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Abstract. Let Bc denote the real-valued functions continuous on the extended real line
and vanishing at −∞. Let Br denote the functions that are left continuous, have a right
limit at each point and vanish at −∞. Define An

c to be the space of tempered distributions
that are the nth distributional derivative of a unique function in Bc. Similarly with A

n
r

from Br. A type of integral is defined on distributions in A
n
c and A

n
r . The multipliers are

iterated integrals of functions of bounded variation. For each n ∈ N, the spaces An
c and

A
n
r are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to Bc

and Br, respectively. Under the ordering in this lattice, if a distribution is integrable then
its absolute value is integrable. The dual space is isometrically isomorphic to the functions
of bounded variation. The space A1c is the completion of the L

1 functions in the Alexiewicz
norm. The space A1r contains all finite signed Borel measures. Many of the usual properties
of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear
change of variables, a convergence theorem.

Keywords: regulated function, regulated primitive integral, Banach space, Banach lattice,
Banach algebra, Schwartz distribution, generalized function, distributional Denjoy integral,
continuous primitive integral, Henstock-Kurzweil integral, primitive
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1. Introduction

An integral means different things to different people: a Riemann sum, approxi-

mation by simple functions, inversion of the derivative of an absolutely continuous

function, a type of linear functional. In this paper we will define an integration pro-

cess on Schwartz distributions of finite order by inverting the nth order distributional

derivative of regulated or continuous functions. An important part of the definition

is that we will obtain a linear functional that acts on iterated integrals of functions

of bounded variation.
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We denote by Bc the continuous functions on the extended real line that vanish at

−∞. Then An
c is the set of distributions that are the nth distributional derivative

of a unique function in Bc. The case n = 1 was studied in [26]. The space A1
c is the

completion of the space of L1 functions and the completion of the space of Henstock-

Kurzweil integrable functions in the Alexiewicz norm. If f : R → R is a Henstock-

Kurzweil integrable function then the Alexiewicz norm is ‖f‖ = sup
x∈R

|
∫ x

−∞
f(t) dt|.

If F ∈ Bc and f = F ′ is its distributional derivative then the continuous primitive

integral of f is
∫ b

a
f = F (b) − F (a). In this paper we define

∫ ∞

−∞
fh for f ∈ An

c

and h an n-fold iterated integral of a function of bounded variation (Definition 2.6).

A function is called regulated if it has a left limit and a right limit at each point.

We denote by Br the left continuous regulated functions that vanish at −∞. Then
An

r is the set of distributions that are the nth distributional derivative of a function

in Br. The case n = 1 was studied in [28]. The space A1
r contains A1

c as well as

all finite signed Borel measures. An integral in An
r is defined as for An

c . Under the

uniform norm, Bc and Br are Banach spaces. The nth order distributional derivative

provides a linear isometric bijection between Bc and An
c and between Br and An

r .

For each n ∈ N, the spaces of distributions An
c and An

r are then Banach spaces that

are isometrically isomorphic to Bc and Br, respectively. If f ∈ An
r with primitive

F ∈ Br then its norm is ‖f‖a,n = ‖F‖∞. The spaces Bc and An
c are separable while

the spaces Br and An
r are not separable.

Below we define our notation for distributions.

The main definitions are given in Section 2. For f ∈ An
r , the integral

∫ ∞

−∞
fh is

defined by reducing to
∫ ∞

−∞ F ′h(n−1). With h(n−1) a function of bounded variation,

this reduces to an integral in A1
r. This is evaluated using Henstock-Stieltjes integrals.

See Definition 2.6. It is shown that distributions in An
r are tempered and of order at

most n. There is translation invariance and for An
c there is continuity in norm. The

multipliers for these integrals are iterated integrals of functions of bounded variation.

Various properties of these functions are proved here.

Examples and further properties of the integral are given in Section 3. If δ

is the Dirac distribution then δ(m) ∈ Am+1
r for each m > 0. It is shown that

each distributional derivative of a finite signed Borel measure is in some An
r space.

A version of the second mean value theorem is established and a linear change

of variables theorem is proved. Relationships amongst An
c and Am

r are investi-

gated.

In Section 4 a type of Hölder inequality is established. For f ∈ An
r with primitive

F ∈ Br we have |
∫ ∞

−∞
fh| 6 ‖F‖∞‖g‖BV , where g is of bounded variation and

g = h(n−1). This leads to a convergence theorem when a sequence (fn) ⊂ An
r

converges in norm. Using the isometries An
c ↔ Bc and An

r ↔ Br it is shown that the
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dual space of An
c is the space of functions of normalized bounded variation and the

dual space of An
r is the space of functions of bounded variation.

Under pointwise operations Br is a Banach lattice. If F1, F2 ∈ Br then F1 6 F2

means F1(x) 6 F2(x) for all x ∈ R. This Banach lattice structure is inherited by

An
c and An

r . If f1 = F
(n)
1 , f2 = F

(n)
2 ∈ An

r then f1 � f2 if and only if F1 6 F2 in

Br. Elementary lattice properties are proved in Section 5, including the fact that An
c

and An
r are abstract M spaces. Under this lattice ordering, the integrals introduced

are absolute in the sense that if f is integrable then the absolute value of f in

this ordering is integrable. This is the case even though functions in An
r may have

conditionally convergent Henstock-Kurzweil integrals.

Banach algebras are considered in Section 6. Under pointwise operations Br is

a Banach algebra. If F1, F2 ∈ Br then (F1F2)(x) = F1(x)F2(x). By the isomor-

phism, An
c and An

r are also Banach algebras. If f1 = F
(n)
1 , f2 = F

(n)
2 ∈ An

r then

f1f2 = Dn(F1F2). For complex-valued distributions they are C
∗-algebras. Under

this multiplication δ(n)δ(n) = δ(n) for each n > 0. J. F. Colombeau, E.E.Rosinger

and others have embedded spaces of distributions in various algebras. For example,

see [21]. The Banach algebra we construct here seems to be unrelated.

The starting point in this paper are the spaces Bc and Br. Basic properties are

established in Section 2. The following lemma is used repeatedly to carry over Banach

space, Banach lattice and Banach algebra properties to An
c and An

r .

Lemma 1.1. Let A be a set. Let B be a vector space over the field R. Let

x, y ∈ A; a ∈ R.

(a) Suppose there is a bijection Φ: B → A. Define x + y = Φ(Φ−1(x) + Φ−1(y))

and ax = Φ(aΦ−1(x)). Then A is a vector space isomorphic to B and Φ is linear

such that Φ ◦ Φ−1 = iA and Φ−1 ◦ Φ = iB.

(b) Suppose B is a Banach space. Define ‖x‖A = ‖Φ−1(x)‖B . Then A is a Banach

space isometrically isomorphic to B. If B is separable so is A.

(c) Suppose B is a Banach lattice. Define x � y in A if and only if Φ−1(x) � Φ−1(y)

in B. Then A and B are isometrically isomorphic Banach lattices.

(d) Suppose B is a Banach algebra. Define xy = Φ(Φ−1(x)Φ−1(y)). Then A and

B are isomorphic Banach algebras.

The proof is elementary. A related result is that if Φ is a surjective isometry

between two normed linear spaces then Φ must be linear. This is the Mazur-Ulam

theorem. For example, see [9].

The test functions are D(R) = C∞
c (R), i.e., the smooth functions with compact

support. The support of a function ϕ is the closure of the set on which ϕ does

not vanish. Denote this as supp(ϕ). There is a notion of continuity in D(R). If
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{ϕn} ⊂ D(R) then ϕn → ϕ ∈ D(R) if there is a compact set K ⊂ R such that for all

n ∈ N, supp(ϕn) ⊂ K, and for each integer m > 0, ϕ
(m)
n → ϕ(m) uniformly on K as

n → ∞. The distributions are the continuous linear functionals on D(R), denoted

D′(R). If T ∈ D′(R) then T : D(R) → R and we write 〈T, ϕ〉 ∈ R for ϕ ∈ D(R). If

ϕn → ϕ in D(R) then 〈T, ϕn〉 → 〈T, ϕ〉 in R. And, for all a1, a2 ∈ R and all ϕ, ψ ∈
D(R), 〈T, a1ϕ + a2ψ〉 = a1〈T, ϕ〉 + a2〈T, ψ〉. If f ∈ Lp

loc for some 1 6 p 6 ∞ then
〈Tf , ϕ〉 =

∫ ∞

−∞ f(x)ϕ(x) dx defines a distribution. For a locally integrable function

we will often drop the distinction between f and Tf . The differentiation formula

〈DnT, ϕ〉 = 〈T (n), ϕ〉 = (−1)n〈T, ϕ(n)〉 ensures that all distributions have derivatives
of all orders which are themselves distributions. This is known as the distributional

derivative or weak derivative. We will usually denote distributional derivatives by

DnF , F (n) or F ′ and pointwise derivatives by F (n)(t) or F ′(t). For T ∈ D′(R) and

t ∈ R the translation τt is defined by 〈τtT, ϕ〉 = 〈T, τ−tϕ〉 where τtϕ(x) = ϕ(x − t)

for ϕ ∈ D(R). If there is an integer N > 0 such that for each compact set K ⊂ R

there is a real number C > 0 such that |〈T, ϕ〉| 6 C
N
∑

0
‖ϕ(n)‖∞ for all ϕ ∈ D(R) with

support in K, then the distribution T is said to be of finite order. The least such N

is the order of T . If µ is a finite signed Borel measure then 〈Tµ, ϕ〉 =
∫ ∞

−∞
ϕ(x) dµ(x)

defines Tµ ∈ D′(R) as a distribution of order 0. Most of the results on distributions

we use can be found in [10], [12] or [30].

Several authors have proposed various schemes for integrating distributions.

L. Schwartz [23] considered the integral of T ∈ D′(R) as the linear functional 〈T, 1〉,
whenever this exists. As will be seen in the next section, we generalize Schwartz’s

definition so that the integrable distributions are continuous linear functionals on

iterated integrals of functions of bounded variation. J. C.Burkill [5] has sketched

out a method of integrating distributions using higher order Stieltjes integrals.

A.M.Russell [22] and A.G.Das [7] with coauthors have also used higher Stieltjes

integrals. J.Mikusiński, J. A.Musielak and R. Sikorski have used convolutions to

define a type of integral for distributions. See [19], [20], [24].

The extended real line is denoted R = [−∞,∞]. The space C(R) consists of the

continuous functions F : R → R. A function is in C(R) if it is continuous at each

point in R and if F (∞) = lim
x→∞

F (x) ∈ R and F (−∞) = lim
x→−∞

F (x) ∈ R. This

two-point compactification makes R into a compact Hausdorff space. A topological

base for R consists of the usual open intervals (a, b) with −∞ 6 a < b 6 ∞, as well
as [−∞, a) with −∞ < a 6 ∞, and (a,∞] with −∞ 6 a < ∞. In this paper the
word compact will always refer to the usual topology on R.

A function F : R → R is regulated on R if it has left and right limits at each point

of R and real limits at ±∞, i.e., for each x ∈ R the limits F (x−) = lim
y→x−

F (y) and

80



F (x+) = lim
y→x+

F (y) exist as real numbers and lim
y→−∞

F (y) and lim
y→∞

F (y) exist as

real numbers. We will use the following normalizations for regulated functions. If F

is regulated and 0 6 λ 6 1 then Fλ(x) = (1−λ)F (x−) +λF (x+) for all x ∈ R. The

functions F and Fλ will then differ on a countable set. Note that F0 is left continuous

and F1 is right continuous. If F is continuous then all normalizations are equal to

F . The Heaviside step function has the left and right continuous normalizations

H0 = χ(0,∞] and H1 = χ[0,∞]. Unless otherwise stated, all regulated functions

will satisfy F (−∞) = lim
y→−∞

F (y) and F (∞) = lim
y→∞

F (y). For more on regulated

functions, see [11].

2. Banach spaces and integrals

A space of primitives is the space of regulated functions that vanish at −∞. Each
such regulated function is differentiated n times with the distributional derivative to

yield a sequence of Banach spaces of integrable distributions, each being isometrically

isomorphic to the space of primitives. A second space of primitives is the set of

functions in C(R) that vanish at −∞. These are also differentiated n times to give
a sequence of Banach spaces. By integrating functions of bounded variation n times

we find the corresponding set of multipliers. Distinction is made between functions of

bounded variation, normalized bounded variation and essential bounded variation.

We take as our set of primitives Br. This consists of the functions F : R → R

that are regulated on R such that F (−∞) = lim
x→−∞

F (x) = 0, F (x) = F (x−) for

all x ∈ R and F (∞) = lim
y→∞

F (y). Hence, they are left continuous on (−∞,∞],

vanish at −∞ and equal their limits at infinity. Under pointwise operations and the
uniform norm, ‖F‖∞ = sup

x∈R

|F (x)|, Br is a Banach space. It is not separable. See

[28, Theorem 2] where various properties of Br are proved. A second set of primitives

is the subspace Bc = {F ∈ C(R) | F (−∞) = 0}. This is then a separable Banach
space with norm ‖F‖∞ = sup

x∈R

|F (x)| = max
x∈R

|F (x)|. The separability of Bc follows

from the compactness of R. See [8, Exercise V.7.12].

For each n ∈ N define An
r = {f ∈ D′(R) | f = F (n) for some F ∈ Br}, i.e.,

〈f, ϕ〉 = 〈F (n), ϕ〉 = (−1)n〈F, ϕ(n)〉 = (−1)n
∫ ∞

−∞ F (x)ϕ(n)(x) dx for each ϕ ∈ D(R).

This last integral is a Riemann integral with a compactly supported integrand. From

this definition we see that elements of An
r are distributions. And, define An

c = {f ∈
D′(R) | f = F (n) for some F ∈ Bc}.
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Theorem 2.1 (Uniqueness). For each f ∈ An
r there is a unique function F ∈ Br

such that F (n) = f . For each f ∈ An
c there is a unique function F ∈ Bc such that

F (n) = f .

P r o o f. Suppose F (n) = G(n) for some F,G ∈ Br then let P = F − G. Thus,

P ∈ Br, P
(n) = 0 and P is a polynomial of degree at most n− 1. This follows from

the fact that the polynomials are Fourier transforms of linear combinations of the

Dirac distribution and its derivatives [10, Exercise 9.25]. The only polynomial in Br

is 0. Similarly when F,G ∈ Bc. �

If f ∈ An
r we can then speak of the unique element F ∈ Br such that F

(n) = f

as the primitive of f . Here it is essential that F be left continuous rather than just

regulated. The mapping Φ: Br → An
r given by Φ(F ) = F (n) is a linear bijection. It

is surjective by the definition of An
r . It is injective by Theorem 2.1. It follows from

Lemma 1.1 that An
r is a linear space. The norm inherited from Br makes An

r into

a Banach space. Similarly for An
c . We call this the Alexiewicz norm and denote it

‖·‖a,n. (See [1].) The Alexiewicz norm is translation invariant and we have continuity

in norm in An
c but not in An

r . And, C
∞(R) is dense in An

c but not in An
r .

Theorem 2.2. Let n ∈ N and let f, f1, f2 ∈ An
r with the respective primitives

F, F1, F2 ∈ Br. Let a1, a2 ∈ R. Let ϕ ∈ D(R). (a) With operations given by

〈a1f1 + a2f2, ϕ〉 = a1〈f1, ϕ〉 + a2〈f2, ϕ〉
= (−1)n(a1〈F1, ϕ

(n)〉 + a2〈F2, ϕ
(n)〉)

= (−1)n

(

a1

∫ ∞

−∞

F1(x)ϕ
(n)(x) dx+ a2

∫ ∞

−∞

F2(x)ϕ
(n)(x) dx

)

An
r is a vector space. And, An

c is a subspace of An
r . (b) A norm on An

r is defined

by ‖f‖a,n = ‖F‖∞. This makes An
r into a Banach space that is not separable.

Each of the spaces An
r is isometrically isomorphic to Br. Each of the spaces An

c is

a separable Banach space isometrically isomorphic to Bc. (c) Each distribution in

An
r is tempered, of order at most n. (d) Let O : D′(R) → D′(R) be an operator that

commutes with the derivative, (OT )′ = OT ′ for all T ∈ D′(R). Then 〈Of, ϕ〉 =

(−1)n〈OF, ϕ〉. (e) Let t ∈ R and let T ∈ D′(R). Then T ∈ An
r if and only if

τtT ∈ An
r . Similarly for An

c . If f ∈ An
r then ‖τtf‖a,n = ‖f‖a,n. (f) For each f ∈ An

c

it follows that lim
t→0

‖f − τtf‖a,n = 0. (g) C∞(R) is dense in An
c but not in An

r .

P r o o f. (a) and (b) These follow from Lemma 1.1.

(c) Let K ⊂ R be compact. Suppose ϕ ∈ D(R) with supp(ϕ) ⊂ K. Denote the

Lebesgue measure of K by |K|. Let f ∈ An
r with primitive F ∈ Br. Then

|〈f, ϕ〉| =

∣

∣

∣

∣

∫ ∞

−∞

F (x)ϕ(n)(x) dx

∣

∣

∣

∣

6 ‖F‖∞|K|‖ϕ(n)‖∞.
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This shows f is tempered and of order at most n. See [12] for the definition of

tempered.

(d) It follows from associativity that OT (n) = (OT )(n). Then 〈Of, ϕ〉 =

〈OF (n), ϕ〉 = 〈(OF )(n), ϕ〉 = (−1)n〈OF, ϕ(n)〉.
(e) Let T ∈ D′(R). Then 〈τtT ′, ϕ〉 = 〈T ′, τ−tϕ〉 = −〈T, (τ−tϕ)′〉. And,

〈(τtT )′, ϕ〉 = −〈τtT, ϕ′〉 = −〈T, τ−tϕ
′〉. For x ∈ R, τ−tϕ

′(x) = (τ−tϕ)′(x) =

∂ϕ(x + t)/∂x. It follows that τt commutes with derivatives. From the proof of

(d), if f ∈ An
r then 〈τtf, ϕ〉 = 〈τtF (n), ϕ〉 = 〈(τtF )(n), ϕ〉. Therefore, τtf is the

nth derivative of (τtF ) ∈ Br, so τtf ∈ An
r . If T ∈ D′(R) such that τtT ∈ An

r

then write T = τ−t(τtT ) to show T ∈ An
r . Similarly for An

c . For f ∈ An
r ,

‖τtf‖a,n = ‖τtF‖∞ = ‖F‖∞ = ‖f‖a,n.

(f) We have ‖f − τtf‖a,n = ‖F (n) − (τtF )(n)‖a,n = ‖F − τtF‖∞ → 0 as t→ 0.

(g) Let Φy(x) = (y/π)(x2 + y2)−1 be the half plane Poisson kernel. Define the

convolution Gy = F ∗Φy. Since F is continuous on R, it is known that ‖Gy−F‖∞ →
0 as y → 0+. See, for example, [4]. Note that Gy ∈ C∞(R). By dominated

convergence and the fact that
∫ ∞

−∞ Φy(x) dx = 1 we see that lim
x→∞

Gy(x) = F (∞)

and lim
x→−∞

Gy(x) = F (−∞) = 0. Hence, Gy ∈ Bc for each y > 0. The density of

C∞(R) in An
c now follows. �

Besides translations, other examples of operators commuting with the derivative

are linear combinations of differential operators with coefficients independent of the

differentiation variable.

It was shown in [27, Proposition 3.3] that L1, and hence the space of Henstock-

Kurzweil integrable functions, is dense in A1
c . Note that C

∞(R) is not dense in An
r .

The Heaviside step function H0 is in Br. For each ψ ∈ C(R) we have ‖H0 − ψ‖∞ >

1/2. Therefore, C∞(R) is not dense in An
r . And, D(R) = C∞

c (R) is not dense in

An
c . Define F ∈ Bc by F (x) = π/2 + arctan(x). Then for each ϕ ∈ D(R) we have

‖F − ϕ‖∞ > π.

We do not have continuity in norm in An
r . For example, consider ‖H(n)

0 −
τtH

(n)
0 ‖a,n = ‖H0 − τtH0‖∞ = 1 for all t 6= 0.

The variation of a function g : R → R is the supremum of
∑ |g(xi)− g(yi)|, taken

over all disjoint intervals (xi, yi) ⊂ R. This is denoted V g. The functions of bounded

variation are BV = {g : R → R | V g < ∞}. Functions of bounded variation are
the difference of two increasing functions and thus are regulated on R. Under usual

pointwise operations BV is a Banach space under the norm ‖g‖BV = ‖g‖∞ + V g.

For each −∞ 6 a 6 ∞, an equivalent norm is |g(a)|+V g. See, for example, [8], [10]

and [15] for properties of BV functions.
The following spaces will serve as multipliers for An

r . Each space IBV n is defined

inductively.
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Definition 2.3. Define IBV 0 = BV . Suppose IBV n−1 is known for n ∈ N.

Define IBV n = {h : R → R | h(x) =
∫ x

0 q(t) dt for some q ∈ IBV n−1}.
Hence, a function h ∈ IBV n is an n-fold iterated integral.

Definition 2.4. Let q ∈ L1
loc. Define I

0[q](x) = q(x). For n ∈ N define

In[q](x) =

∫ x

xn=0

. . .

∫ xi+1

xi=0

. . .

∫ x2

x1=0

q(x1) dx1 . . . dxi . . . dxn.

Proposition 2.5. If h ∈ IBV n for n ∈ N then there is a function g ∈ BV such
that for all x ∈ R,

h(x) = In[g](x) =
1

(n− 1)!

∫ x

0

(x − s)n−1g(s) ds.

The proof follows from induction and the Fubini-Tonelli theorem.

The function g is not unique since there are functions of bounded variation that

differ only on a countable set. Imposing a normalization on BV makes g unique. Fix
0 6 λ 6 1. Functions g and gλ differ on a set that is countable and V gλ = inf V h

where the infimum is taken over all h ∈ BV such that gλ = h almost everywhere.

The value of 0 6 λ 6 1 does not affect the value of V gλ. The functions of normalized

bounded variation are then NBVλ = {gλ | g ∈ BV }. It is easy to see that for each
0 6 λ 6 1 there is a unique g ∈ NBVλ such that if h ∈ IBV n then h = In[g].

Clearly, NBVλ ( BV .
Note that if g ∈ BV then it is bounded, so the function x 7→

∫ x

0 g(t) dt is Lipschitz

continuous and In[g] ∈ Cn−1(R). The same applies if g ∈ EBV (see below). If
h ∈ IBV n then h(m)(0) = 0 for all 0 6 m 6 n− 1 and h(x) = O(xn) as |x| → ∞.
Now we can define integrals on An

r . A distribution f ∈ A1
r is the distributional

derivative of a unique function F ∈ Br. Its regulated primitive integrals are

∫

(a,b)

f =

∫ b−

a+

f = F (b−) − F (a+) = F (b) − F (a+),(2.1)

∫

(a,b]

f =

∫ b+

a+

f = F (b+) − F (a+),(2.2)

∫

[a,b)

f =

∫ b−

a−

f = F (b−) − F (a−) = F (b) − F (a),(2.3)

∫

[a,b]

f =

∫ b+

a−

f = F (b+) − F (a−) = F (b+) − F (a)(2.4)

for all −∞ < a < b < ∞. We also have
∫ ∞

−∞ f = F (∞) with similar definitions for

semi-infinite intervals. And,
∫

{a}
f = F (a+) − F (a−). This integral was described
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in detail in [28]. The multipliers are the functions of bounded variation. If g ∈ BV
then

∫ ∞

−∞

fg =

∫ ∞

−∞

g(x) dF (x) = F (∞)g(∞) −
∫ ∞

−∞

F (x) dg(x)

−
∑

n∈N

[F (cn) − F (cn+)] [g(cn) − g(cn+)] .

The sum is over all cn ∈ R at which F and g are not both right continuous. The

integrals
∫ ∞

−∞
g(x) dF (x) and

∫ ∞

−∞
F (x) dg(x) are Henstock-Stieltjes integrals. They

are known to exist when one of F and g is regulated and one is of bounded variation.

They are defined by using tagged partitions of R. If F is regulated but not required to

be left continuous then an additional term containing coincident jump discontinuities

of F and g from the left must be added. See [18, p. 199].

If f ∈ A1
c then the four integrals (2.1)–(2.4) all give

∫ b

a f = F (b)−F (a) and the sum

in (2.5) vanishes. In this case,
∫ ∞

−∞
F (x) dg(x) is a Riemann-Stieltjes integral over

an unbounded domain. It can also be defined by taking limits of Riemann-Stieltjes

integrals over finite subintervals. See [18, p. 187] and [25] for details.

Definition 2.6. Let n ∈ N and let 0 6 λ 6 1. For f ∈ An
r let F be its primitive

in Br. For h ∈ IBV n−1 such that h = In−1[g] for g ∈ NBVλ, define the regulated

primitive integral of f with respect to h as

∫ ∞

−∞

fh =

∫ ∞

−∞

F (n)h = (−1)n−1

∫ ∞

−∞

F ′h(n−1)(2.6)

= (−1)n−1F (∞)g(∞) − (−1)n−1

∫ ∞

−∞

F (x) dg(x)(2.7)

− (−1)n−1
∑

n∈N

[F (cn) − F (cn+)] [g(cn) − g(cn+)](2.8)

= (−1)n−1

∫ ∞

−∞

h(n−1)(x) dF (x).(2.8)

If f ∈ An
c , or if f ∈ An

r and g ∈ NBV1 (i.e. right continuous), then the sum in

(2.8) vanishes.

To distinguish them from the regulated primitive integral, we will always explicitly

show the integration variable and differential in Lebesgue, Henstock-Stieltjes and

Riemann integrals. It is shown in [26] (following Definition 6) that if g1, g2 ∈ BV
differ on a countable set and F ∈ C(R) then

∫ ∞

−∞
F (x) dg1(x) =

∫ ∞

−∞
F (x) dg2(x).

Hence, if f ∈ An
c it makes no difference in Definition 2.6 if we use g ∈ NBVλ or any

function of bounded variation that differs from g on a countable set.
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Proposition 2.7. Let n ∈ N. For f ∈ An
c let F be its primitive in Bc.

Let h ∈ IBV n−1 and let g ∈ BV such that h = In−1[g]. Then
∫ ∞

−∞ fh =

(−1)n−1F (∞)g(∞) − (−1)n−1
∫ ∞

−∞
F (x) dg(x).

The integral in (2.7) takes different forms when g is the primitive for different

types of integrals. The set of primitives for L1 functions is AC(R) := AC(R) ∩ BV ,
where AC(R) are the functions that are absolutely continuous on each compact set

in R. If f is a measurable function on the real line then f ∈ L1 if and only if there

is a function F ∈ AC(R) such that f(x) = F ′(x) for almost all x ∈ R.

Proposition 2.8. Let F ∈ Br. (a) If g ∈ AC(R) then
∫ ∞

−∞
F (x) dg(x) =

∫ ∞

−∞ F (x)g′(x) dx. This last is a Lebesgue integral. (b) If g ∈ C1(R) ∩ C(R) then
∫ ∞

−∞
F (x) dg(x) =

∫ ∞

−∞
F (x)g′(x) dx. This last is an improper Riemann integral.

This follows from the form the fundamental theorem of calculus takes for each

integral. For example, see [16, p. 74]. The primitives for the Riemann integral are

the functions of bounded slope variation. See [29]. This set of primitives properly

contains the Lipschitz functions and is a proper subset of C1(R).

Let g : R → R. Then g is of essential bounded variation if its distributional

derivative is a signed Radon measure, i.e., there is a unique signed Radon measure

µg such that 〈g′, ϕ〉 = −〈g, ϕ′〉 = −
∫ ∞

−∞
g(x)ϕ′(x) dx =

∫ ∞

−∞
ϕ(x) dµg(x) for all

ϕ ∈ D(R). Denote the functions of essential bounded variation by EBV . If g ∈ EBV
then its essential variation is EV g = sup

ϕ

∫ ∞

−∞
g(x)ϕ′(x) dx, the supremum being

taken over all functions ϕ ∈ D(R) such that ‖ϕ‖∞ 6 1. Changing a function on

a set of measure zero does not affect its essential variation. The elements of EBV are
equivalence classes of functions that are equal almost everywhere. For each 0 6 λ 6 1

there is exactly one function from NBVλ in each equivalence class. If g ∈ EBV then
there is exactly one function h ∈ NBVλ such that EV g = V h. Hence, EBV and
NBVλ are isometrically isomorphic. The space EBV is a Banach space under the
norm ‖g‖EBV = ess sup |g| + EV g = ‖h‖BV . Also, EV g = |µg|(R) = inf

h
V h where

the infimum is taken over all h ∈ BV such that g = h almost everywhere. It is shown

in [27, Corollary 15] that
∫ ∞

−∞
F (x) dg(x) =

∫ ∞

−∞
F (x) dµg(x) for all F ∈ C(R).

A limiting process is used in [26, Theorem 8] to define
∫ ∞

−∞ F ′g for F ∈ Bc and

g ∈ EBV . Hence, in Definition 2.6 we can use g ∈ EBV when f ∈ An
c . All of the

results in this paper can be rewritten under this assumption. If h ∈ NBVλ is the

unique function such that EV g = V h then we can define g(±∞) = h(±∞). The

limit does not depend on the choice of 0 6 λ 6 1. For more on functions of essential

bounded variation, see [3] and [31].

For each n ∈ N, the operator In : BV → IBV n is linear. By the definition of

IBV n it is surjective. Similarly if the domain is NBVλ or EBV . If g ∈ BV such

86



that In[g] = 0 then by the fundamental theorem of calculus,
∫ x

0
g(t) dt = 0 for each

x ∈ R. This does not imply g = 0. For example, g = χ{0}. Hence, I
n : BV → IBV n

is not injective. However, In is a bijection when we use NBVλ or EBV .

Theorem 2.9. Let n ∈ N. Let 0 6 λ 6 1. (a) The sets IBV n are equal if IBV 0

is taken to be BV , NBVλ or EBV . (b) The linear operator In : NBVλ → IBV n is

a bijection and IBV n is a Banach space with the norm ‖h‖IBV n = ‖(In)−1h‖∞ +

V [(In)−1h]. (c) The linear operator In : EBV → IBV n is a bijection and IBV n is

a Banach space with the norm ‖h‖IBV n = ‖h(n)‖EBV .

P r o o f. (a) Note that NBVλ ( BV . For each element g ∈ BV the function
gλ ∈ NBVλ differs from g on a countable set. Hence, In[g] = In[gλ]. For each

g ∈ EBV there is exactly one function h ∈ NBVλ such that g = h almost everywhere.

Then In[g] = In[h].

(b) From (a) and Definition 2.4 the operator In is linear and surjective. If In[g] = 0

for g ∈ NBVλ then
∫ x

0 g(t) dt = 0 for all x ∈ R. By the fundamental theorem of

calculus, g(x) = 0 at all points of continuity of g. Hence, g = 0 except on a countable

set. But g has a left limit and a right limit at each point. Suppose there is a ∈ R

such that g(a+) = α > 0. Then there is δ > 0 such that g(x) > α/2 for all

x ∈ (a, a+δ). This contradicts the fact that g vanishes except perhaps on a countable

set. Similarly if α < 0 and similarly with the left limit. Hence, g(x+) = g(x−) = 0 at

all x ∈ R. It follows that g = 0 on R. Hence, In : NBVλ → IBV n is a bijection. If

h ∈ IBV n then h = I[g] for a unique function g ∈ NBVλ. The pointwise derivative

h(n)(x) = g(x) at all points of continuity of g. In general, we cannot recover g(x)

for all x ∈ R with the nth order pointwise derivative. To compute the inverse of the

operator In, let S be the set of points in R at which g is not continuous. Then S is

countable and h(n)(x) = g(x) for all x /∈ S. Suppose a 6∈ S. The limits

lim
x→a+

x 6∈S

g(x) = g(a+) and lim
x→a−

x 6∈S

g(x) = g(a−)

both exist. Since g ∈ NBVλ we have g(a) = (1 − λ)g(a−) + λg(a+). This then

defines (In)−1. By Lemma 1.1, IBV n is a Banach space with the norm ‖h‖IBV n =

‖(In)−1h‖∞ + V [(In)−1h].

(c) If g ∈ EBV such that In[g] = 0 then by the fundamental theorem of calculus,
∫ x

0
g(t) dt = 0 for each x ∈ R. Hence, g = 0 almost everywhere. But then 〈g, ϕ′〉 = 0

for all ϕ ∈ D(R). Hence, µg = 0 and g = 0 as an element of EBV . Then In : EBV →
IBV n is a bijection. If h ∈ IBV n then the pointwise derivative h(n)(x) exists almost

everywhere and defines a function in EBV . By Lemma 1.1, IBV n is a Banach space

with the norm ‖h‖IBV n = ‖h(n)‖EBV . �
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If h ∈ IBV n and h = In[g] for g ∈ BV then h = In[gλ] for each λ ∈ R. Thus

the normalization on functions of bounded variation does not affect the multiplier h.

If g ∈ C(R) ∩ BV then all normalizations gλ equal g and the integral
∫ ∞

−∞
fg is

independent of λ. However, if g is not continuous, different values of λ may give

different values for this integral. An example is given in the next section.

In the definition of F ∈ Br the condition lim
x→−∞

F (x) = 0 is imposed. This is

arbitrary but convenient because it makes primitives unique. If we merely require

lim
x→−∞

F (x) to exist in R then formula (2.7) must be modified by the addition of

the term (−1)nF (−∞)g(−∞). Since an element of An
r is the nth order derivative

of a function in Br, adding a polynomial of degree at most n − 1 does not affect
∫ ∞

−∞ F (n)h or An
r . The norm on Br could then be modified to a difference formula.

Define Jn[F ](h;x) =
n
∑

i=0

(−1)n
(

n
i

)

F (x+ ih). Then Jn[P ] = 0 if P is a polynomial of

degree at most n− 1. The norm on Br could then be replaced by sup
x,h∈R

|Jn[F ](h;x)|.

For example, if C(R) is used instead of Bc then use the norm sup
x,h∈R

|F (x)−F (x+h)|.

In the definition of h ∈ IBV n we have arbitrarily imposed the condition h(m)(0) =

0 for all 0 6 m 6 n − 1. This does not affect the integral
∫ ∞

−∞
fh if we use (2.7)

to define the integral. Different lower limits of integration in Definition 2.4 would

change h by the addition of a polynomial of degree at most n− 1. Addition of such

a polynomial also does not affect the norm ‖ · ‖IBV n .

Proposition 2.10. (a) Let n > 2. Let f ∈ An
r such that f = F (n) for F ∈ Br. For

each polynomial P of degree at most n−2, define
∫ ∞

−∞ fP = (−1)n−1
∫ ∞

−∞ F ′P (n−1).

Then
∫ ∞

−∞
fP = 0. In particular, if Pk(x) = xk then each of the moments

∫ ∞

−∞
fPk =

0 for all integers 0 6 k 6 n−2. (b) Let g ∈ BV . Let a1, a2, . . . , an−1 be real numbers.

Define h(x) =
∫ x

xn=an−1
. . .

∫ xi+1

xi=ai

. . .
∫ x2

x1=a1
g(x1) dx1 . . . dxi . . . dxn. With f ∈ An

r

and F ∈ Br such that f = F (n), define
∫ ∞

−∞
fh = (−1)n−1

∫ ∞

−∞
F ′h(n−1). Then

∫ ∞

−∞ fh =
∫ ∞

−∞ fIn−1[g]. (c) Let n > 1. Let h ∈ IBV n and let P be a polynomial

of degree at most n− 1. Then ‖h+ P‖IBV n = ‖h‖IBV n .

P r o o f. (a) Let P be a polynomial of degree not exceeding n − 2. Then
∫ ∞

−∞
fP = (−1)n−1

∫ ∞

−∞
F ′P (n−1) = 0 since P (n−1)(x) = 0 for all x ∈ R. (b) The

difference between h and In−1[g] is a polynomial of degree at most n − 2. (c) It

follows from the proof of Theorem 2.9 that (In)−1P = 0. �

If ϕ is a test function then ϕ ∈ IBV n for each n > 0. For each f ∈ An
r

with primitive F ∈ Br the distributional derivative formula 〈f, ϕ〉 = 〈F (n), ϕ〉 =

(−1)n
∫ ∞

−∞ F (x)ϕ(n)(x) dx agrees with the definition of the integral in (2.6). If

F, h ∈ Cn−1(R) such that F (n−1), h(n−1) ∈ AC(R) then the integration by parts
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formula is

∫ ∞

−∞

F (n)(x)h(x) dx = (−1)n

∫ ∞

−∞

F (x)h(n)(x) dx

+

n−1
∑

k=0

(−1)n−k−1[F (k)(∞)h(n−k−1)(∞) − F (k)(−∞)h(n−k−1)(−∞)].

When h ∈ C∞
c (R) the limits F (k)(±∞)h(n−k−1)(±∞) vanish for each 0 6 k 6 n− 1

and each F . In the case of F ∈ D′(R) these limits are ignored in the formula for

the distributional derivative DnF , even though F (k) need not have any pointwise

meaning. Similarly in the definition of the integral (2.7). We now show that when

F and h have pointwise derivatives as above, these limits F (k)(±∞)h(n−k−1)(±∞)

vanish, provided F (k) has a monotonicity property. Suppose h ∈ IBV n−1. Then

there is g ∈ BV such that h = In−1[g]. Hence,

|h(n−k−1)(x)| =

∣

∣

∣

∣

∫ x

xk=0

. . .

∫ x2

x1=0

g(x1) dx1 . . . dxk

∣

∣

∣

∣

6
‖g‖∞|x|k

k!

so h(n−k−1)(x) = O(xk) as x → ∞. This growth condition is sharp; take g to be
constant. Suppose F ∈ Bc such that F ∈ Ck−1(R), F (k−1) ∈ AC(R) and there is

M > 0 such that F (k)(x) > 0 and F (k)(x) is decreasing for almost all x > M . Then

F is given by the iterated integral

F (x) =

∫ x

xk=−∞

. . .

∫ x2

x1=−∞

F (k)(x1) dx1 . . . dxk.

Now consider I(x) :=
∫ x

xk=x/2
. . .

∫ x2

x1=x/2
F (k)(x1) dx1 . . . dxk. For x large enough we

have I(x) > F (k)(x)xk/(2kk!). Since lim
x→∞

I(x) = 0 it follows that F (k)(x) = o(x−k)

as x → ∞. But then lim
x→∞

F (k)(x)h(n−k−1)(x) = 0. If F (k)(x) is increasing, instead

of I(x) integrate over the interval [x, 2x]k ⊂ Rk. Similarly with limits as x→ −∞.

3. Examples and properties of the integral

The space A1
c consists of the derivatives of functions in Bc. Hence, it contains all

functions integrable in the Lebesgue, Henstock-Kurzweil and wide Denjoy sense over

R. For each interval I ⊂ R the characteristic function χI is of bounded variation.

So if f ∈ A1
c with primitive F ∈ Bc then

∫ b

a
f =

∫ ∞

−∞
fχI = F (b) − F (a). The same

formula holds for integration over I = [a, b], [a, b), (a, b] and (a, b). Similarly, we can

integrate over all semi-infinite intervals. If F is continuous on R but has a pointwise
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derivative nowhere then F ′ ∈ A1
c and

∫ b

a F
′ = F (b)−F (a) for all −∞ 6 a < b 6 ∞.

If F ∈ Bc is a continuous singular function, F
′(x) = 0 for almost all x ∈ R, then

the Lebesgue integral
∫ b

a F
′(x) dx = 0 but

∫ b

a F
′ = F (b) − F (a). Other examples of

integration in A1
c are given in [26].

The Schwartz space, S, of rapidly decreasing test functions, consists of the func-
tions ψ ∈ C∞(R) such that for each m,n > 0 we have xmψ(n)(x) → 0 as |x| → ∞.
Let ψ ∈ S. Then ψ(m) ∈ Bc for each m > 0. Define Ψ(x) =

∫ x

−∞ ψ(t) dt.

Then Ψ(m) ∈ Bc for each m > 0 and Ψ′(x) = ψ(x) for each x ∈ R. For each

1 6 n 6 m + 1, ψ(m) ∈ An
c . An example of a function in S is ψ(x) = exp(−x2).

If we take F1(x) = exp(−x2) and F2(x) =
∫ x

−∞
exp(−t2) dt then F1, F2 ∈ Bc

and if f(x) = F ′
1(x) = F ′′

2 (x) = −2x exp(−x2) then f ∈ A1
c ∩ A2

c . Note that

‖f‖a,1 = ‖F1‖∞ = 1 while ‖f‖a,2 =
∫ ∞

−∞
exp(−t2) dt =

√
π, so a distribution can

have different norms in different spaces An
c .

The space A1
r consists of the distributional derivative of regulated functions.

Clearly, A1
c ( A1

r . The Dirac distribution is δ = H ′
0. Hence, δ ∈ A1

r. Accord-

ing to (2.5), for each g ∈ BV we have
∫ ∞

−∞

δg = H0(∞)g(∞) −
∫ ∞

−∞

H0(x) dg(x) − [H0(0) −H0(0+)][g(0) − g(0+)]

= g(∞) − [H0(∞)g(∞) −H0(0+)g(0+)] − [0 − 1][g(0)− g(0+)]

= g(0).

The Henstock-Stieltjes integral
∫ ∞

−∞H0(x) dg(x) can be evaluated using a tagged

partition of R that forces 0 and ∞ to be tags. This agrees with the action of δ as
a tempered distribution, for which g must be in the Schwartz space S. Notice that
changing the value of H0(0) does not affect the value of

∫ ∞

−∞ δg. When δ acts as

a measure, this equation is written
∫ ∞

−∞
g(x) dδ(x) = g(0) and holds for all functions

g : R → R. Similarly, every signed Radon measure is in A1
r .

Note that changing a function of bounded variation at one point can affect the

value of
∫ ∞

−∞ fg. For example, let F ∈ Br and g = aχ{0}. Then
∫ ∞

−∞ F ′g =

a[F (0+) − F (0−)]. See [28] for more examples of integration in A1
r .

Using (2.9), an example in An
r is

∫ ∞

−∞

δ(n−1)In−1[Hλ] =

∫ ∞

−∞

H
(n)
0 In−1[Hλ] = (−1)n−1

∫ ∞

−∞

Hλ(x) dH0(x)

= (−1)n−1Hλ(0)[H0(0+) −H0(0−)]

= (−1)n−1λ.

Hence, the choice of λ affects the value of the integral.
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Proposition 3.1. Let m > 0. (a) Let n > 1. Then δ(m) ∈ An
r if and only if

n = m+ 1. (b) For no n > 1 we have δ(m) ∈ An
c . (c) ‖δ(m)‖a,m+1 = 1. (d) Let µ be

a finite signed Borel measure. Then Dmµ ∈ Am+1
r .

P r o o f. (a) We have δ(m) = Dm+1H0, so δ
(m) ∈ Am+1

r . Suppose δ(m) = F (n)

for some n > m + 2. Then F (n−m) = δ + P where P is a polynomial of degree at

most m − 1 and the equality is in A1
r . If m = 0 then P = 0. Integrating n − m

times over the interval [0, x] gives F (x) = xn−m−1χ(0,∞](x)/(n − m − 1)! + Q(x)

where Q is a polynomial of degree at most n− 1. But then F 6∈ Br. If n 6 m then

F = δ(m−n)+P where P is a polynomial of degree at most n−1. Comparing supports

shows this impossible for all F ∈ Br. (b) Part (a) includes the proof. (c) Notice that

‖δ(m)‖a,m+1 = ‖H0‖∞ = 1 for each m > 0. (d) Define F (x) =
∫

(−∞,x)
dµ. Then

F ∈ NBV0 ⊂ Br and F
′ = µ. �

Observe that (2.6) gives
∫ ∞

−∞
δ(m)Im[g] = (−1)mg(0) for each g ∈ NBVλ and

m > 0. Let K(x) = xχ[0,∞](x). Then δ
(m) = Dm+2K for each m > 0. Although

K is continuous, it is not in Bc. However, if we let F1(x) = 0 for x 6 0, F1(x) = x

for 0 6 x 6 1, F1(x) = 1 for x > 1 then F1 ∈ Bc. Let F2(x) = H0(x) −H0(x − 1).

Then F2 ∈ Br \ Bc. Let f = F ′′
1 ∈ A2

c then f = F ′
2 ∈ A1

r and f = δ− τ1δ. So a linear

combination of elements from A1
r is in A2

c .

Proposition 3.2. (a) For each 1 6 m < n, An
c is not a subset of Am

c and Am
c is

not a subset of An
c . (b) Am

c ⊂ An
r if and only if m = n. (c) For each 1 6 m < n, An

r

is not a subset of Am
r and Am

r is not a subset of An
r . (d) For no m,n ∈ N we have

Am
r ⊂ An

c . (e) For each m,n ∈ N, Am
c ∩ An

c 6= ∅. Hence, Am
r ∩ An

r 6= ∅.

P r o o f. (a) There is an increasing function F ∈ Bc ∩ C∞(R) such that F = 0

on (−∞, 0] and F = 1 on [1,∞). Let f = F (m) ∈ Am
c . Suppose f ∈ An

c . The only

function G ∈ Bc that satisfies G
(n) = f is given by the iterated improper Riemann

integrals

G(x) =

∫ x

xn=−∞

. . .

∫ xi+1

xi=−∞

. . .

∫ x2

x1=−∞

F (m)(x1) dx1 . . . dxn

=

∫ x

xn=−∞

. . .

∫ xi+1

xi=−∞

. . .

∫ xm+2

xm+1=−∞

F (xm+1) dxm+1 . . . dxn

>

∫ x

xn=1

. . .

∫ xi+1

xi=1

. . .

∫ xm+2

xm+1=1

dxm+1 . . . dxn if x > 1

=
(x− 1)n−m

(n−m)!
.

Hence, G 6∈ Bc so f 6∈ An
c .
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Let F (x) = 0 for x 6 0, F (x) = x for 0 6 x 6 1 and F (x) = 1 for x > 1. Then

F ∈ Bc. Define f = F (n) ∈ An
c . The Heaviside step function is H0 = χ(0,∞]. The

Dirac distribution is δ = H ′
0. If a ∈ R we write δa = τaδ for the Dirac distribution

supported at a. For n > 2 we have f = F (n) = δ(n−2) − δ
(n−2)
1 . Suppose f ∈ Am

c is

given by f = G(m) for G ∈ Bc. If n > m+2 then G = δ(n−m−2)−δ(n−m−2)
1 +P where

P is a polynomial of degree at mostm−1. If n = m+1 then G(x) = H0(x)−H0(x−1).

It follows that G 6∈ Bc. Hence, f 6∈ Am
c .

(b) Since Bc ⊂ Br we have An
c ⊂ An

r . For the other part of the proof use examples

as in part (a). Replace the second example in (a) by F (x) = H0(x) −H0(x− 1).

(c) By Proposition 3.1, δ(m−1) ∈ An
r if and only if n = m.

(d) By Proposition 3.1, δ(m−1) ∈ Am
r but is not in any of the An

c spaces.

(e) See the example in the second paragraph of this section. �

Let F (x) = H0(x− 1)(x− 1)αe−(x−1) where α > 0. Then F ∈ Bc. Define f ∈ An
c

by f = F (n). For all x 6= 1 the pointwise derivative gives f(x) ∼ α(α − 1) . . .

(α − n + 1)(x − 1)α−n as x → 1+. Then f is singular at 1 such that f 6∈ L1
loc if

α 6 n− 1 and yet
∫ ∞

−∞
fh exists for each h ∈ IBV n.

In An
c there is a version of the second mean value theorem for integrals.

Theorem 3.3. Let F ∈ Bc. Let h ∈ IBV n−1 such that h(n−1) is a monotonic

function. Then
∫ ∞

−∞
F (n)h = (−1)n−1[h(n−1)(−∞)

∫ ξ

−∞
F ′ + h(n−1)(∞)

∫ ∞

ξ
F ′] for

some ξ ∈ R.

P r o o f. Integrate and use the mean value theorem for Riemann-Stieltjes inte-

grals [18, §7.10]:

∫ ∞

−∞

F (n)h = (−1)n−1

[

F (∞)h(n−1)(∞) −
∫ ∞

−∞

F (x) dh(n−1)(x)

]

= (−1)n−1

[

F (∞)h(n−1)(∞) − F (ξ)

∫ ∞

−∞

dh(n−1)(x)

]

= (−1)n−1{F (∞)h(n−1)(∞) − F (ξ)[h(n−1)(∞) − h(n−1)(−∞)]}
= (−1)n−1{h(n−1)(−∞)F (ξ) + h(n−1)(∞)[F (∞) − F (ξ)]}.

�

This proof is adapted from a similar theorem for the wide Denjoy integral in [6],

where a proof of the Bonnet form of the second mean value theorem can also be

found.

If ψ ∈ C∞(R) is a bijection such that ψ′ > 0 on R then for any distribution

T ∈ D′(R) the composition T ◦ψ is defined by 〈T ◦ψ, ϕ〉 = 〈T, ϕ ◦ ψ−1/ψ′ ◦ ψ−1〉 for
all ϕ ∈ D(R). In [26] a change of variables formula was proved in A1

c when ψ ∈ C(R),
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i.e., no monotonicity or pointwise differentiability is assumed. In [28] a change of

variables formula was proved in A1
r when ψ was piecewise monotonic. For An

r we

have the simple case of composition with a linear function.

Theorem 3.4. Let ψ(x) = ax + b for a, b ∈ R, a 6= 0. Let F ∈ Br. Then (F ◦
ψ)(n) = an(F (n) ◦ψ). Let h ∈ IBV n−1. Then

∫ ∞

−∞
F (n)h = |a|

∫ ∞

−∞
(F (n) ◦ψ)(h◦ψ).

P r o o f. Let ϕ ∈ D(R). Then

〈F (n) ◦ ψ, ϕ〉 = sgn(a)
〈

F (n),
ϕ ◦ ψ−1

ψ′ ◦ ψ−1

〉

=
sgn(a)(−1)n

an+1

∫ ∞

−∞

F (y)ϕ(n) ◦ ψ−1(y) dy

=
(−1)n

an

∫ ∞

−∞

F (ax+ b)ϕ(n)(x) dx

= a−n〈(F ◦ ψ)(n), ϕ〉.

This shows that (F ◦ ψ)(n) = an(F (n) ◦ ψ). Note that F ◦ ψ ∈ Br. Suppose a > 0.

Then

(3.1) an

∫ ∞

−∞

(F (n) ◦ ψ)h ◦ ψ =

∫ ∞

−∞

(F ◦ ψ)(n)h ◦ ψ

= (−1)n−1an

∫ ∞

−∞

h(n−1)(ax+ b) dF (ax+ b)

= (−1)n−1an−1

∫ ∞

−∞

h(n−1)(y) dF (y)

= an−1

∫ ∞

−∞

F (n)h.

If a < 0 then there is a sign change in (3.1) upon change of variables. �

Define rx(y) = x− y. Then for F ∈ Br and h ∈ IBV n−1, Theorem 3.4 shows the

equality of the two convolution integrals
∫ ∞

−∞(F (n) ◦ rx)h =
∫ ∞

−∞ F (n)(h ◦ rx).

If f ∈ An
c for n > 2 then in general

∫ b

a
f does not exist. However, if h ∈ IBV n−1

has compact support and is in Cn−1(R) then fh can be integrated over a subinterval.

For example, let a < b. Define h(x) = (x−a)p(x−b)qχ[a,b](x) for p, q > n−1. There

is a polynomial, P , of degree at most n− 2 such that h+ P ∈ IBV n−1 ∩ Cn−2(R).

It follows that h+ P = In−1[g] where

g(x) = χ(a,b)(x)

n−1
∑

i=0

(

n− 1

i

)

(p− i+ 1)i(q−n+ i+2)n−i−1(x− a)p−i(x− b)q−n+i+1.
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The Pochhammer symbol is (z)m = z(z+ 1) . . . (z+m− 1) for m ∈ N with (z)0 = 1.

The formula for g comes from the Leibniz rule for differentiating a product. Note

that g ∈ BV . The value of g at a and b is irrelevant. Let f = F (n) for F ∈ Bc. Then

since g(a−) = g(b+) = 0, Proposition 2.10 gives

∫ ∞

−∞

fh = (−1)n−1

∫ ∞

−∞

F ′h(n−1) = (−1)n−1

∫ ∞

−∞

F ′g

= (−1)n

[

F (a)g(a) − F (b)g(b) +

∫ b

a

F (x) dg(x)

]

.

This defines
∫ b

a F
(n)g = (−1)n[F (a)g(a) − F (b)g(b)] + (−1)n

∫ b

a F (x) dg(x). If

p, q > n − 1 then h ∈ Cn−1(R), g is continuous, g(a) = g(b) = 0 and
∫ ∞

−∞
fh =

(−1)n
∫ b

a F (x) dg(x). If p, q > n then g ∈ C1(R) and from Proposition 2.8,
∫ ∞

−∞
fh = (−1)n

∫ b

a
F (x)g′(x) dx. If f ∈ An

r then we must adopt a normaliza-

tion on g. If g ∈ NBVλ then
∫ ∞

−∞

fh = (−1)n{F (a)[gλ(a) − gλ(a−)] + F (b)[gλ(b+) − gλ(b)]

+

∫ b

a

F (x) dgλ(x) + [F (a) − F (a+)][gλ(a) − gλ(a+)]

+ [F (b) − F (b+)][gλ(b) − gλ(b+)]}.

There are functions in IBV n that play the role of characteristic functions of

intervals. These lead to a version of the fundamental theorem of calculus that is

built in to the definition of the integral. This also gives an explicit formula for the

inverse of the nth derivative operator.

Theorem 3.5. Let x ∈ R. Let λ = 1. Define h(x, t) = (x − t)n−1H0(x − t)×
(

(n − 1)!
)−1
. (a) h(0, ·) = In−1[(−1)n−1χ[−∞,0)] ∈ IBV n−1. (b) Let F ∈ Br.

Then
∫ ∞

−∞
F (n)h(x, ·) = F (x). (c) Let f ∈ An

r and define G(x) =
∫ ∞

−∞
fh(x, ·).

Then G(n) = f . (d) The operator Φ: An
r → Br defined by Φ[f ](x) =

∫ ∞

−∞ fh(x, ·)
is a linear isometry and is the inverse of Dn : Br → An

r given by D
n[F ] = F (n).

Similarly with Φ: An
c → Bc.

P r o o f. (a) Let g(x, t) = (−1)n−1χ[−∞,x)(t). Note that g(x, ·) ∈ NBV1,

h(x, ·) ∈ Cn−2(R) and that ∂n−1h(x, t)/∂tn−1 = g(x, t) for all t 6= x. There-

fore, h(0, ·) = In−1[g(0, ·)] ∈ IBV n−1. (b) From (2.6) and Proposition 2.10,
∫ ∞

−∞
F (n)h(x, ·) = (−1)n−1

∫ ∞

−∞
F ′(−1)n−1χ[−∞,x) =

∫

[−∞,x)
F ′ = F (x−) = F (x).

(c) This follows from (b). �

Comparing the result of Proposition 2.5 and Theorem 3.5(b), it is clear how to

define the iterated integral of the nth derivative of functions in Bc.
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Definition 3.6. Let F ∈ Bc. Define
∫ x

xn=−∞
. . .

∫ xi+1

xi=−∞
. . .

∫ x2

x1=∞
F (n) = F (x)

for each x ∈ R.

The definition can be justified as follows. The set of functions B∞
c is defined to be

those functions ψ ∈ C∞(R) for which there are real numbers a < b and c such that

ψ = 0 on (−∞, a] and ψ = c on [b,∞). It is clear that B∞
c is dense in Bc. If (ψk) is

a Cauchy sequence in B∞
c then

∣

∣

∣

∣

∫ x

xn=−∞

. . .

∫ x2

x1=−∞

ψ
(n)
k (x1) dx1 . . . dxn −

∫ x

xn=−∞

. . .

∫ x2

x1=−∞

ψ
(n)
l (x1) dx1 . . . dxn

∣

∣

∣

∣

= |ψk(x) − ψl(x)| 6 ‖ψk − ψl‖∞.

Hence, the sequence of functions
∫ x

xn=−∞ . . .
∫ x2

x1=−∞ ψ
(n)
k (x1) dx1 . . . dxn has a limit

in Bc. We can define the limit to be F (x) in the case when F ∈ Bc and lim
k→∞

‖F −
ψk‖∞ = 0. It is easy to see that the value of the limit is independent of the choice

of the sequence (ψk).

It is a classical result that the initial value problem: given f ∈ C(R) such that
∫ 0

−∞ |f(t)||t|n−1 dt < ∞, find F ∈ Cn(R) such F (n)(x) = f(x) for all x ∈ R, with

initial condition lim
x→−∞

F (k)(x) = 0 for each 0 6 k 6 n− 1, has the unique solution

F (x) = [1/(n−1)!]
∫ x

−∞
f(t)(x−t)n−1 dt. By the Fubini-Tonelli theorem the solution

can also be written as F (x) =
∫ x

−∞ . . .
∫ x2

−∞ f(x1) dx1 . . . dxn. Hence, an alternative

approach to the integral is to use Theorem 3.5(b) and Definition 3.6, rather than

Definition 2.6.

4. Hölder inequality and dual space

One of the many useful properties of functions in an Lp space is the Hölder inequal-

ity. Distributions in An
r also satisfy a type of Hölder inequality. For each f ∈ An

r

and each h ∈ IBV n−1 the integral Definition 2.6 provides a type of product.

Theorem 4.1 (Hölder inequality). Let f ∈ An
r with primitive F ∈ Br. Let

h ∈ IBV n−1 such that h = In−1[g] for g ∈ BV . Then |
∫ ∞

−∞ fh| 6 ‖F‖∞‖g‖BV =

‖f‖a,n‖h‖IBV n−1 .

The proof follows from Definition 2.6. The case n = 1 was considered in [26] for

A1
c and in [28] for A1

r where various other forms of this inequality can be found. The

estimates do not depend on the choice of 0 6 λ 6 1 since ‖gλ‖BV 6 ‖g‖BV for all

g ∈ BV . For g ∈ EBV and f ∈ An
c use ‖g‖EBV .

An application of the Hölder inequality is the following convergence theorem.

95



Theorem 4.2. Fix n ∈ N. Fix 0 6 λ 6 1. Let f ∈ An
r and for each k ∈ N let fk ∈

An
r such that ‖fk − f‖a,n → 0. Let h, hk ∈ IBV n−1 such that ‖hk − h‖IBV n−1 → 0.

Then lim
k→∞

∫ ∞

−∞
fkhk =

∫ ∞

−∞
fh.

P r o o f. The Hölder inequality gives

∣

∣

∣

∣

∫ ∞

−∞

fkhk −
∫ ∞

−∞

fh

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ ∞

−∞

(fk − f)hk

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

−∞

f(hk − h)

∣

∣

∣

∣

6 ‖fk − f‖a,n‖hk‖IBV n−1 + ‖f‖a,n‖hk − h‖IBV n−1 .

Since ‖hk‖IBV n−1 is bounded, the result follows. �

The Hölder inequality shows that for each f ∈ An
c the integral is a continuous

linear functional on IBV n−1 and that for each h ∈ IBV n−1 the integral is a con-

tinuous linear functional on An
c . There is also an equivalent norm in terms of these

functionals. Similarly for An
r .

Theorem 4.3. (a) Let f ∈ An
c . Define Φf : IBV n−1 → R by Φf (h) =

∫ ∞

−∞
fh.

Then Φf is a continuous linear functional. (b) Let h ∈ IBV n−1. Define Ψh :

IBV n−1 → R by Ψh(f) =
∫ ∞

−∞
fh. Then Ψh is a continuous linear functional.

(c) Let f ∈ An
c . Define ‖f‖′a,n = sup

h

∫ ∞

−∞ fh where the supremum is taken over all

h ∈ IBV n−1 with h = In−1[g] for g ∈ BV such that ‖g‖∞ 6 1 and V g 6 1. Then

‖·‖a,n and ‖·‖′a,n are equivalent norms on An
c . (d) Fix 0 6 λ 6 1. Results analogous

to (a), (b) and (c) hold for An
r .

P r o o f. Linearity in each argument follows from linearity of the derivatives

defining f and the integrals defining h. If f ∈ An
c and (hk) ⊂ IBV n−1 such that

‖hk‖IBV n−1 → 0 as k → ∞ then by Theorem 4.2, Φf (hk) → 0. If h ∈ IBV n−1 and

(fk) ⊂ An
c such that ‖fk‖a,n → 0 as k → ∞ then by Theorem 4.2, Ψh(fk) → 0. Part

(c) follows from Theorem 29 in [26], which proves equivalence on A1
c . (d) See [28,

Theorem 15] for equivalent norms in An
r . �

It is a classical result that if [a, b] is a compact interval then C([a, b])∗ = NBVλ

and if L is an element of the dual space then there is a function g ∈ NBVλ such

that L(F ) =
∫ b

a
F (x) dg(x) for all F ∈ C([a, b]). By the compactification, the same

holds for C(R). The choice of 0 6 λ 6 1 is immaterial. The distinction between

BV and NBVλ is sometimes ignored (including in [26] in the paragraphs preceding

Theorem 8). The distinction is important since if F is continuous and g = χ{0} then
∫ ∞

−∞
F (x) dg(x) = 0. This function g is not 0 as an element of BV but its normalized

version in NBVλ is 0. It was shown in [26] that the dual space of A1
c is EBV . It then

follows from Lemma 1.1 that the dual space of An
c is also EBV . For each 0 6 λ 6 1
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we can choose to represent each element of EBV by a unique function in NBVλ.

Hence, the dual space of An
c is NBVλ. Meanwhile, the dual space of Br is BV . See

[28] for a discussion of this point.

Theorem 4.4. For each n ∈ N the dual space of An
c is isometrically isomorphic

to EBV and NBVλ. The dual space of An
r is isometrically isomorphic to BV .

By Theorem 2.9 and Lemma 1.1, the spaces NBVλ and IBV n are isometrically

isomorphic. Hence, An
c ⊂ NBV ∗

λ . Spaces of distributions are often defined as the

duals of some topological vector spaces. No explicit description of the dual of BV or
NBVλ seems to be known. We are thus reluctant to define our space of integrable

distributions as NBV ∗
λ and instead have chosen the concrete description in terms of

derivatives of functions in Bc and Br.

5. Banach lattice

The usual pointwise ordering makes Br into a Banach lattice. Each of the spaces

An
r inherits this Banach lattice structure. We will point out a few of the most basic

lattice properties of An
r but leave a detailed study for later. A reference for this

section is [2]. To keep the paper reasonably self contained we prove all results in this

section ab initio, although some of them follow from more general lattice theorems.

If � is a binary operation on a set S then it is a partial order if for all x, y, z ∈ S

it is reflexive (x � x), antisymmetric (x � y and y � x imply x = y) and transitive

(x � y and y � z imply x � z). If S is a Banach space with a norm ‖·‖S and � is
a partial order on S then S is a Banach lattice if for all x, y, z ∈ S

(1) x ∨ y and x ∧ y are in S. The join is x ∨ y = sup{x, y} = w such that x � w,

y � w and if x � w̃ and y � w̃ then w � w̃. The meet is x ∧ y = inf{x, y} = w

such that w � x, w � y and if w̃ � x and w̃ � y then w̃ � w.

(2) x � y implies x+ z � y + z.

(3) x � y implies kx � ky for all k ∈ R with k > 0.

(4) |x| � |y| implies ‖x‖S 6 ‖y‖S.

If x � y we write y � x. We also define |x| = x ∨ (−x), x+ = x ∨ 0 and

x− = (−x) ∨ 0. Then x = x+ − x− and |x| = x+ + x−.

The usual pointwise ordering, F1 6 F2 if and only if F1(x) 6 F2(x) for all

x ∈ R, is a partial order on Br. Since Br is closed under the operations (F1 ∨
F2)(x) = sup(F1, F2)(x) = max(F1(x), F2(x)) and (F1 ∧ F2)(x) = inf(F1, F2)(x) =

min(F1(x), F2(x)), it is then a vector lattice (or a Riesz space). The inequality

‖F1F2‖∞ 6 ‖F1‖∞‖F2‖∞ shows Br is also a Banach lattice. See [28]. Clearly, Bc

is a sublattice. Notice that the ordering in Br depends on our choice of using left

continuous primitives.
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A partial ordering in An
r is inherited from Br. If f1, f2 ∈ An

c with the respective

primitives F1, F2 ∈ Br then f1 � f2 if and only if F1 6 F2 in Br. By Lemma 1.1, An
r

is a Banach lattice and An
c is a sublattice.

An element e > 0 such that for each x ∈ S there is λ > 0 such that |x| 6 λe is an

order unit for the lattice S. In the theorem below we show Br and hence An
r do not

have an order unit.

We have absolute integrability: if f ∈ An
r so is |f |. The nth derivative operator

Dn commutes with ∨ and ∧ and hence with |·|.

Theorem 5.1 (Banach lattice). (a) Br is a Banach lattice and Bc is a Banach

sublattice. (b) For f1, f2 ∈ An
r with the respective primitives F1, F2 ∈ Br, define

f1 � f2 if F1 6 F2 in Br. Then An
r is a Banach lattice isomorphic to Br. (c) Br

and An
r do not have an order unit. (d) Let F1, F2 ∈ Br. Then D

n(F1 ∨ F2) =

(F1)
(n) ∨ F

(n)
2 , D

n(F1 ∧ F2) = F
(n)
1 ∧ F

(n)
2 , |F (n)| = Dn|F |, Dn(F+) = (DnF )+,

and Dn(F−) = (DnF )−. (e) If f ∈ An
r with primitive F ∈ Br then |f | ∈ An

r with

primitive |F | ∈ Br. Let h = In−1[(−1)n−1χ(a,b)] for (a, b) ⊂ R. Then |
∫ ∞

−∞
fh| >

|
∫ ∞

−∞
|f |h| for all f ∈ An

c . Now let h(x, t) = (x − t)n−1H0(x − t)/(n − 1)!. Then

|
∫ ∞

−∞ fh(x, ·)| =
∫ ∞

−∞ |f |h(x, ·) = |F (x)| for all f ∈ An
c . This formula also holds

for f ∈ An
r if λ = 1. And, ‖|f |‖a,n = ‖f‖a,n, ‖f±‖a,n 6 ‖f‖a,n. (f) If f ∈ An

r

then f± ∈ An
r with the the respective primitives F

± ∈ Br. Jordan decomposition:

f = f+ − f−. And,
∫ ∞

−∞
fh =

∫ ∞

−∞
f+h−

∫ ∞

−∞
f−h for every h ∈ IBV n−1. (g) An

r

is distributive: f ∧ (g ∨h) = (f ∧g)∨ (f ∧h) and f ∨ (g∧h) = (f ∨g)∧ (f ∨h) for all
f, g, h ∈ An

r . (h) An
r ismodular : For all f, g ∈ An

r , if f � g then f∨(g∧h) = g∧(f∨h)
for all h ∈ An

r . (i) Let F1 and F2 be continuous functions on R. Then

(5.1) F
(n)
1 � F

(n)
2 ⇐⇒ F1(x) − F1(−∞) 6 F2(x) − F2(−∞) ∀x ∈ R.

Let F1 and F2 be regulated functions on R. Then

F
(n)
1 � F

(n)
2 ⇐⇒ F (x−) − F (−∞) 6 G(x−) −G(−∞) ∀x ∈ R

⇐⇒ F (x+) − F (−∞) 6 G(x+) −G(−∞) ∀x ∈ R.

P r o o f. (a) It is clear that Br is closed under supremum and infimum. See [28].

Hence, it is a Banach sublattice of the bounded functions on R. (b) This follows from

Lemma 1.1. (c) Suppose e ∈ Br is an order unit. Then F defined by F (x) =
√

e(x)

is in Br. And, λ > lim
x→−∞

|F (x)|/e(x) = lim
x→−∞

1/
√

e(x) = ∞. Hence, Br has no

order unit. This shows An
r has no order unit. (d) Suppose f ∈ An

r with primitive

F ∈ Br such that D
nF1 ∨DnF2 = f . Then DnF1 � f , DnF2 � f and if DnF1 � f̃ ,

DnF2 � f̃ for some f̃ ∈ An
r then f � f̃ . These statements are equivalent to F1 6 F ,
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F2 6 F and if F1 6 F̃ , F2 6 F̃ then F 6 F̃ , where F̃ ∈ Br is the primitive of f̃ .

Therefore, F = F1∨F2 so D
n(F1∨F2) = DnF = f = DnF1∨DnF2. The other parts

are similar. (e) For f ∈ An
c , note that |

∫ ∞

−∞
fh| = |

∫ ∞

−∞
F ′h(n−1)| = |F (b) − F (a)|

and
∫ ∞

−∞
|f |h = |F (b)| − |F (a)|. The other parts of (e) and (f) follow from (d)

and the definitions, together with Proposition 2.10 and Theorem 3.5. (g) The real-

valued functions on any set form a distributed lattice due to inheritance from 6 in R.

Therefore, Br is a distributed lattice and so is An
r . See [17, p. 484] for an elementary

proof and for another property of distributed lattices. (h) Modularity is also inherited

from 6 in R via Br. (i) We have F
(n)
1 , F

(n)
2 ∈ An

c with the respective primitives

Φ1,Φ2 ∈ Bc given by Φ1(x) = F1(x) − F1(−∞) and Φ2(x) = F2(x) − F2(−∞). The

definition of order then gives (5.1). The relations F (x±) = lim
y→x±

F (y) = lim
y→x±

F (y−)

give (5.2) and (5.3). �

Let f1, f2 ∈ An
r with the respective primitives F1, F2 ∈ Br. Note that if F1 6 F2

in Br then we can differentiate both sides of this inequality with D
n to get f1 � f2 in

An
r . And, if f1 � f2 in An

r we can integrate both sides against h(x, ·) to get F1 6 F2

in Br. See Theorem 3.5. This also shows the derivative D
n is a positive operator on

Br and its inverse is a positive operator on An
r .

Define H−∞ : R → R by H−∞ = χ(−∞,∞]. Then H−∞ behaves like an order unit

for Br. However, as a distribution it is equal to the constant distribution 1. Hence,

all of its distributional derivatives are 0. To include an order unit we have to use

a more general type of differentiation with respect to test functions that are not

necessarily 0 at −∞. Two possibilities are BV or C∞(R) ∩ C(R). We can take as

a space of primitives B, which consists of the functions F : R → R that are regulated

on R such that F (−∞) = 0, F (x) = F (x−) for all x ∈ R and F (∞) = lim
y→∞

F (y).

Hence, they are left continuous on (−∞,∞], vanish at −∞ and can have a jump

discontinuity at −∞ but not at ∞. Then H−∞ ∈ B. For F ∈ B and g ∈ BV
define 〈F ′, g〉 =

∫ ∞

−∞
g(x) dF (x). Then 〈H ′

−∞, g〉 = g(−∞). Hence, for this type

of differentiation with respect to functions of bounded variation, H ′
−∞ 6= 0. The

Banach lattice B then has H−∞ as an order unit. We will explore this type of

differentiation elsewhere.

The usual pointwise ordering makes L1 into a Banach lattice. But the space of

Henstock-Kurzweil integrable functions is not a vector lattice. It is not closed un-

der supremum and infimum since there are functions integrable in this sense for

which
∫ ∞

−∞ f(x) dx converges but
∫ ∞

−∞ |f(x)| dx diverges. For example, f(x) =

x2 sin(exp(x2)). Thus, even for functions, when we allow conditional convergence

we must look elsewhere to find a lattice structure.

This order � is not compatible with the usual order on distributions: if T, U ∈
D′(R) then T > U if and only if 〈T − U,ϕ〉 > 0 for all ϕ ∈ D(R) such that ϕ > 0. If
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T > 0 then it is known that T is a Borel measure. The usual ordering on distributions

does not give a vector lattice onAn
c . For example, if F (x) = H0(x)

∫ x

0 sin(t) dt/t then

F (x) > 0 for all x ∈ R so F (n) � 0 inAn
c . With the distributional ordering, sup(F ′, 0)

is the function equal to sin(x)/x when x ∈ (2nπ, (2n + 1)π] for some integer n > 0

and is equal to 0 otherwise. This function is not in A1
c since the integral defining F

converges conditionally. None of the derivatives F (n)(x) are positive in the pointwise

or distributional sense. Note that in An
c we have (DnF )+ = |F (n)| = F (n) and

(DnF )− = 0.

If two distributions are in more than one of the An
c spaces they may have different

order relations in each such space. For example, let f(x) = −2(1 − 2x2) exp(−x2),

F1(x) = −2x exp(−x2) and F2(x) = exp(−x2). Then f, F1, F2 ∈ Bc and we have the

pointwise derivatives f(x) = F ′
1(x) = F ′′

2 (x) for each x ∈ R. Hence, f ∈ A1
c ∩ A2

c .

Since f(0) = −2 < 0 and f(1) = 2/e > 0, it follows that f is neither positive nor

negative in Bc. Since F1(−1) = 2/e > 0 and F1(1) = −2/e < 0, it follows that f is

neither positive nor negative in A1
c . But F2(x) > 0 for all x ∈ R so f � 0 in A2

c .

A vector lattice is order complete (or Dedekind complete) if every nonempty subset

that is bounded above has a supremum. But Br is not complete. Let Fn(x) =

H0(x− 1/n) sin(π/x) with Fn(0) = 0. Let S = {Fn | n ∈ N} then S ⊂ Bc. An upper

bound for S is the Heaviside step function H0 but sup(S)(x) = H0(x) sin(π/x), which

is not regulated. Hence, An
r is not complete, either.

A vector lattice is Archimedean if whenever 0 6 x 6 ny for all n ∈ N and some

y > 0 then x = 0. Applying the Archimedean property at each point of R shows

Br and hence An
r are Archimedean. All lattice inequalities that hold in R also hold

in all Archimedean spaces and all lattice equalities that hold in R also hold in all

vector lattices. See [2]. This expands the list of identities and inequalities proved in

Theorem 5.1.

A Banach lattice is an abstract L space if ‖x + y‖ = ‖x‖ + ‖y‖ for all x, y > 0.

A Banach lattice is an abstract M space if ‖x ∨ y‖ = max(‖x‖, ‖y‖) for all x, y > 0.

See, for example [2]. We next show that Br and An
r are abstract M spaces but

neither is an abstract L space.

Theorem 5.2. (a) All of Br, Bc, An
r and An

c are abstract M spaces. (b) None of

Br, Bc, An
r or An

c are abstract L spaces.

P r o o f. (a) It suffices to prove Br is an abstract M space. If F1, F1 > 0 in

Br then ‖F1 ∨ F2‖∞ = sup
x∈R

max(F1(x), F2(x)) > sup
x∈R

F1(x) = ‖F1‖∞. Similarly,
‖F1 ∨ F2‖∞ > ‖F2‖∞. So, ‖F1 ∨ F2‖∞ > max(‖F1‖∞, ‖F2‖∞). And, ‖F1 ∨ F2‖∞ =

sup
x∈R

max(F1(x), F2(x)) 6 sup
x∈R

max(‖F1‖∞, ‖F2‖∞) = max(‖F1‖∞, ‖F2‖∞). Hence,

Br is an abstract M space.
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(b) It suffices to show Bc is not an abstract L space. Let F1(x) = 1 − |x| for
|x| 6 1 and F1(x) = 0, otherwise. Let F2(x) = 1 − |x − 2| for |x − 2| 6 1 and

F2(x) = 0, otherwise. Then F1(x), F2(x) > 0 for all x ∈ R. And, ‖F1‖∞ = ‖F2‖∞ =

‖F1 + F2‖∞ = 1. So Bc is not an abstract L space. �

For every measure µ it is known that L1(µ) is an abstract L space and that

a Banach lattice is an abstract L space if and only if it is lattice isometric to L1(ν)

for some measure ν. A Banach lattice is an abstract M space with unit if and only

if it is lattice isometric to C(K) for some compact Hausdorff space K. The space

C(K) is the set of all real-valued continuous functions on K. These results are due

to S. Kakutani, M. Krein and others. For references see [2]. The fact that An
c is an

abstract M space but not an abstract L space indicates that what we have termed

an integral here is fundamentally different from the Lebesgue integral.

6. Banach algebra

A commutative algebra is a vector space V over the scalar field R with a multi-

plication V × V 7→ V such that for all u, v, w ∈ V and all a ∈ R, u(vw) = (uv)w

(associative), uv = vu (commutative), u(v+w) = uv+ uw and (u+ v)w = uw+ vw

(distributive), a(uv) = (au)v. If (V, ‖·‖V ) is a Banach space and ‖uv‖V 6 ‖u‖V ‖v‖V

then it is a Banach algebra. For any compact Hausdorff space, K, the set of contin-

uous real-valued functions C(K) is a commutative Banach algebra under pointwise

multiplication and the uniform norm. Since R is compact and Br and Bc are closed

under pointwise multiplication, Br is a subalgebra of C(R) and Bc is a subalgebra of

Br. The usual pointwise multiplication, (FG)(x) = [F (x)][G(x)] for all x ∈ R, then

makes Br into a commutative algebra. The inequality ‖F1F2‖∞ 6 ‖F1‖∞‖F2‖∞ for
all F1, F2 ∈ Br shows Br is a commutative Banach algebra.

There is no unit. For suppose F (x) > 0 for all x ∈ R. If eF = F then e(x) = 1

for all x ∈ R so e 6∈ Br. Consider the sequence (un) ⊂ Bc defined by un(x) = 0 for

x 6 −n, un(x) = x + n for −n 6 x 6 1 − n and un(x) = 1 for x > 1 − n. For each

F ∈ Bc we have ‖F − unF‖∞ → 0. Given ε > 0 there is a ∈ R such that |F (x)| < ε

for all x 6 a. We then have |F (x)−un(x)F (x)| = |F (x)||1−un(x)| < ε for all x 6 a.

If x > a take n > 1 − a. Then un(x) = 1. Hence, ‖F − unF‖∞ → 0. Bc is then said

to have an approximate identity.

By Lemma 1.1, An
r is a commutative Banach algebra, isomorphic to Br for each

n ∈ N. If f1, f2 ∈ An
r with the respective primitives F1, F2 ∈ Br then f1f2 =

Dn(F1F2).
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Theorem 6.1. For each n ∈ N, An
r is a commutative Banach algebra without

unit, with approximate identity, isomorphic to Br. Similarly with An
c and Bc.

There is no difficulty in allowing functions in Br to be complex-valued and using

C as the field of scalars. Complex conjugation is then an involution on Br. Then Br

is a C∗-algebra since for each F ∈ Br we have ‖F‖∞ = ‖F‖∞ and ‖FF‖∞ = ‖F‖2
∞.

Thus, each space An
r is also a C

∗-algebra.

If f1, f2 ∈ An
r with the respective primitives F1, F2 ∈ Br then for all h ∈ IBV n−1,

∫ ∞

−∞

(f1f2)h = (−1)n−1

∫ ∞

−∞

Dn(F1F2)D
n−1h

= (−1)n−1F1(∞)F2(∞)h(n−1)(∞) − (−1)n−1

∫ ∞

−∞

F1(x)F2(x) dh(n−1)(x).

Let a < ∞, h = In−1[χ(−∞,a)] with λ = 1. Then
∫ ∞

−∞(f1f2)h = (−1)nF1(a)F2(a).

In particular, in A1
c we have

∫ a

−∞
(f1f2) = (

∫ a

−∞
f1)(

∫ a

−∞
f2).

There are zero divisors. Let F1, F2 ∈ D(R) with disjoint supports. Then F1F2 = 0

in Br so F
(n)
1 F

(n)
2 = 0 in An

r , yet neither F
(n)
1 nor F

(n)
2 need be zero. This example

also shows the multiplication introduced in An
r is not compatible with pointwise

multiplication in the case when elements of An
r are functions.

If two distributions are in more than one of theAn
c spaces they may have a different

product in each such space. For example, let f(x) = sin(x) for |x| 6 π and f(x) = 0,

otherwise. Then f ∈ Bc and its square in Bc is the function f
2(x) = sin2(x) for

|x| 6 π and f2(x) = 0, otherwise. Now let F1(x) = −1 − cos(x) for |x| 6 π and

F1(x) = 0, otherwise. Let F2(x) = 0 for x 6 −π, F2(x) = −x − sin(x) − π for

|x| 6 π and F2(x) = −2π for x > π. Then F1, F2 ∈ Bc and we have the pointwise

derivatives f(x) = F ′
1(x) = F ′′

2 (x) for each x ∈ R. Hence, f ∈ A1
c ∩ A2

c . In A1
c ,

f2(x) = D(F 2
1 )(x) = −2[1 + cos(x)] sin(x) for |x| 6 π and f2(x) = 0, otherwise. In

A2
c , f

2(x) = D2(F 2
2 )(x) = 2[(1 + cos(x))2 − (x + sin(x) + π) sin(x)] for |x| 6 π and

f2(x) = 0, otherwise. Hence, f ∈ Bc ∩ A1
c ∩ A2

c but has a different product in each

of these three spaces.

By Proposition 3.1, for each integer n > 0, δ(n) ∈ An+1
r . Let λ ∈ R. Then

δ(n)δ(n) = Dn+1[H2
λ] = Dn+1[Hλ2 ] = δ(n).

It is easy to see that Bc is a maximal ideal of C(R). See [14] for the definition. It

then follows that An
c is a maximal ideal of the space of nth derivatives of functions

in C(R). Similarly, Br is a maximal ideal of the space B, introduced in Section 5,
consisting of the left continuous regulated functions on R such that F (−∞) = 0. It

then follows that An
r is a maximal ideal of the nth derivatives of such functions. Note

that B has a unit, H−∞ = χ(−∞,∞]. As pointed out in Section 5, the distributional

derivative is too coarse to distinguish between H−∞ and the constant functions so
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this would entail using a finer notion of the derivative such as using functions of

bounded variation for test functions. This is something we will pursue elsewhere.

Define AC−∞(R) to be the functions in AC(R) whose limit vanishes at −∞. And,
ACn

−∞(R) consists of the distributions f ∈ D′(R) such that f = DnF for some

F ∈ AC−∞(R). Note that AC1
−∞(R) = L1. It is easy to show that AC−∞(R)

is closed under pointwise multiplication. Hence, it is a Banach subalgebra of Bc.

Then ACn
−∞(R) is a Banach subalgebra of An

c . Of course, L
1 is not an algebra

under the usual pointwise multiplication. Similarly for the spaces of nth derivatives

of primitives of Henstock-Kurzweil and wide Denjoy integrable functions. See [13]

for the definitions of the relevant spaces of primitives. Under convolution L1 is

a Banach algebra. Although convolution has been defined in A1
c ×L1 in [27] it does

not seem possible to define convolution in A1
c ×A1

c . Convolutions can be defined for

distributions but restrictions on the supports are generally imposed. See [30].
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