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SOLVABILITY OF A HIGHER-ORDER MULTI-POINT
BOUNDARY VALUE PROBLEM AT RESONANCE*

XIAOJIE LIN, QIN ZHANG, ZENGJI DU, Xuzhou

(Received June 15, 2009)

Abstract. Based on the coincidence degree theory of Mawhin, we get a new general exis-
tence result for the following higher-order multi-point boundary value problem at resonance

s () = f(t,x(t), 2 (1),...,.a" D), te(01),
m l
2(0) =Y (&), 2'(0)=...=2""2 ) =0, V) =3 82" V()
i=1 j=1
where f: [0,1] x R™ — R is a Carathéodory function, 0 < &1 < &2 < ... <&m <1, a; € R,

i=12,....mm22and0<m <...<m <1 B8;€R,j=1,...,1,1 > 1. In this paper,
two of the boundary value conditions are responsible for resonance.

Keywords: multi-point boundary value problem, coincidence degree theory, resonance

MSC 2010: 34B15

1. INTRODUCTION

In this paper, we are concerned with the following higher-order ordinary differential
equation

(1.1) 2™ (t) = f(t,z(t), 2 t),...,2"7V(@), te(0,1),

*This work was sponsored by the Natural Science Foundation of China (11071205,
11101349), the NSF of Jiangsu Province (BK2011042), the NSF of the Education De-
partment of Jiangsu Province (11KJB110013), Qinglan Project, and Jiansu Government
Scholarship Program.
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subject to the following boundary value conditions

m

(1.2) 2(0) = D a(&),

i=1
2(0)=...=z""2(0) =0,

l
2 (1) = B2 (),
j=1

where f: [0,1] x R™ — R is a Carathéodory function, 0 < & < & < ... <&, < 1,
o €ER,1=12,....mm>=22and0<m <...<u <1, B €R j=1,...,1
l>1.

We say that the boundary value problem (BVP for short) (1.1) and (1.2) is a
resonance problem if the linear equation Lz = z(™(t) = 0, t € (0,1), with the
boundary value conditions (1.2) has a non-trivial solution. Otherwise we call them
a problem at non-resonance.

In recent years, there have been many works related to the existence of solutions
for lower-order multi-point boundary value problems at resonance in the case of
dimKer L = 1. We refer the readers to [3], [4], [6], and the references therein.
The case of dim Ker L = 1 for higher-order multi-point boundary value problems at
resonance is mainly discussed (see [1], [2], [8]).

Recently, Kosmatov [5], Liu and Zhao [7], Meng and Du [10], Zhang et al. [12]
studied the existence of solutions for some second-order multi-point boundary value
problems at resonance in the case of dimKerL = 2. Xue et al. [11] studied the
existence of solutions for some third-order multi-point boundary value problems at
resonance in the case of dimKer L = 2. However, few works exist for higher-order
multi-point boundary value problems at resonance in the case of dim Ker L = 2.

Inspired by the above mentioned papers, the goal of this paper is to study the
existence of solutions for BVP (1.1) and (1.2) at resonance in the case dim Ker L = 2
by applying the coincidence degree theory.

The layout of this paper is as follows. In Section 2, we briefly present some notation
and an abstract existence result which is due to Mawhin. In Section 3, we obtain
a general existence result for BVP (1.1) and (1.2) which is marked as Theorem 3.1.
Theorem 3.2 is a modification of Theorem 3.1. In Section 4, an example is given to
illustrate our main results.
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2. PRELIMINARIES

Now, we briefly recall some notation and an abstract existence result due to
Mawhin [9].

Let Y, Z be two real Banach spaces and L: domL C Y — Z a linear operator
which is a Fredholm map of index zero. Let P: Y — Y, Q: Z — Z be continuous
projectors such that Im P = Ker L, KerQQ = ImL and Y = Ker L ® Ker P, Z =
Im L & Im@Q. It follows that L|gom raker p: dom L N Ker P — Im L is invertible and
we denote the inverse of that map by Kp. Let 2 be an open bounded subset of Y
such that dom L N Q # @, the map N: Y — Z is said to be L-compact on ) if the
map QN () is bounded and Kp(I —Q)N: Q — Y is compact. For more details we
refer the readers to the lecture notes of Mawhin [9].

The theorem we use in this paper is Theorem IV.13 of [9].

Theorem 2.1. Let L be a Fredholm map of index zero and let N be L-compact
on Q. Assume that the following conditions are satisfied:
(i) Lz # ANz for every (x,A) € [(dom L \ Ker L) N 0€2] x (0,1).
(if) Nz ¢ Im L for every x € Ker L N OS2
(i) deg(QN|kerr,2NKerL,0) # 0, here Q: Z — Z is a projector with Im L =
Ker Q.
Then the abstract equation Lz = Nz has at least one solution in dom L N €.

In the following, we shall use the classical spaces C]0,1],C*[0,1],C?[0,1],...,
C"710,1], and L'[0,1]. For x € C"[0,1], we use the norm ||z = tren[aa)ﬁa:(tﬂ
and ’

ol = max{lle oo, 12 loos - 27},
and denote the norm in L'[0,1] by || - ||;. We will use the Sobolev space W™1(0, 1)
which may be defined by

w™0,1) = {z: [0,1] = R: z,2/,..., 2"
are absolutely continuous on [0, 1] with 2™ e L'[0,1]}.

Throughout this paper, we will use the following resonance conditions:

m

(RC) Zai = ]., zm:aifin_l = 0, Zﬁj =1.
i=1

i=1

Let Y = C(®=1Y[0,1], Z = L'[0,1], L is the linear operator from dom L C Y to Z
with

dom L = {x € W™(0,1): x(t) satisfies the boundary value conditions (1.2)}

and Lz = 2™, z € dom L.
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We define N: Y — Z by setting
Nz = f(t,z(t),2'(t),...,2" "V (), te(0,1),

then BVP (1.1) and (1.2) can be written as Lx = Nx.

3. MAIN RESULTS

In this section, first of all we show a general fact as follows:

m l
Lemma 3.1. If > o; = Y 3; = 1, then there exist p € {1,...,l}, ¢ € ZT,

i=1 7j=1
q = p+ 1, such that

m l
A =g+ Dla+2). (g +n -1 g™ (1 _ Zﬁjn;?)

j=1

m l
_ (p—l—l)(p—l—Q)...(p—l—n—1)Zai€g+n_l(1 —Zﬁjn;’) #0.
i=1 j=1

Proof. We can easily obtain that there exists p € {1,...,I} such that

1
> ﬁjn;) # 1. Indeed, if
j=1

l
ZBJ”?ZZL pE{O,l,...,l},
j=1

then l
S Bmil-n) =0, iefo,...,1—1}.
=1

This is equivalent to the following matrix equation

1—m 1—mn B 0
Tt =m) A=) )\ B 0
However,
1—m 1—m .
: : =[[a-n) I O—mn)#o0,
Tt l=m) o =) T ISt
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1

thus 8; = 0, j = 1,...,l, which is a contradiction to ) §; = 1. Similarly, for
j=1

every s € Z, s > 0, there exists ks € {sm,sm 4+ 1,...,(s + 1)m — 1}, such that

m

St £ 0.

i=1
Set
l
S = {]{)5 VAR 1—2[3]775)
j=1

(ks +1) ... (ks +n— 1) X0 aa? (1= S0, i)
(p+1)...(p+n—1)27;1%5?”"_1 ’

we shall prove that S is a finite set. If not, there exists a monotone sequence {ks, },
r=1,2,... ks, <ks such that

r419

ks, +n—1

1-— zl:ﬂ_np _ (B D). (ks 0 — 1) S (1 - Y 8y
j=1 I p+1)...0+n—-1)2", af;

l m
From Y 31} # 1, we obtain €7 £ 0, thus
i=1 1

J =

l
L= By
j=1

L n— ksr
(ks, +1) ... (ks, +n— 1) X0, ™ 1(1 - Z§'=1 Bin;™")

= lim — —— 0,
ks, —o0 p+1)...(p+n—-1)>" &

a contradiction. Thus there exist p € {1,...,l}, ¢ € ZT, ¢ > p + 1, such that
A(p,q) # 0. O

Lemma 3.2. Let the condition (RC) hold, then L: domL C Y — Z is a Fred-
holm map of index zero. Furthermore, the linear continuous projector operator
Q: Z — Z can be defined by

Qy(t) = (Tiy(t)) - "~ + (Toy(t)) - 177,
where

_p...(p+n—1) : H
le_W[(q‘f'l)...(q-f—n—l)(l_jz:;ﬁjnj>Qly

m
- ai€3+"_1622y],
=1
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_q...(g+n—-1) l H
Toy = —W[(p+l)...(p+n—1)(1_261'773‘)621?4

j=1
m

- O%Eer"_lQay} ,
=1

m i T T2
Qiy = Zai/ / / y(m)dndre ... dm,
Qoy = / (r1)dm — Zﬂj/ y(m)dmy.

And the linear operator Kp: Im L — dom L N Ker P can be written as

Kpy(t) // / (rn)dndr...dr, y€ImL.

IKpyll < |lylli, v €ImL.

Furthermore,

Proof. Itisclear that Ker L = {z € domL: z =a+bt""!, a,b € R}. Now we
show that

(3.1) ImL={yeZ: Qiy=Qay =0},

since the problem

(3.2) 2 () = y(t)
has a solution z(t) satisfying (1.2) if and only if
(3-3) Qy = Q2y =0.

In fact, if (3.2) has a solution z(t) satisfying (1.2), then from (3.2) we have

1
(n—1)!

// / 7'1 dTldTQ d

According to the boundary value conditions (1.2) and the condition (RC), we obtain

:L'(t) ( ) +x (O)t +...+ 2= 1)(0)tn71

Quy = Q2y = 0.
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On the other hand, if (3.3) holds, we set

t Tn T2
x(t) :a—l—bt"_l—l—/ / / y(r)dndr...dm,,
0Jo 0

where a, b are arbitrary constants, then z(t) is a solution of (3.2) and (1.2). Hence,

(3.1) holds.

From Lemma 3.1, there exist p € {1,...,l}, ¢ € Z*, ¢ > p + 1, such that

A(p, q) # 0. Setting

l
Ty = L e =) [(q+1>...(q+n—1)(1—;@77?)@1@/

-3 aﬂ*“sz} :

i=1

!
Toy = —w{(p—kl)...(p—kn—1)(1—Zﬂjn§-’>Q1y

Ap,q) =

m
-1
CY ot ng},
=1

we then define
Qy(t) = (Twy(t)) - 7~ + (Tay(t)) - t7 1,

and it is obvious that dim Im @ = 2.

Again from

Ty ((Tyy)t" ™)

:p...(p—i—n—l)
A(p,q)

l

[(q +1)...(¢g+n—1) (1 - Zﬁjng) Q1((Thy)tP™h)

j=1

- Z ai€?+”_1Q2((T1y)t”_l)}
i=1

= @{(q_"l)"'(Q“‘n—1)(1_zl:ﬁj77?) iai@“”—l

j=1 i=1

m l
R (1 - Zﬂjﬁf)] (Tiy) = Tuy,
=1 =1

j=
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Ty((Toy)ti™)

_p...(ptn—-1)
A(p,q)

_Zazqurn 1 Tgy)tq 1)}
- p(ptn-1) l 4 - eqtn—1
o A(p,Q) |: q (1 - ;ﬂ]”;) ;Oézfi
m l
_wszﬁm( Zﬁ]mﬂ Thy) =0,
j=1

q i=1

l

(a0l n= 1) (1 3 ) QT )

J=1

To(Tuy)t" 1)

l
__¢--gtn-1) {(er D...(p+n—1) (1 - Z@nﬁ-’)%((ﬂy)tpl)

Ap,q) =

- Y Q@)

i=1

1 [q...(g+n—1) Y TP AR SUpraT
 Alp,9) { P (1 - Zﬂm) Zalfi
m l
- wza@w—l( Zﬁm]ﬂ Tiy) =0,
Jj=1

p i=1

T((Tay)t™™")

l
_ _4(gtn-l) {(er )...(p+n—1) (1 - Z@nﬁ-’)@((sz)tql)

Ap,q) =

ag e

— 1 n— _l P maAqunfl
= Ap,q) {(p"' D...(p+ 1) <1 ;5]77]) ; i&;

l

—(g+1) ... (g+n—1)) o™t (1 - Zﬁjﬁ?)} (Toy) = Ty,
i=1 j=1

we have

Q% = Q((Try) - " + (Toy) - t971)
=Ty ((Thy) - "~ + (Toy) - t97") - 77+ To((Tay) - P71 + (Toy) - 97 1) -9
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=T ((Tyy) - ") - P+ T (Toy) - t971) - 77+ To((Thy) - tP71) - 4971
+ To((Toy) - t2 1) - 4971
= (Tyy) - "' + (Toy) - 7" = Qy,

which implies that the operator @) is a projector.
Now we will show that Ker@Q =Im L. If y € Ker @, from Qy = 0 we have

l m

(g+1)...(¢+n— 1)<1 - '21 5jﬂ?)@1y - 2ai§f+n71Q2y =0,
j= i=
l m

(p+1)...(p+n- 1)(1 — Z&Bjﬁf)QM - Zloéiﬁﬂrn*lQQy = 0.
j= i=

Since
l m tno1
@+ 1) @+n-1)(1- X Bnf) - ¥ agl™
7 o = —A(p,q) #0,

m
p+1)...(p+n— 1)(1 - '21 b’jnf) - Zlaile'prnﬂ
j= i=
then we find that Q1y = Q2y = 0, which yields y € Im L. On the other hand, if
y € Im L, from @1y = Q2y = 0 and the definition of @, it is obvious that Qy = 0,
thus y € Ker @. Hence, Ker Q = Im L.
Forye Z, fromy = (y—Qy) + Qy, y — Qy € KerQ =Im L, Qy € Im Q, we have
Z=ImL+ImQ@. And for any y € Im LNIm @Q, from y € Im Q, there exist constants
a,b € R, such that y(t) = at?P~! + bt~ !, From y € Im L, we obtain

m m
q...(q—l—n—l)Zaing-a—i—p...(p—i—n—l)zaifg*'"_l.b:O,

i=1 i=1

(3.4) . l ' l
_(1—Zﬁjn§-’) .a+—(1—25j77;1) b=0.
p — q —

J J
In view of
q...(q+n—1)z;ai£f+n71 p~~-(p+n_1)2ai§f+"*1
- " =A(p,q) #0

1 l p 1 l q ) )
];(1 —jglﬁj??j) 5(1 —jglﬁj??j)

the equation (3.4) has a unique solution a = b = 0, which implies Im LNIm @ = {0}
and Z =Im L & Im Q. Since dim Ker L = dimIm @ = codimIm L = 2, we find that
L is a Fredholm map of index zero.
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Let P: Y — Y be defined by

1

Pz(t) = z(0) + =1

D) teo,1].

Then, the generalized inverse Kp: Im L — dom L N Ker P of L can be written by

t pTh T2
pr(t):// / y(n)dndr...drm, y€ImL.
0 Jo 0

In fact, for y € Im L, we have
(LKp)y(t) = (Kpy(t))™ = y(t),
and for « € dom L N Ker P, we know that

(KpL)a(t) = (Kp)z™ (1)

t Tn T2
= / / / x(")(ﬁ)dﬁ dry...d7m,
0Jo 0

_ / 1 (n—1) -1
— z(t) — [x(O) F O+t O
= x(t) — Px(¢).

In view of z € dom L NKer P, 2/(0) = ... = 2("=2(0) = 0, Pz(t) = 0, thus

(KpL)a(t) = x(t).

Again from the definition of Kp, we have

1 1
||pr||oo</ / ly(r)|drs . .. dr = [l
0 0

and from

t Trn—1 T2
(Kpy)'(t) = /0 /0 /0 y(r)dndr. .. dr—1,

(Kpy) " D(t) = / y(r)dn,

we obtain
1K) || < Myl 1 Epy) "V <yl

that is, || (Kpy)|| < |ly|l1- This completes the proof of Lemma 3.1.
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Theorem 3.1. Let the condition (RC) hold. Assume that
(Hy) There exist functions oy (t), aa(t),...,an(t),y(t) € L'[0,1], such that for all

($1,$2,...,

|f(t, 1, 22, . ..

xn) € R" and t € [0,1],

van)| S (|| + ao(®)|za] + .. 4 an(t)en] + 7 (2).

(Hy) There exists a constant A > 0 such that for x € domL, if |z(t)] > A or
|z~ ()| > A for all t € [0,1], then

QIN(@(t) 0 or QaN(a(t)) #0.

(Hg) There exists a constant B > 0 such that for a,b € R, if |a| > B or |b| > B,

then either
(3.5)
or

(3.6)

Then BVP (1.1) and (1.2) has at least one solution in C"~1(0,1], provided that

Proof. Set

O ={r€domL\KerL: Lv = ANz for some X € [0,1]}.

QiN(a+bt"1) 4+ QN (a+bt"1) >0,

QiN(a+bt" 1)+ QaN(a+bt"1) < 0.

n
> flalh < 1.
=1

For x € Q4, since Lz = ANz, so A # 0, Nx € Im L, hence

Q1N(z(t)) =0 and Q2N(z(t)) =0.

Thus, from (Hy), there exist to,%; € [0,1] such that |z(to)| < 4, |2~V (t;)] < A.
Since z, z(»~1) are absolutely continuous for all ¢ € [0, 1],

z(t) —x(t0)+/tx'(s)ds, 2= () —x("l)(tl)—i—/tx(”)(s)ds.

Since z'(0) = ...

to

=z\"" =0, we have ||z <... < ||lz\ "
(1=2)(0) = 0, we have [[2/[|o < ... < [l2 V|,

2lloe < A+ [l oo,

t1

12Vl < A+ [l 1.
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From (H;), we obtain

n

2™l = [[Lally < [INell < Y llaillu e oo + 71l

=1
n n
< (Z ||az-||1)||x<">||1 +A(2||a1|1 +Z|ai|1) vl
=1 =2
oA+
< ——t[a(2far + |az~|1) +||v||1]
L= el Z

1=2

so there exists a constant M; > 0 such that ||z|| < M;. Therefore, ; is bounded.
Let

Qy={reKerL: Nx € ImL}.

For x € Q, z € Ker L implies that o can be defined by # = a + bt" 1, t € [0,1], a,
b are arbitrary constants. Since QNz = 0, Q1 N(a + bt" ') = Q2N (a + bt"~1) = 0.
It follows from (Hg) that ||z| < |a| + [b] < 2B. So 3 is bounded.

From Lemma 3.1, there exist p € {1,...,i}, ¢ € Z*, ¢ > p + 1, such that
A(p,q) #0. For any a,b € R, define the linear isomorphism J: Ker L — ImQ
by

J(a+bt"1) = (a - P71 0 11,

A(p,q)

where

/

ad=p...p+n-1)

_ . .
<l g en=0(1= X = Y.
) i=1

j=1
b= —q...(g+n—-1)

i l -
1) =) (1= 8 i = Y|
i i=1

Jj=1

If (3.5) holds, set

Qy={zreKerL: —AJzx+ (1-XNQNz =0, A e[0,1]}.
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For any z(t) = a + bt" ! € Q3, from —A\Jz + (1 — A\)QNz = 0, we obtain

!
(g+1)...(g+n—-1) <1 — Z@n?) (=Aa| 4+ (1 = N)Q1N(a+bt"1))

J=1

=Dl =AD 4 (1= \)Q2N(a +bt)) = 0,
i=1

1
(P+1)~~(P+n—1)<1—2gm§?

Jj=1

>(—)\|a| + (1 = NQiN(a+bt" 1))

=Y @l =AD + (1= N)QeN(a+ bt 1) =0

i=1
Since
(@+ 1) (a+n-1D)(1- X Bnf) - § gugren=
Jj=1 i=1
! m = _A(p7 q) 7& 0)
p+1)...(p+n— 1)(1 -3 5]‘77;)) - aifszrnﬂ
Jj=1 i=1
then
_)\|a| + (1 — /\)QlN(a + btn—l) — 07
—Abl + (1 = N)Q2N(a+ bt 1) = 0.

IfX=1,thena=b=0. If A # 1, and |a| > B or |b| > B, in view of the above

equalities and (3.6), one has

Mla| + b)) = (1 = N[@1N(a +bt" ') + QaN(a + bt" )] <0,

which contradicts A(|a| + [b]) > 0, thus ||z|| < |a| + |b] < 2B. So €23 is bounded.
If (3.5) holds, then set
Qs={zeKerL: MJz+ (1-NQNz =0, A€[0,1]};

similarly to the above argument, we can show that €23 is bounded too.
In the following, we shall prove that all conditions of Theorem 2.1 are satisfied.

3
Set Q2 to be an open bounded subset of Y such that |J ; C Q. By using the
i=1
Arzela-Ascoli theorem, we can prove that Kp(I — Q)N: Q — Y is compact, thus

N is L-compact on Q. Then by the above argument, we have
(i) Lz # ANz for every (x,A) € [(dom L \ Ker L) N 9] x (0,1)

(ii) Nz ¢ Im L for every x € Ker L N 90SQ.
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Lastly, we will prove that (iii) of Theorem 2.1 is satisfied. Let H(x, \) = £AJz +
(1=XN)Q@Nz. According to the above argument, we know that H(z, A) # 0 for every
x € Q) NKer L. Thus, by the homotopy property of degree,

deg(QN|kerr, 2N Ker L,0) = deg(H(-,0),2NKer L,0)
= deg(H(-,1),Q2NKer L,0)
= deg(£J,Q2NKer L,0) = +1 #0.

Then by Theorem 2.1, Lz = Nz has at least one solution in dom L N Q. Thus
BVP (1.1) and (1.2) has at least one solution in C" 1[0, 1]. O

m
From the condition (RC), > azf;kl = 0 implies that «;, i = 1,2,...,m, do not

i=1
have the same sign. Assume that:

(H) There exists s € {1,...,m — 1} such that o; < 0 (1 < i < s) and o > 0
(s+1<i<m).

(HS) There exists a constant A > 0 such that for z € dom L, if |z(¢)] > A for all
t € [0,1], then

Q1N (z(t)) #0 or Q2N (x(t)) #0.
The following result is a modification of the previous theorem.

Theorem 3.2. Let the conditions (RC) and (H) hold. Assume that (H;), (HY)
and (H3) are fulfilled, then BVP (1.1) and (1.2) has at least one solution in C"~1[0, 1]

provided that
n
S el < 1.
i=1

7
)

Proof. Set
Oy ={r €domL\KerL: Lv = ANz for some X € [0,1]}.
For x € Q4, since Lz = ANz, so A # 0, Nx € Im L, hence
Q1N(z(t)) =0 and Qa2N(z(t)) =0.

Thus, from (Hj), there exists ¢ty € [0, 1] such that |z(t9)| < A.
By (H), there exist t; € [0,7,] and t2 € [)s41,7m] such that

z(t) = #Slai {x(o) - Z%‘x(&)] = Zm; Z a;x(&;) = z(t2).

i= i=s+1 M T



It follows that there exists 7 € (t1,t2), such that 2’(m;) = 0. Taking note of
2'(0) = 0, thus there exists 72 € (0,71), such that 2”(m2) = 0. Since also z”(0) = 0,
there exists 73 € (0,72), such that 2”/(73) = 0. Continuing like this, there exists
Tn—1 € (0, T7—2) (n = 3), such that x("’l)(Tn,l) = 0. Since z, ("1 are absolutely
continuous for all ¢ € [0, 1],

a:(t)zx(to)+/ (s) ds,

to
¢
2PV () = 2V (7, ) +/ 2™ (s)ds.
Tn—1
Since 2/(0) = ... = 2("=2)(0) = 0, we get [|2]jo0 < ... < [|[2" V|0,
Izl < A+I2"loo, 12 Vlloo < (|21

From (H;), we obtain

n

21 = [ Ll < [Nl < D llaillu e oo + 71k
i=1

n
S (Z |0%||1) =1 + Alledly + [l

i=1

1

< —=n 5 Allall + 17lH),
1- Zi:l f|evillx

so there exists a constant M; > 0 such that ||z|| < M;. Therefore Q0 is bounded.
The rest of the proof is similar to Theorem 3.1. O

4. EXAMPLE

Example 4.1. Consider the boundary value problem

1
(4.1) 2" = 2—nh(t)(sina: +sina’ + 2" +2ne’), te€(0,1),
_ 9 1 4 1 / _ 1! _ 1 1 " 2

(4.2) x(O)f5x(3) - (2> Z(0)=0, 2’(1)=—2z ( >+3x (3)
where

3 0<t<y,

hM)=95 .
00 2 <t<1.
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Let oy =

f(t’ x’ y7 Z)

9
57

042:_%751:%752:%7[31:_2762:37”1:
in h(t)(sinz + siny + 2 + 2ne’), then oy + az =1, &} + a1 &3 =

B1 + B2 = 1. Thus the condition (RC) holds.

Again

Taking oy (t)

Now setting A = 3+27e, for any « € dom L, assume |z”/ ()| > A holds for ¢t € (0,1),

from the continuity of z”, either z”(t) > A or z”/(t) < —A holds for t € (0,1).

f(t,x,y, )l 2—(|a:|+|y|+|z|)

=a(t) = as(t) = 31, t € (0,1), we have

3
laalls + flazlls + flaslls = 7. <1l
T

If 2" (t) > A holds for ¢ € (0,1), then

&1 pT3 T2
QlN(x):al/ / / N{E(Tl)dTldTQdTg

A

&2
+a2/ / / Nz(11)dr dre drs

1 —
35 M2 =

%M/O (61— )N ()ds+;a2/0 (62 — ) Na(s) ds

1 /3 5, . 1 2 , .
_z _22\N = 1— 45 + 452N

5/0 (s 25) x(s)ds 10/ ( s+4s*)Nz(s)ds

1

1/3

10 2 2n 2n
1oy 1

% s (1 —4s +4s%) {2_71 sinz(s) + sina’(s) +
1 (—1+—1+A+1>
10\ 2n 2 2

1/3 5 1 vz
_ 9.2 L _ 2
X[/o (s 23>ds+2/1/3 (1—-4s+4s )}ds

A+18n—1
~ Sigool9A + 18t — 18] <0.

If 2" (t) < —A holds for t € (0,1), then

&1 pT3 pT2
Q1N (z) =y / / / Nz(11)dr drp drs
o Jo Jo
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€2 T3 pT2
+ g / / / Nz(1)dr dre drs
o Jo Jo

1
—

27

- — (s - §82) [— sinz(s) + sina’(s) + —a”(z) + es} ds
0

"(z) + es} ds

2
3
0



&1 &2
= %al/o (61 — 5)’Nxz(s)ds + %042/0 (€3 — 5)>Nxz(s)ds

1/3 5 1/2
——/ (s——s )Nx( )ds——/ (1 —4s+4s*)Nxz(s)ds
5/, 2

1 [ 1 1
= - — (s - §82) [— sinz(s) + sina’(s) + —a”(z) + es} ds
0

10 2 21 o
1 1/2 1 |
B % 1/3 (1 _4S+482) [2_7_[ Sinx(s) +Sin$/(s) + 2_TE‘,E//(:E) +eS} ds
> 1 ( 1 L N —A . )
10 \ 2 21‘[ om ' ©

1/3 5 1 /2
_ 92 : _ 2
X[/o (s 23)ds+2/1/3 (1—4s+4s%)|ds

1
= A—-18-1 .
61307 —9 8 — 18ne] > 0
Thus the condition (Hz) holds.
Finally taking B = 25 + n(13e — 12), for any a,b € R, when |b| > B, then either

b>B,orb< —B. If b> B, then

Q1N (a + bt?) + QaN(a + bt?)

&1 1P
—041/ / / Na—i—le dTldTQdTg-l-OéQ/ / / Na—i—le )d7y dro drs

m

/Na+b¢1)dn Bi | N(a+bri)dr — ﬂz N(a+bﬁ)dﬁ
0

1 1/3 5 1 1/2
= _—/ (s——sQ)N(a+bs2)ds—— (1 —4s+45*)N(a + bs?) ds
2/3 1
-2 N(a+bs®)ds + N(a+ bs*)ds
1/2 2/3
— i(__]' + __1 + 2_b + ]_)
10\ 2r 2 2n

1/3 5, 1 vz , 2/3
X[/o (8_58)d8+§/1/3 (1—4s+4s)ds+2/ ds}

1/2
+1(1+1+2b+)/1d
— — + — s
10 27[ 2TE 2/3

__ %-225-x(108e—117)
o 32407 '
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If b < —B, then

Q1N (a + bt?) + QoN (a + bt?)

§1 pT3 T2
= / / / N(a+br?)dr drpdrs
o Jo Jo

&2 T3 pT2
+ / / / N(a+brd)dr drpdrs
0 0 0

m 2

1
+/ N(a+brd)dn — B N(a+brd)dr — Bs N(a+ bri)dn
0 0

0
1 (/3 5 1 2
= — g/0 (s - 582)N(a+b52)d5 - E/l/g (1 — 45+ 45*)N(a + bs*) ds
2/3 1
-2 N(a+ bs*)ds + N(a+ bs?)ds
1/2 2/3
> —i<i+i+2—b+e)
10\2x  2n  2=n
1/3 5 1 2 2/3
x[/ (s——sQ)ds—l——/ (1—4s+452)ds+2/ ds}
0 2 2 )13 1/2
1,-1 -1 2b !
—=—=+=+—=+1 d
* 10(2n TR ) by
—9b — 225 — n(117e — 108)
= > 0.
3240n
So the condition (Hs) holds. Hence, from Theorem 3.1, the BVP (4.1) and (4.2) has
at least one solution in C?[0, 1]. O
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