been supported by National Natural Science Foundation of China (No.
10971137), the National Basic Research Program (973) of China (No. 2006CB805900),
and a grant of Science and Technology Commission of Shanghai Municipality (STCSM,
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the trees with a given degree sequence with the spectral geometry methods. Further,

the authors of this paper in [5] determined the graphs with the smallest first Dirichlet

eigenvalue among the unicyclic graphs with a give n-degree sequence with minor con-

ditions. These results may be called discrete Faber-Krahn type theorems, since they

can be regarded the discrete analog of the celebrated Faber-Krahn Theorem con-

cerning Dirichlet eigenvalues among all bounded domains of the same volume in Rs.

A connected graph is said to be bicyclic if its number of edges is equal to its

number of vertices plus one. Motivated by the above results, we will investigate the

first Dirichlet eigenvalue of bicyclic graphs with a given degree sequence with minor

conditions. Let π be a graphic bicyclic degree sequence. In this paper we always

assume that the frequency of 2 in π is 0. Let Bπ be the set of bicyclic graphs with

given degree sequence π. In this paper, we are interested in the first Dirichlet eigen-

value of bicyclic graphs. The rest of this paper is organized as follows: In Section 2,

we recall some properties of the first Dirichlet eigenvalue of a graph with boundary.

In Section 3, we investigate the structure of bicyclic graphs with the smallest first

Dirichlet eigenvalue in Bπ. In Section 4, we characterize the extremal graphs with the

smallest first Dirichlet eigenvalue in Bπ and investigate the relationship between the

first Dirichlet eigenvalues of bicyclic graphs having the smallest Dirichlet eigenvalue

with different graphic bicyclic degree sequences.

2. Preliminaries

In this section, we introduce some notations and lemmas. The definition of a graph

with boundary differs from that given in [2] where the set of vertices is just parti-

tioned. In a further step the set of boundary vertices is then the set of pendant

vertices. A graph with boundary is a graph G = (V0∪∂V , E0∪∂E) such that degree

of any vertex in V0 (interior vertex) is at least 2, a vertex in ∂V (boundary vertex)

is a pendant vertex, the edge in E0 (interior edge) connects two interior vertices, and

the edge in ∂E (boundary edge) connects an interior vertex and a boundary vertex.

Let S be the set of all real-valued functions on V (G) with f(u) = 0 for u ∈ ∂V . The

first Dirichlet eigenvalue, denoted by λ(G), is the smallest real number λ such that

there exists a function f ∈ S such that L(G)f(u) = λf(u) for u ∈ V (G). Let RG(f)

denote the Rayleigh quotient of L(G) on real-valued function f on V (G). Then

λ(G) = min
f∈S

RG(f) > 0,

and there exists a unique eigenfunction f of λ(G) with ‖f‖ = 1 and f(v) > 0 for

v ∈ V0 (see [2]). Such an eigenfunction f is called the first Dirichlet eigenfunction

of G.
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Let G − uv denote the graph obtained from G by deleting an edge uv in G and

G + uv denote the graph obtained from G by adding an edge uv. The following

lemma is well-known.

Lemma 2.1 ([1]). Let G = (V0 ∪∂V, E0 ∪∂E) be a connected graph with bound-

ary. Suppose that u, v, x ∈ V0 and y ∈ V (G) satisfy uv, xy ∈ E(G) and ux, vy /∈

E(G). Let f be the first Dirichlet eigenfunction of G and G′ = G−uv−xy+ux+vy.

If f(u) > f(y) and f(x) > f(v), then

λ(G′) 6 λ(G).

Moreover, the inequality is strict if one of the two inequalities is strict.

By Lemma 2.1, we can get the following corollary:

Corollary 2.2. Let G = (V0 ∪ ∂V, E0 ∪ ∂E) be a graph with the smallest first

Dirichlet eigenvalue in Bπ. Suppose that u, v, x ∈ V0 and y ∈ V (G) satisfy uv,

xy ∈ E(G) and ux, vy /∈ E(G). Let f be the first eigenfunction of G and G′ =

G − uv − xy + ux + vy. If G′ ∈ Bπ, then the following holds:

(1) if f(u) = f(y), then f(v) = f(x);

(2) if f(u) > f(y), then f(v) > f(x).

Let uv ∈ E(G) be a cut edge of a graph G. If a connected component of G − uv

is a tree T with v ∈ V (T ), then the induced subgraph of G induced by V (T ) ∪ {u}

is called a branch tree at the vertex u of G.

Lemma 2.3. Let G = (V0 ∪ ∂V, E0 ∪ ∂E) be a graph with the smallest first

Dirichlet eigenvalue in Bπ and f be the first Dirichlet eigenfunction of G. If there

is a branch tree T at a vertex u, then f(x2) > f(u), for any edge x1x2 contained in

any cycle C in G with u 6= x1, u 6= x2, and ux1 /∈ E(G).

P r o o f. Since there is a branch tree T at u, there exists a path P = uv1 . . . vs

with s > 1, vk ∈ V (T ) for 1 6 k 6 s and vs ∈ ∂V . Clearly, x1vk, x2vk /∈ E(G) for

1 6 k 6 s. Suppose that f(x2) 6 f(u). Let G1 = G−x1x2−uv1 +x1u+x2v1. Then

G1 ∈ Bπ and f(x1) 6 f(v1) by Corollary 2.2. Further, let G2 = G − x1x2 − v1v2 +

x1v2 + x2v1. Then G2 ∈ Bπ and f(x2) 6 f(v2) by Corollary 2.2. Hence by repeating

above methods, we get f(vs) > min{f(x1), f(x2)}. But f(vs) = 0, since vs ∈ ∂V .

Therefore f(x1) = 0 or f(x2) = 0. This is a contradiction with x1, x2 ∈ V0. So the

assertion holds. �
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Corollary 2.4. Let G = (V0 ∪ ∂V, E0 ∪ ∂E) be a graph with the smallest first

Dirichlet eigenvalue in Bπ and f be the first Dirichlet eigenfunction of G. If a vertex

v is not contained in any cycle of G, then there exist at least three vertices v0, v1, v2

in some cycle such that f(vi) > f(v) for i = 0, 1, 2.

P r o o f. If v is a boundary vertex, the assertion obviously holds. Assume that

v is an interior vertex not contained in any cycle. Then there is a branch tree T

at the vertex v. Further there exist at least three edges v0u0, v1u1, v2u2 such that

v0 6= v1 6= v2 and vui /∈ E(G) for i = 0, 1, 2. Hence by Lemma 2.3, f(vi) > f(v) for

i = 0, 1, 2. �

Lemma 2.5 (see also [5]). Let G = (V0 ∪ ∂V , E0 ∪ ∂E) ∈ Bπ and v1, v2 ∈ V0.

Suppose that utv1 ∈ E(G), utv2 /∈ E(G) and ut is not on any path from v1 to v2

for t = 1, 2, . . . , k, where k 6 dG(v1) − 2. Let f ∈ S with ‖f‖ = 1 and G1 =

G− u1v1 − . . .− ukv1 + u1v2 + . . . + ukv2. Then G1 and G have the same boundary,

and RG1
(f) 6 RG(f) if f(v1) > f(v2) > f(ut) for t = 1, 2, . . . , k.

P r o o f. Clearly, G1 and G have the same boundary. By

RG1
(f) − RG(f) =

k∑

t=1

(f(v2) − f(ut))
2 −

k∑

t=1

(f(v1) − f(ut))
2

=
k∑

t=1

(f(v2) − f(v1))(f(v1) + f(v2) − 2f(ut))

6 0,

the assertion holds. �

3. The structure of graphs with the smallest

first Dirichlet eigenvalue in Bπ

In this section we will investigate the structure of the graphs with the smallest first

Dirichlet eigenvalue in Bπ. Let B(Pk, Pl, Pm) be the bicyclic graph obtained from

three pairwise internal disjoint paths Pk, Pl, and Pm from a vertex x to a vertex y

with length k, l and m, respectively, where at most one of k, l, m is equal to 1.

It is well known that there exist two edge-disjoint cycles or some induced subgraph

B(Pk, Pl, Pm) in any bicycle graph. Then we have the following:
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Lemma 3.1. Let G = (V0 ∪ ∂V, E0 ∪ ∂E) be a graph of order n > 4 with the

smallest first Dirichlet eigenvalue in Bπ and f be the first Dirichlet eigenfunction

of G. Then there exist three vertices v0, v1 and v2 contained in some cycles of G

such that f(v0) > f(v1) > f(v2) > f(x) for x ∈ V (G) \ {v0, v1, v2}.

P r o o f. Let v0, v1 and v2 be three vertices such that f(v0) > f(v1) > f(v2) >

f(x) for x ∈ V (G) \ {v0, v1, v2}. By Corollary 2.4, it is easy to see that v0, v1, v2 are

contained in some cycles of G. �

Lemma 3.2. Let G = (V0 ∪ ∂V, E0 ∪ ∂E) be a graph with the smallest first

Dirichlet eigenvalue in Bπ. Then G contains some induced subgraph B(Pk, Pl, Pm).

P r o o f. Suppose that G does not contain any induced subgraph B(Pk, Pl, Pm).

Then there exist two edge-disjoint cycles C1 and C2. Let f be the first Dirichlet

eigenfunction of G. By Lemma 3.1, there exists three vertices v0, v1 and v2 contained

in cycles of G such that f(v0) > f(v1) > f(v2) > f(x) for x ∈ V (G) \ {v0, v1, v2}.

We consider the following two cases:

Case 1 : C1 and C2 have no common vertices. Then there exists at least one vertex

in {v0, v1, v2} such that there is a branch tree at some vertex, say v2 ∈ V (C1), since

d(v2) > 3 and v2 is an interior vertex. Let x1x2 ∈ E(C2) be such that x1v2 /∈ E(G)

and x2 6= v0, v1. Then f(x2) > f(v2) by Lemma 2.3. This is a contradiction.

Case 2 : C1 and C2 have a common vertex. If v0 ∈ V (C1) ∩ V (C2), then there is

a branch tree at v1 since d(v1) > 3. Without loss of generality, assume v1 ∈ V (C1)

and let y1y2 ∈ E(C2) be such that y1v1 /∈ E(G) and y2 6= v0. Then f(y2) > f(v1) by

Lemma 2.3, which is a contradiction. If v0 /∈ V (C1) ∩ V (C2), then there is a branch

tree at v0, since d(v0) > 3. By Lemma 2.3, we can also get a contradiction. So the

assertion holds. �

Lemma 3.3. Let G = (V0 ∪ ∂V, E0 ∪ ∂E) be a bicyclic graph with the smallest

first Dirichlet eigenvalue in Bπ and f be the first Dirichlet eigenfunction of G. Then

there are two cycles v0v1v2 and v0v1v3 in G such that f(v0) > f(v1) > f(v2) >

f(v3) > f(x) for x ∈ V (G) \ {v0, v1, v2, v3}.

P r o o f. By Lemma 3.2, G contains an induced subgraph B(Pk, Pl, Pm), denoted

by H . By Lemma 3.1, there exist three vertices v0, v1 and v2 such that v0, v1, v2 ∈

V (H) and f(v0) > f(v1) > f(v2) > f(x) for x ∈ V (G) \ {v0, v1, v2}.

Claim 1 : dH(v0) = dH(v1) = 3. If dH(v0) = 2, then there is a branch tree at

v0 since dG(v0) > 3. Let C1 and C2 be two cycles in G such that v0 ∈ V (C1) and

v0 /∈ V (C2). Clearly, there exists an edge x1x2 ∈ E(C2) such that x1v0 /∈ E(G).

Then we have f(x2) > f(v0) by Lemma 2.3. This is impossible. So dH(v0) = 3.

Similarly, we can show that dH(v1) = 3.
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Claim 2 : v1v2, v0v2 ∈ E(G). Suppose that v1v2 /∈ E(G). By Claim 1, we have

dH(v2) = 2. Further there is a branch tree at v2 since dG(v2) > 3. On the other

hand, there exists an edge v1y ∈ E(H) such that y 6= v0. Then f(y) > f(v2)

by Lemma 2.3. This is impossible. So v1v2 ∈ E(G). By the same proof, we have

v0v2 ∈ E(G).

Let v3 ∈ V (G) be such that f(v3) > f(x) for x ∈ V (G) \ {v0, v1, v2, v3}. Then

v3 ∈ V (H). Otherwise, let C be a cycle of the graph G − v0v2. Then there exists

an edge z1z2 ∈ E(C) such that z1v3 /∈ E(G) and z2 6= v0, v1. Note that there is

a branch tree at v3 and z2 6= v2. Then f(v3) < f(z2) by Lemma 2.3, a contradiction.

Claim 3 : v1v3, v0v3 ∈ E(G). Suppose that v1v3 /∈ E(G). Note that dH(v3) = 2

and there is a branch tree at v3. Moreover, clearly there exists an edge v1w ∈ E(C)

such that w 6= v0 and w 6= v2. Then f(w) > f(v3) by Lemma 2.3. This is impossible.

So v1v3 ∈ E(G). Further we have v0v3 ∈ E(G) by the same proof.

At last, we prove v0v1 ∈ E(G). If v0v1 /∈ E(G), then there exists a vertex u ∈ V (G)

such that v0u ∈ E(H) and u 6= v2, v3. Clearly, uv2 /∈ E(G). Since dH(u) = 2, there is

a branch tree at u. By Lemma 2.3, f(v1) > f(u). Let G1 = G−v0u−v1v2+v0v1+uv2.

Then G1 is connected. Further G1 ∈ Bπ and f(v2) > f(v0) by Corollary 2.2. This is

a contradiction. So v0v1 ∈ E(G). The proof is completed. �

Theorem 3.4. Let G = (V0 ∪ ∂V, E0 ∪ ∂E) be a graph with the smallest first

Dirichlet eigenvalue in Bπ and f be the first Dirichlet eigenfunction of G. Then there

exists a numeration of the vertices of G with root v0 such that the following hold:

(1) f(v0) > f(v1) > . . . > f(vn−1);

(2) h(v0) 6 h(v1) 6 . . . 6 h(vn−1), where h(v) is the distance between a vertex v

and the root v0;

(3) if vivj , vsvt ∈ E(G) with i < s and h(vj) = h(vt) = h(vi) + 1 = h(vs) + 1, then

j < t.

P r o o f. By Lemma 3.3, there are two cycles v0v1v2 and v0v1v3 in G such

that f(v0) > f(v1) > f(v2) > f(v3) > f(x) for x ∈ V (G) \ {v0, v1, v2, v3}. Let

v0 be the root of G and h(v) be the distance between a vertex v and the root v0.

Suppose h(G) = max
v∈V (G)

h(v). Let Vi = {v ∈ V (G)|h(v) = i} and Di =| Vi | for

0 6 i 6 h(G). In order to prove that the assertion holds, we relabel the vertices

of G. Let V0 = {v0,1}, where v0,1 = v0. Clearly, D1 = dG(v0). The vertices in V1

are relabeled v1,1, v1,2, . . . , v1,D1
such that f(v1,1) > f(v1,2) > . . . > f(v1,D1

) and

v1,1v1,2, v1,1v1,3 ∈ E(G). Assume that the vertices in Vt have already been relabeled

vt,1, vt,2, . . . , vt,Dt
. The vertices in Vt+1 can be relabeled vt+1,1, vt+1,2, . . . , vt+1,Dt+1

such that they satisfy the following conditions: If vt,kvt+1,i, vt,kvt+1,j ∈ E(G) and

i < j, then f(vt+1,i) > f(vt+1,j); if vt,kvt+1,i, vt,lvt+1,j ∈ E(G) and k < l, then i < j.
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Claim: f(vt,1) > f(vt,2) > . . . > f(vt,Dt
) > f(vt+1,1) for 0 6 t 6 h(G).

We will prove that the Claim holds by the induction on t. Clearly, the Claim

holds for t = 0 and f(v1,1) > f(v1,2) > . . . > f(v1,D1
). If dG(v0,1) = 3, then D1 = 3

and v1,1 = v1, v1,2 = v2, v1,3 = v3. It is easy to see that f(v1,3) > f(v2,1). Assume

now dG(v0,1) > 3. Clearly, v1,D1
v1,1, v0,1v2,1 /∈ E(G). Since dG(v1,2) > 3, we have

v1,1v2,1 ∈ E(G) or v1,2v2,1 ∈ E(G). Without loss of generality, assume v1,1v2,1 ∈

E(G). Let G1 = G−v0,1v1,D1
−v1,1v2,1+v0,1v2,1 +v1,1v1,D1

. Clearly, G1 ∈ Bπ. Since

f(v0,1) > f(v1,1), we get f(v1,D1
) > f(v2,1) by Corollary 2.2. So the Claim also holds

for t = 1. Now assume that the Claim holds for t = s − 1. In the following we prove

that the Claim holds for t = s. If there are two vertices vs,i, vs,j ∈ Vs with i < j

and f(vs,i) < f(vs,j), then there exist two vertices vs−1,k, vs−1,l ∈ Vs−1 with k < l

such that vs−1,kvs,i, vs−1,lvs,j ∈ E(G). By the induction hypothesis, f(vs−1,k) >

f(vs−1,l). LetG2 = G−vs−1,kvs,i−vs−1,lvs,j+vs−1,kvs,j+vs−1,lvs,i. Clearly,G2 ∈ Bπ.

By Lemma 2.1, λ(G1) < λ(G). This is impossible. So f(vs,i) > f(vs,j). By a similar

proof we have f(vs,Ds
) > f(vs+1,1). So the Claim holds. Therefore, we finish our

proof. �

4. The extremal graphs with the smallest first Dirichlet

eigenvalue in Bπ

In this section, we will characterize the extremal graphs with the smallest first

Dirichlet eigenvalue in Bπ and give the majorization theorem for bicyclic graphs

with different graphic bicyclic degree sequences. The following lemma is a well

known result.

Lemma 4.1. Let G = (V0∪∂V, E0∪∂E) be a graph with boundary and f be the

first Dirichlet eigenfunction of G. Then for any vertex v ∈ V0, there exists a vertex

u ∈ V (G) such that uv ∈ E(G) and f(u) < f(v).

Let π = (d0, d1, . . . , dk−1, dk, . . . , dn−1) be a graphic bicyclic degree sequence with

3 6 d0 6 d1 6 . . . 6 dk−1 and dk = . . . = dn−1 = 1 for k > 4. In order to

present our main result, we need to construct a special bicyclic graph B∗

π with

degree sequence π. Select a vertex v01 a root and begin with v01 of the zero-

th layer. Let s1 = d0 and select s1 vertices v1,1, v1,2, . . . , v1,s1
of the first layer

such that they are adjacent to v0,1 and v1,1 is adjacent to v1,2 and v1,3. Next

we construct the second layer as follows. Let s2 =
s1∑

i=1

di − s1 − 4 and select s2

vertices v2,1, v2,2, . . . , v2,s2
such that v1,1 is adjacent to v2,1, . . . , v2,d1−3, v1,2 is adja-

cent to v2,d1−2, . . . , v2,d1+d2−5, v1,3 is adjacent to v2,d1+d2−4, . . . , v2,d1+d2+d3−7, . . .,
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v1,j is adjacent to v2,d1+...+dj−1−j−2, . . . , v2,d1+...+dj−j−4, . . ., v1,s1
is adjacent to

v2,d1+...+ds1−1−s1−2, . . . , v2,d1+...+ds1
−s1−4 = v2,s2

. In general, assume that all ver-

tices of the t-th layer have been constructed and are denoted by vt,1, vt,2, . . . , vt,st
. We

construct all the vertices of the (t+1)-st layer by the induction hypothesis. Let st+1 =

ds1+...+st−1+1 + . . .+ds1+...+st
−st and select st+1 vertices vt+1,1, vt+1,2, . . . , vt+1,st+1

of the (t+1)-st layer such that vt,1 is adjacent to vt+1,1, . . . , vt+1,ds1+...+st−1+1−1, . . .,

vt,st
is adjacent to vt+1,st+1−ds1+...+st

+2, . . . , vt+1,st+1
. In this way, we obtain only

one bicyclic graph B∗

π with degree sequence π (see Figure 1 for an example).

v0,1

v1,1 v1,2
v1,3 v1,4

v2,1 v2,2

v2,3 v2,4 v2,5 v2,6 . . . v2,9

v3,1 . . . v3,4 v3,5 . . . v3,9

Figure 1. B∗
π with π = (4, 4, 4, 4, 5, 5, 6, 1, . . . , 1) (◦ . . . boundary vertex)

Theorem 4.2. Let π = (d0, d1, . . . , dk−1, 1, 1, . . . , 1) be a graphic bicyclic degree

sequence with 3 6 d0 6 d1 6 . . . 6 dk−1 for k > 4. Then every extremal graph with

the smallest first Dirichlet eigenvalue in Bπ is isomorphic to B∗

π.

P r o o f. Let G be a graph with the smallest first Dirichlet eigenvalue in Bπ

and f be the first Dirichlet eigenfunction of G. Without loss of generality, assume

V (G) = {v0, v1, . . . , vn−1} such that the three assertions in Theorem 3.4 hold and

G has two cycles v0v1v2 and v0v1v3. In order to prove that the assertion holds, we

only need to prove dG(vt) = dt for 0 6 t 6 k − 1.

Since di+1 > di for 0 6 i 6 k − 2, we have dG(v0) > d0. If dG(v0) = d0,

there is nothing to do and let G1 = G. Otherwise, let G1 = G − v0vd0+1 − . . . −

v0vdG(v0) + v1vd0+1 + . . . + v1vdG(v0). Since f(v0) > f(v1) > f(vd0+1) > . . . >

f(vdG(v0)), we have RG1
(f) 6 RG(f) by Lemma 2.5. Clearly, dG1

(v0) = d0 and

dG1
(v1) > d1. If dG1

(v1) = d1, there is nothing to do and let G2 = G1. Oth-

erwise, let G2 = G1 − v1vd0+d1−2 − . . . − v1vdG(v0)+dG(v1)−3 + v2vd0+d1−2 + . . . +

v2vdG(v0)+dG(v1)−3. Then dG2
(v1) = d1 and RG2

(f) 6 RG1
(f) by Lemma 2.5, since

f(v1) > f(v2) > f(vd0+d1−2) > . . . > f(vdG(v0)+dG(v1)−3). Obviously, dG2
(v2) >

d2 and v2vs ∈ E(G2) for d0 + d1 − 2 6 s 6 dG(v0) + dG(v1) + dG(v2) − 5. If

dG2
(v2) = d2, let G3 = G2. Otherwise, let G3 = G2 − v2vd0+d1+d2−4 − . . . −

v2vdG(v0)+dG(v1)+dG(v2)−5+v3vd0+d1+d2−4+. . .+v3vdG(v0)+dG(v1)+dG(v2)−5. Note that

f(v1) > f(v2) > f(vd0+d1+d2−4) > . . . > f(vdG(v0)+dG(v1)+dG(v2)−5). We have
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dG3
(v2) = d2 and RG3

(f) 6 RG2
(f) by Lemma 2.5. Similarly, if dG3

(v3) = d3,

let G4 = G3. Otherwise, we can also get graph G4 by exchanging edges such

that dG4
(v3) = d3 and RG4

(f) 6 RG3
(f). We proceed in the same way with

v4, v5, . . . , vi−1 and get a sequence of bicyclic graphs G1, G2, . . . , Gi with the same

set of boundary vertices such that dGi
(vt) = dt for t = 0, 1, . . . , i − 1, and

λ(G) = RG(f) > RG1
(f) > RG2

(f) > . . . > RGi
(f),

where i > 4. Since ∑

t6i

dGi
(vt) =

∑

t6i

dG(vt) >
∑

t6i

dt

and ∑

t<i

dGi
(vt) =

∑

t<i

dt,

we have

dGi
(vi) =

∑

t6i

dGi
(vt) −

∑

t<i

dGi
(vt) >

∑

t6i

dt −
∑

t<i

dt = di.

If dGi
(vi) = di, there is nothing to do and let Gi+1 = Gi. Otherwise, let x1, x2,

. . . , xdGi
(vi)−1 be all vertices in Gi which are adjacent to vi with f(xs) > f(xs+1)

for 1 6 s 6 dGi
(vi) − 2 and h(vi) < h(xs) for 1 6 s 6 dGi

(vi) − 1. Let Gi+1 =

Gi − vixdi
− . . .− vixdGi

(vi)−1 + vi+1xdi
+ . . . + vi+1xdGi

(vi)−1. Then dGi+1
(vi) = di

and RGi
(f) > RGi+1

(f) by Lemma 2.5, since f(vi) > f(vi+1) > f(xs) for 1 6 s 6

dGi
(vi) − 1. We continue in this way and get a sequence of bicyclic graphs

G → G1 → G2 → . . . → Gk

such that dGs
(vs−1) = ds−1 for 1 6 s 6 k and

λ(G) = RG(f) > RG1
(f) > RG2

(f) > . . . > RGk
(f) > λ(Gk).

Clearly, Gk = B∗

π. Since G is a graph with the smallest first Dirichlet eigenvalue in

Bπ, we have λ(G) = λ(B∗

π) and f is also the first Dirichlet eigenfunction of B∗

π. If

G 6= B∗

π, then there exists a vertex vp such that dG(vs) = ds for 0 6 s 6 p − 1 and

dG(vp) > dp. Let y1, y2, . . . , ym be all vertices which are adjacent to vp in G and

are not adjacent to vp in B∗

π such that f(ym) 6 f(ym−1) 6 . . . 6 f(y1) 6 f(vp)

and h(ys) > h(vp) for 1 6 s 6 m. Then by the construction of Gp+1, we have

f(ym) 6 f(u) 6 f(vp) for u ∈ V (G) such that uvp ∈ E(G) and h(u) > h(vp). By

λ(B∗

π)f(vp) =
∑

xvp∈E(B∗

π)

(f(vp) − f(x)) = λ(G)f(vp)

=
∑

xvp∈E(B∗

π)

(f(vp) − f(x)) +
m∑

s=1

(f(vp) − f(ys)),
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we have f(vp) = f(ys) for 1 6 s 6 m. Then f(w) > f(vp) for any vertex w adjacent

to vp. This is a contradiction with Lemma 4.1. So G = B∗

π. The proof is completed.

�

In order to present other results, we need a notation and a lemma. Let σ =

(a0, a1, . . . , an−1) and τ = (b0, b1, . . . , bn−1) be two positive sequences. If the sum of

the largest t terms in {b0, . . . , bn−1} is no less than the sum of the largest t terms in

{a0, . . . , an−1} for t = 0, 1, . . . , n−2 and
n−1∑
i=0

ai =
n−1∑
i=0

bi, then τ is said to majorize σ,

denoted by σ E τ. The following result is well known.

Lemma 4.3 (for example, see [7]). Let π = (d0, . . . , dn−1) and π′ = (d′0, . . . ,

d′n−1) be two graphic degree sequences. If π E π′, then there exists a series of

graphic degree sequences π1, . . . , πk such that π E π1 E . . . E πk E π′, and πi and

πi+1 differ in exactly two components and these differ by 1.

Theorem 4.4. Let π1 = (d0, d1, . . . , dk−1, 1, . . . , 1) and π2 = (d′0, d
′

1, . . . , d
′

k−1,

1, . . . , 1) be two graphic bicyclic degree sequences with 3 6 d0 6 d1 6 . . . 6 dk−1

and 3 6 d′0 6 d′1 6 . . . 6 d′k−1. If π2 E π1, then λ(B∗

π1
) 6 λ(B∗

π2
) with equality if

and only if π1 = π2.

P r o o f. By Lemma 4.3, without loss of generality, we may assume that π1 =

(d0, . . . , dp − 1, . . . , dq + 1, . . . , dk−1, 1, . . . , 1) and π2 = (d0, . . . , dk−1, 1, . . . , 1) for

0 6 p < q 6 k − 1. Then dp > 4. In fact, B∗

π1
can be obtained from B∗

π2
by

the same method of constructing B∗

π in Theorem 4.2 such that λ(B∗

π1
) 6 λ(B∗

π2
).

If λ(B∗

π1
) = λ(B∗

π2
), it is easy to see that π1 = π2 by last part of the proof of

Theorem 4.2. Therefore the assertion holds. �

Let Bn,k be the set of all bicyclic graphs with order n and k interior vertices whose

degree is at least 3. Then we have the following

Corollary 4.5. Let π1 = (3, 3, . . . , 3, n−2k+5, 1, . . . , 1) with the frequencies of 3

and 1 being k− 1 and n− k, respectively, where n > 2k− 2. Then B∗

π1
is the unique

graph with the smallest first Dirichlet eigenvalue in Bn,k.

P r o o f. Clearly, B∗

π1
∈ Bn,k. Let G be any bicyclic graph in Bn,k with degree

sequence π = (d0, d1, . . . , dk−1, 1, . . . , 1). It is easy to see that π E π1. By Theo-

rems 4.2 and 4.4, we have λ(B∗

π1
) 6 λ(B∗

π) 6 λ(G) with equality if and only if G is

B∗

π1
. The proof is completed. �
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