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K Y BE R NE T IK A — VO L UM E 4 7 ( 2 0 1 1 ) , NU MB E R 1 , P AGE S 7 4 – 9 2

ARITHMETICS IN NUMERATION SYSTEMS

WITH NEGATIVE QUADRATIC BASE

Zuzana Masáková and Tomáš Vávra

We consider positional numeration system with negative base −β, as introduced by Ito
and Sadahiro. In particular, we focus on arithmetical properties of such systems when β is
a quadratic Pisot number. We study a class of roots β > 1 of polynomials x2 − mx − n,
m ≥ n ≥ 1, and show that in this case the set Fin(−β) of finite (−β)-expansions is
closed under addition, although it is not closed under subtraction. A particular example
is β = τ = 1

2
(1 +

√
5), the golden ratio. For such β, we determine the exact bound on the

number of fractional digits appearing in arithmetical operations. We also show that the
set of (−τ )-integers coincides on the positive half-line with the set of (τ 2)-integers.

Keywords: numeration systems, negative base, Pisot number

Classification: 11K16, 68R15

1. INTRODUCTION

In practically all fields of applied sciences one meets problems requiring efficient com-
putational methods. An indispensable key for developing such methods is to have
fast algorithms for performing arithmetical operations with high precision. The first
of the two aspects — speed — can be reached for example using parallelization of
algorithms for addition and multiplication. However, it has been shown [15] that this
can only be achieved allowing redundancy in number representation. The second
aspect — accuracy — calls for special treatment of different classes of irrational num-
bers by using e. g. exact arithmetics in algebraic number fields. All this motivates
the study of non-standard number systems.

Usually, one represents numbers in the standard positional number system with
base 10 or base 2, (the so-called decimal or binary representation of numbers).
Changing the base for any integer b ≥ 2 does not bring much new. In 1957, Rényi [17]
introduced the possibility of representing numbers in a system with non-integer base
β > 1. For every non-negative real number x, we have the β-expansion of x of the
form

x =

k∑

i=−∞

xiβ
i , xi ∈ {0, 1, . . . , ⌈β⌉ − 1} ,

where the digits xi are obtained by the greedy algorithm. In analogy with standard
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numeration with integer base, we define the set Zβ of β-integers, which have vanish-
ing digits at negative powers of β. We also define the set Fin(β) of numbers with
finite β-expansion, i. e. numbers whose β-expansion has only finitely many non-zero
digits.

Many new interesting phenomena appear when considering β-expansions for non-
integer base β. For example, whereas in base b ∈ N, every finite string of non-
negative integers < b is admissible as the greedy expansion of some x, in base β /∈ N,
this is no longer true. The conditions for admissibility of digit strings for general
base β have been given by Parry [16] using the lexicographical ordering of digit
strings.

But probably the most remarkable novelty is that Zβ is no longer equal to the set
Z of rational integers; its elements are not equidistant on the real line and Zβ is not a
ring (i. e. closed under addition and multiplication), as it is the case for Z. Even more
strange, addition of β-integers may result in an infinite β-expansion. Such properties
were studied by many authors. Among the most important results on arithmetics
with β-expansions is Schmidt’s description of bases β for which rational numbers
have periodic β-expansions [18], or the necessary condition on β, so that Fin(β) is
a ring, given by Frougny and Solomyak [9]. Others have studied the fractional part
appearing in arithmetical operations with β-expansions, see e. g. [4, 5, 11]. On-line
computability of arithmetic operations was studied in [7, 10]. Let us note that many
questions about arithmetics in the numeration systems with positive real base β
remain open.

Recently, Ito and Sadahiro [12] suggested to study positional systems with nega-
tive base −β, where β > 1. Here one obtains a representation of every (both positive
or negative) real number in the form

x =
k∑

i=−∞

xi(−β)i , xi ∈ {0, 1, . . . , ⌊β⌋} .

Ito and Sadahiro have provided a condition for admissibility of digit strings as (−β)-
expansions and shown some properties of the dynamical system connected to (−β)-
numeration. Their work on dynamical aspects has been continued in [8]. The authors
of [1] define the set Z−β of (−β)-integers and focus on its geometrical features. Some
arithmetical properties of (−β)-numeration systems are studied in [14]. Among
other, the validity of a conjecture of Ito and Sadahiro is established, which states
that if β > 1 is the root of x2 − mx + n, m, n ∈ N, m ≥ n + 2 ≥ 3, then the set of
Fin(−β) of finite (−β)-expansions is a ring. One also provides bounds on the length
of the fractional part arising by adding and multiplying (−β)-integers, this in case
that β is a root of x2 − mx − 1 for m ≥ 2, and that β is a root of x2 − mx + 1 for
m ≥ 3.

In the present paper we complete the arithmetical study for quadratic negative
bases started in [14]. In particular, we focus on roots β > 1 of polynomials x2−mx−
n, m ≥ n ≥ 1, and show that in this case the set Fin(−β) of finite (−β)-expansions is
closed under addition, although it is not closed under subtraction. We also provide
exact bound on the number of fractional digits appearing in arithmetical operations
for the golden ratio τ = 1

2
(1+

√
5), which is a case missing in the study [14]. We also
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prove a curious coincidence between (−τ)-integers and (τ2)-integers. For that, we
need to describe the distances between consecutive (−τ)-integers and the morphism
under which the infinite word coding their ordering is invariant.

2. POSITIVE BASE NUMBER SYSTEM

Let β > 1. The Rényi β-expansion of a real number x ∈ [0, 1) can be found as a
coding of the orbit of the point x under the transformation Tβ : [0, 1) 7→ [0, 1), given
by the prescription Tβ(x) := βx − ⌊βx⌋. Every x ∈ [0, 1) is a sum of the infinite
series

x =

∞∑

i=1

xi

βi
, where xi = ⌊βT i−1

β (x)⌋ for i = 1, 2, 3, . . . (1)

Directly from the definition of the transformation Tβ we can derive that the digits
xi take values in the set {0, 1, 2, . . . , ⌈β⌉ − 1} for i = 1, 2, 3, . . ..

Definition 2.1. The expression of x in the form (1) is called the β-expansion of
x ∈ [0, 1). The number x is thus represented by the infinite word

dβ(x) = x1x2x3 . . . ∈ AN

over the alphabet A = {0, 1, 2, . . . , ⌈β⌉ − 1}.
From the definition of the transformation β we can derive another important

property, namely that the ordering on real numbers is carried over to the ordering
of β-expansions. In particular, we have for x, y ∈ [0, 1) that

x ≤ y ⇐⇒ dβ(x) � dβ(y) ,

where � is the lexicographical order on AN, (ordering on the alphabet A is usual,
0 < 1 < 2 < . . . < ⌈β⌉ − 1).

In [16], Parry has provided a criterion which decides whether an infinite word in
AN is or is not the β-expansion of some real number x. The criterion is formulated
using the so-called infinite expansion of 1, denoted by d∗β(1), defined as a limit in

the space AN equipped with the product topology,

d∗β(1) := lim
ε→0+

dβ(1 − ε) .

According to Parry, the string x1x2x3 . . . ∈ AN represents the β-expansion of a
number x ∈ [0, 1) if and only if

xixi+1xi+2 . . . ≺ d∗β(1) for every i = 1, 2, 3, . . . . (2)

The notion of β-expansion can be naturally extended to all non-negative real
numbers:

Definition 2.2. Let β > 1 and x ≥ 0. The expression

x = xkβk+xk−1β
k−1+xk−2β

k−2+. . . , where k∈Z and xi∈Z for i≤k, (3)

is a β-representation of x. The β-expansion of x is the particular β-representation
satisfying xkxk−1xk−2 . . . = dβ(y) for some y ∈ [0, 1).
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Note that Definition 2.2 of β-expansion is in accordance with Definition 2.1. The
β-representation of x is sometimes written as the digit string

xk . . . x0 • x−1x−2 . . . , for k ≥ 0, or

0 • 0−k−1xkxk−1 . . . , for k < 0,
(4)

with the notation 0j standing for j digits 0 repeated. If the β-representation is in the
same time the β-expansion of x, we denote the cooresponding digit string by 〈x〉β .

When the digit string xkxk−1xk−2 . . . ends in infinitely many 0’s, we say that
the β-expansion is finite and omit the ending 0’s. Real numbers x having in their
β-expansion vanishing digits xi for all i < 0 are usually called β-integers and the set
of β-integers is denoted by Zβ ,

Zβ =
{
x ∈ R

∣
∣ 〈|x|〉β = xk . . . x0 •

}
.

The set of numbers with finite β-expansion is then

Fin(β) =
⋃

k∈Z

βkZβ .

The set Fin(β) is in general not closed under addition and multiplication. The
description of bases β, for which Fin(β) is a ring, is a very difficult open question.
Only partial results are known.

One can study the arithmetics on β-expansions in more detail: even though
addition or multiplication of two β-integers may result in an infinite β-expansion,
one can define the following quantities,

L⊕(β) = min{l ∈ N | ∀x, y ∈ Zβ , x + y ∈ Fin(β) ⇒ x + y ∈ β−lZβ} ,

L⊗(β) = min{l ∈ N | ∀x, y ∈ Zβ , x · y ∈ Fin(β) ⇒ x · y ∈ β−lZβ} ,
(5)

describing the maximal length of finite fractional part possibly arising when sum-
ming, resp. multiplying β-integers.

Example. Consider for the base of the numeration system the golden ratio τ =
1

2
(1 +

√
5), root of the quadratic polynomial x2 − x − 1. Every x ≥ 0 has its

τ -expansion of the form

x =

k∑

i=−∞

xiτ
i , xi ∈ {0, 1} ,

where according to the Parry condition (2), the digit sequence xixi−1xi−2 . . . for
every i ≤ k satisfies

xixi−1xi−2 . . . ≺ (10)ω .

Here (10)ω denotes infinite repetition of the string 10. This condition can be refor-
mulated in a more comprehensible way: the digit sequence xkxk−1xk−2 . . . does not
end in an infinite repetition of 10 and does not contain two consecutive digits 1. The
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latter requirement is intuitively obvious, since the greedy algorithm prefers replacing
the digit string 011 by 100, in accordance with the equation τ i+2 = τ i+1 + τ i.

The set Zτ of τ -integers can be expressed as

Zτ =

{

±
k∑

i=0

xiτ
i

∣
∣
∣
∣

xi ∈ {0, 1}, xi · xi+1 = 0

}

=

= ±
{
0, 1, τ, τ2, τ2 + 1, τ3, τ3 + 1, τ3 + τ, τ4, τ4 + 1, . . .

}
.

Drawn on the real line, we see that the distances between consecutive τ -integers take
values 1 and τ−1, see Figure.

1
︷ ︸︸ ︷

1/τ
︷ ︸︸ ︷

1
︷ ︸︸ ︷

1
︷ ︸︸ ︷

1/τ
︷ ︸︸ ︷

1
︷ ︸︸ ︷

1/τ
︷ ︸︸ ︷

1
︷ ︸︸ ︷

1
︷ ︸︸ ︷

0 1 τ τ2 τ2+1 τ3 τ3+1 τ3+τ τ4 τ4+1

Fig. Several smallest non-negative τ -integers drawn on the real line.

The τ -expansions of the smallest few non-negative τ -integers are given in the
following table. Note that they are increasing in the short-lex order.

〈0〉τ = 0• , 〈τ3〉τ = 1000• ,

〈1〉τ = 1• , 〈τ3 + 1〉τ = 1001• ,

〈τ〉τ = 10• , 〈τ3 + τ〉τ = 1010• ,

〈τ2〉τ = 100• , 〈τ4〉τ = 10000• ,

〈τ2 + 1〉τ = 101• ,
...

It has been shown in [5] that the quantities L⊕(τ), L⊗(τ) defined by (5) take
values L⊕(τ) = L⊗(τ) = 2. As an example, we can consider

x = y = 1 ⇒ x + y = 1 + 1 = 2 = τ + τ−2 = 10 • 01 .

For multiplication,

x = y = τ2 + 1 ⇒ xy = (τ2 + 1)2 = τ5 + τ + τ−2 = 100010 • 01 .

3. NEGATIVE BASE NUMBER SYSTEM

In analogy to the Rényi expansion of numbers using the transformation of the inter-
val [0, 1), Ito and Sadahiro have defined the (−β)-expansion of numbers using the
transformation T−β : [lβ, rβ) 7→ [lβ, rβ), where

lβ = − β

β + 1
, rβ = 1 + lβ =

1

β + 1
.

The transformation T−β is defined by

T−β(x) := −βx − ⌊−βx − lβ⌋ . (6)
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Every real x ∈ [lβ, rβ) can be written as

x =

∞∑

i=1

xi

(−β)i
, where xi = ⌊−βT i−1

−β (x) − lβ⌋ for i = 1, 2, 3, . . . (7)

Definition 3.1. We call the expression (7) the Ito–Sadahiro (−β)-expansion of
x ∈ [lβ , rβ). We denote the corresponding digit string by

d−β(x) = x1x2x3 . . . .

One can easily show from (6) that the digits xi, i ≥ 1, take values in the set
A = {0, 1, 2, . . . , ⌊β⌋}. In this case, the ordering on the set of infinite words over the
alphabet A which would correspond to the ordering of real numbers is the so-called
alternate ordering: We say that

x1x2x3 . . . ≺alt y1y2y3 . . .

if for the minimal index j such that xj 6= yj it holds that xj(−1)j < yj(−1)j. In
this notation, we can write for arbitrary x, y ∈ [lβ , rβ) that

x ≤ y ⇐⇒ d−β(x) �alt d−β(y) .

In their paper, Ito and Sadahiro have provided a criterion to decide whether an
infinite word over AN is admissible as d−β(x) for some x ∈ [lβ, rβ). The criterion is
given using two infinite words, namely

d−β(lβ) and d∗−β(rβ) := lim
ε→0+

d−β(rβ − ε) .

These two infinite words have close relation: If d−β(lβ) is purely periodic with odd
period length, i. e. d−β(lβ) = (d1d2 . . . d2k+1)

ω, then d∗
−β(rβ) =

(
0d1d2 . . . (d2k+1 −

1)
)ω

. (As usual, the notation vω stands for infinite repetition of the string v.) In all
other cases one has d∗

−β(rβ) = 0d−β(lβ).

Ito and Sadahiro have shown that an infinite word x1x2x3 . . . represents d−β(x)
for some x ∈ [lβ , rβ) if and only if for every i ≥ 1 it holds that

d−β(lβ) �alt xixi+1xi+2 . . . ≺alt d∗−β(rβ) . (8)

We now provide the definition of (−β)-expansions of every real number x. (Note
that in the negative base number system we can represent negative numbers using
non-negative digits without need of sign.)

In [12] it is suggested to find the expansion of a number x /∈ [lβ, rβ) by dividing it
by a suitable power of (−β) so that y := (−β)−kx ∈ [lβ , rβ), finding the expansion
of y and multiplying it back by (−β)k. The expression for x provided by such
procedure, however, depends on chosen k, so the prescription must be modified, in
order to give a unique (−β)-expansion for every real x.
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Definition 3.2. Let β > 1 and x ∈ R. The expression

x = xk(−β)k+xk−1(−β)k−1+xk−2(−β)k−2+. . . , where k∈Z and xi∈Z for i≤k,
(9)

is a (−β)-representation of x. The (−β)-expansion of x is the particular (−β)-
representation satisfying xkxk−1xk−2 . . . = d−β(y) for some y ∈ (lβ , rβ).

Again, we write the (−β)-representations using the corresponding digit strings
where the symbol • stands for fractional point separating the digits at non-negative
and negative powers of the base,

xk . . . x0 • x−1x−2 . . . , for k ≥ 0, or

0 • 0−k−1xkxk−1 . . . , for k < 0.

If the digit string corresponds to the (−β)-expansion of x, we denote it by 〈x〉−β .

Note that for the sake of uniqueness, in Definition 3.2 we do not allow a (−β)-
expansion to be given by d−β(lβ). This is because of the following undesirable
phenomena: Denoting d−β(lβ) = d1d2d3 . . ., we have the equality

(−β) + d1(−β)0 +
d2

(−β)
+

d3

(−β)2
+

d4

(−β)3
+ . . .

=
d1

(−β)
+

d2

(−β)2
+

d3

(−β)3
+

d4

(−β)4
+ . . .

where both 1d1d2d3 . . . and d1d2d3 . . . are admissible digit strings. But whereas
01d1d2d3 . . . is also admissible, 0d1d2d3 . . . is not, and so we prefer to define the
(−β)-expansion of lβ as

〈lβ〉−β = 1d1 • d2d3 . . . .

Similarly as in the case of positive base numeration, we define the (−β)-integers,
forming the set

Z−β =
{
x ∈ R

∣
∣ 〈x〉−β = xk . . . x0 •

}
.

The set of numbers with finite (−β)-expansion is defined by

Fin(−β) =
⋃

k∈Z

(−β)kZ−β .

We also define the quantities describing maximal length of fractional part arising
when summing or multiplying (−β)-integers,

L⊕(−β) = min{l ∈ N | ∀x, y ∈ Z−β , x + y ∈ Fin(−β) ⇒ x + y ∈ (−β)−lZ−β} ,

L⊗(−β) = min{l ∈ N | ∀x, y ∈ Z−β , x · y ∈ Fin(−β) ⇒ x · y ∈ (−β)−lZ−β} .
(10)



Arithmetics in numeration systems with negative quadratic base 81

4. PISOT NUMBERS

Since the present study focuses on a special class of algebraic numbers, let us recall
some number-theoretical notions needed. A complex number β is called an algebraic
number, if it is a root of a monic polynomial f(x) = xn +an−1x

n−1 + . . .+a1x+a0,
with rational coefficients a0, . . . , an−1 ∈ Q. If f has the minimal degree among all
polynomials satisfying g ∈ Q[x], g(β) = 0, then it is called the minimal polynomial
of β and the degree of f is called the degree of β. The other roots of the minimal
polynomial are the algebraic conjugates of β.

If the minimal polynomial of β has integer coefficients, β is called an algebraic
integer. An algebraic integer β > 1 is called a Pisot number, if all its conjugates are
in modulus strictly smaller than 1.

Let β be an algebraic number of degree r. The minimal subfield of the field of
complex numbers containing β is denoted by Q(β) and is of the form

Q(β) = {c0 + c1β + . . . + cr−1β
r−1 | ci ∈ Q} .

If γ is a conjugate of an algebraic number β, then the fields Q(β) and Q(γ) are
isomorphic. The corresponding isomorphism σ : Q(β) 7→ Q(γ) is given by the
prescription

σ : c0 + c1β + . . . + cr−1β
r−1 7→ c0 + c1γ + . . . + cr−1γ

r−1 . (11)

In particular, it means that β is a root of some polynomial f with rational coefficients
if and only if γ is a root of the same polynomial f .

In the field of numeration systems with non-integer bases one often meets a
special class of algebraic numbers, namely Pisot numbers. A nice result (see [18])
is that Pisot numbers have eventually periodic infinite β-expansion of 1 (cf. Parry
condition (2)). Similarly, in [8] it is shown that Pisot numbers have also eventually
periodic d−β(lβ), which is useful in the admissibility condition of (−β)-expansions
(cf. (8)).

It is known [3] that among the quadratic numbers, the only ones with eventually
periodic infinite β-expansion of 1 are quadratic Pisot numbers. Similarly, quadratic
Pisot numbers are the only quadratic numbers with eventually periodic d−β(lβ),
see [14]. It is easy to show that quadratic Pisot numbers are precisely the larger
roots of polynomials

x2 − mx − n , m, n ∈ N, m ≥ n ≥ 1,

x2 − mx + n , m, n ∈ N, m ≥ n + 2 ≥ 3.

The corresponding infinite β-expansions of 1 are

d∗β(1) =
(
m(n − 1)

)ω
, d∗β(1) = (m − 1)(m − n − 1)ω, respectively.

For the (−β)-expansion of lβ, one obtains

d−β(lβ) = m(m − n)ω, d−β(lβ) =
(
(m − 1)n

)ω
, respectively.
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5. ARITHMETICS IN SYSTEMS WITH QUADRATIC NEGATIVE BASE

Let us now consider the arithmetical properties of the number system with base −β,
where β belongs to the class of quadratic Pisot numbers with minimal polynomial
x2 − mx − n, m ≥ n ≥ 1. The condition (8) of admissibility of digit strings is now
stated using

d−β(lβ) = m(m − n)ω and d∗−β(rβ) = 0m(m − n)ω . (12)

As mentioned already in [14], the set of finite (−β)-expansions is not a ring in this
case, since for x = 0, y = 1, we have x, y ∈ Fin(−β), but x − y = −1 /∈ Fin(−β).
For, the (−β)-expansion of the number −1 is equal to

〈−1〉−β = 1m • (m − n + 1)ω .

Nevertheless, this fact does not prevent Fin(−β) to be closed under addition, as
we shall prove here (Theorem 5.3). For that, let us first describe the set of finite
expansions using some combinatorial property. The following statement can be easily
derived from the admissibility condition (8) using (12).

Lemma 5.1. Let β > 1 be root of x2 −mx−n, m ≥ n ≥ 1. Let xi ∈ {0, 1, . . . , m},
for i ≤ N , where only finitely many xi are non-zero.

If m > n, then x =
∑N

i=−∞
xi(−β)i is the (−β)-expansion of x if and only if

xNxN−1 . . . does not contain strings

m (m − n)2kC , C ≤ m − n − 1 , k ∈ N0 , (13)

m (m − n)2k+1D , D ≥ m − n + 1 , k ∈ N0 . (14)

If m = n, then x =
∑N

i=−∞
xi(−β)i is the (−β)-expansion of x if and only if

xNxN−1 . . . does not contain the string

m 02k+1D , D ≥ 1 , k ∈ N0 , (15)

and it does not end with the string 0 m 0ω.

The following lemma is crucial. It shows that although a finite (−β)-representation
of a real number x over the alphabet {0, 1, . . . , m} contains forbidden strings listed
in Lemma 5.1, the (−β)-expansion of the represented number is also finite, and, in
most cases does not contain smaller powers of (−β).

Lemma 5.2. Let β > 1 be root of x2 − mx − n, m ≥ n ≥ 1. Then

x :=

N∑

i=0

ai(−β)i ∈ Fin(−β)

for arbitrary ai ∈ {0, 1, . . . , m}. Moreover, x ∈ Z−β except when both m > n and
a0 = m, in which case x ∈ 1

−β Z−β .
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P r o o f . Consider the (−β)-representation aNaN−1 . . . a0• of x. If it is not the
(−β)-expansion of x, then aNaN−1 . . . a00

ω contains one of forbidden strings listed
in Lemma 5.1. We shall rewrite the left-most forbidden string in aNaN−1 . . . a00

ω

by adding a suitable (−β)-representation of 0. The new (−β)-representation of x is
‘better’ than aNaN−1 . . . a00

ω in the way that the left-most forbidden string starts
at a lower power of (−β). Such rewriting does not add non-zero digits to the right,
(unless we deal with the last occurring forbidden string). Therefore, by repeating
such rewriting rules, we finish in finitely many steps with a (−β)-representation
which does not contain any forbidden strings, i. e. it is the (−β)-expansion of x.

Since β is a root of x2 − mx − n, we have

1 m n • = 1 m n • = 0 . (16)

(Here for a digit d we write d instead of −d.)
We distinguish several cases, according to the type of the left-most forbidden

string (cf. Lemma 5.1).

Case 1. Consider first that m > n and take the forbidden string (13), together with
two digits A, B in the (−β)-representation of x at higher powers of (−β),

. . . A B m (m − n)2k C . . . k ∈ N0, C ≤ m − n − 1 . (17)

The way to rewrite the forbidden string depends on the digits A, B.

Subcase 1.1. Let B = 0, and consequently A ∈ {0, 1, . . . , m− 1}. (Otherwise A0m
is also forbidden, which contradicts the fact that we take the left-most forbidden
string.) We rewrite

. . . A 0 m (m − n)2k C . . .

. . . A + 1 m (m − n) (m − n)2k C . . .

It is easy to verify that now no forbidden string occurs left from the digit C, which
was our aim.

Subcase 1.2. Let in (17) be B 6= 0 and k ≥ 1. Then

. . . A B m (m − n) (m − n)2k−1 C . . .

. . . A B − 1 0 m (m − n)2k−1 C . . .

Again, the latter may contain a forbidden string only starting from the digit C.

Subcase 1.3. Let B 6= 0 and k = 0. We write

. . . A B m C . . .

. . . A B − 1 0 C + n . . .

where the latter has no forbidden strings up to the digit C + n.

Case 2. Take the forbidden string (14) which occurs for both m > n and m = n,

. . . A B m (m − n)2k+1 D . . . k ∈ N0, D ≥ m − n + 1 . (18)
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The rewriting is analogous to subcases 1.1. and 1.2., subcase 1.3. now has no
analogue.

Subcase 2.1. Let B = 0, and consequently A ∈ {0, 1, . . . , m − 1}. We rewrite

. . . A 0 m (m − n)2k+1 D . . .

. . . A + 1 m (m − n) (m − n)2k+1 D . . .

where the latter has no forbidden strings up to the digit D.

Subcase 2.2. Let in (18) be B 6= 0. Then

. . . A B m (m − n) (m − n)2k D . . .

. . . A B − 1 0 m (m − n)2k D . . .

where the latter has no forbidden strings up to the digit D.

Case 3. Consider m = n. According to Lemma 5.1 it remains to solve the case
that the only forbidden string in the (−β)-representation of x is 0m at the end.
Necessarily, the (−β)-representation ends with A0m, where A ≤ m − 1. We rewite

. . . A 0 m

. . . A + 1 m 0

By that, we have shown that x ∈ Fin(−β). In order to show x ∈ Z−β , note
that in all cases except subcase 1.3, the rewriting of the forbidden string did not
influence the digits starting from C (resp. D) to the right. Thus, if the original
(−β)-representation of x had vanishing digits at negative powers of (−β), then the
same is valid for the rewritten (−β)-representation of x. The only case where new
non-zero digits at negative powers of (−β) may arise, is 1.3 for m > n, and that
only if x = aNaN−1 . . . a0• = . . . ABm•, i. e. a0 = m. �

Theorem 5.3. Let β > 1 be root of x2 − mx − n, m ≥ n ≥ 1. Then Fin(−β) is

closed under addition, i. e. x + y ∈ Fin(−β) for x, y ∈ Fin(−β).

P r o o f . Since addition of y ∈ Fin(−β) to an x ∈ Fin(−β) can be decomposed into
addition to x of several digits 1 at different positions, it is obvious that it suffices to
verify the following implication,

x ∈ Fin(−β) ⇒ x + 1 ∈ Fin(−β) .

In fact, in context of Lemma 5.2, we only need to obtain a finite (−β)-representation
of x + 1 over the alphabet {0, 1, . . . , m}. For that we only consider the case that
the (−β)-expansion of x has the digit m at position (−β)0, which leads to the digit
m + 1 in the (−β)-representation of x + 1. Again, for elimination of the forbidden
digit m + 1 we use addition of a suitable representation of 0.

Case 1. If the (−β)-expansion of x is of the form . . . A0m • . . ., then necessarily
A ∈ {0, 1, . . .m − 1}, and we use

x + 1 = . . . A 0 (m + 1) • . . .
0 = 1 m n •

x + 1 = . . . A + 1 m (m − n + 1) • . . .
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The latter is over the alphabet {0, 1, . . . , m}.
Case 2. Consider the (−β)-expansion of x of the form . . . Bm • (m − n) . . ., with
B ∈ {1, 2, . . . , m}. Then

x + 1 = . . . B (m + 1) • (m − n) . . .
0 = 1 m • n

x + 1 = . . . B − 1 1 • m . . .

The latter is over the alphabet {0, 1, . . . , m}.
Case 3. According to Lemma 5.1, it remains to consider the (−β)-expansion of x
of the form . . . Bm • X1 . . . XkY . . ., where B ∈ {1, 2, . . . , m}, k ≥ 1, Xi ∈ {m−
n+1, . . . , m} and Y ∈ {0, 1, . . . , m − n}. Here, we shall use a more complicated
(−β)-representation of 0, which we obtain by repeated use of (16), namely

0 = 1 (m + 1) (m − n + 1) . . . (m − n + 1) (m − n) n .

Then

x + 1 = . . . B (m + 1) • X1 . . . Xk−1 Xk Y . . .
0 = 1 m + 1 • m−n+1 . . . m−n+1 m − n n

x + 1 = . . . B − 1 0 • X̃1 . . . X̃k−1 X̃k Y +n . . .

where X̃i = Xi− (m−n+1) for i = 1, . . . , k − 1 and X̃k = Xk − (m−n). The
latter representation of x + 1 is over the alphabet {0, 1, . . . , m} and therefore by
Lemma 5.2, x + 1 ∈ Fin(−β). �

6. BOUND ON LENGTH OF FRACTIONAL PART

In this section we focus on the quantities L⊕(−β), L⊗(−β). They have been studied
for quadratic Pisot units already in [14]. However, the method used there does not
allow us to obtain exact value for β equal to the golden ratio τ = 1

2
(1 +

√
5). We

therefore determine the value L⊕(−τ), L⊗(−τ) here, see Theorem 6.2. The proof
uses a strong relation of τ - and (−τ)-representations. In order to distinguish the
two in notation, we shall write •τ , •−τ for the fractional point separating digits at
non-negative and negative powers of the base in the two numeration systems.

We first show a lemma putting into relation τ - and (−τ)-representations. Note
that statement in item 1. of Lemma 6.1 is known. We nevertheless include its proof
in order to keep the paper self-contained.

Lemma 6.1. Let ai ∈ {0, 1}, for i = 0, . . . , N . Then

1. x =
∑N

i=0
aiτ

i ∈ Zτ ,

2. y =
∑N

i=0
ai(−τ)i ∈ Z−τ ,

3. If ai · ai−1 = 0 for all i ∈ {1, . . . , N}, then y ∈ (−τ)Z−τ .
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P r o o f . Item 1. is shown as follows: If an . . . a0•τ is not a τ -expansion, then it
contains two consecutive digits 1. If i is the greatest index ≤ N such that ai =
ai−1 = 1, then ai+1 = 0 and we can rewrite

ai+1τ
i+1 + aiτ

i + ai−1τ
i−1 = τ i+1 .

We obtain a new τ -representation of x, where the sequence 100 has been replaced
by 011. The digit sum has strictly decreased. It is obvious that we can continue to
obtain, in finitely many steps, the τ -expansion of x, i. e. a τ -representation of x not
containing the forbidden string 11.

The proof of item 2. follows directly from Lemma 5.2. In item 3., if a0 = 0,
the proof follows from item 2. So consider a0 = 1. Since ai · ai−1 = 0, the string
aN . . . a1a0 does not contain two consecutive digits 1, i. e. there is a k ≥ 0 such
that aN . . . a1a0 = . . . 00(10)k1. One can easily verify that 11(01)k1•−τ is a (−τ)-
representation of 0. Thus for the (−τ)-representation of y we can rewrite

y = . . . 0 0 (1 0)k 1 •−τ

0 = 1 1 (0 1)k 1 •−τ

y = . . . 1 1 (1 1)k 0 •−τ

It suffices now to apply item 2. �

In the proof of the following theorem we shall use the automorphism on the
algebraic field Q(τ). Recall that τ is an algebraic number with conjugate τ ′ = − 1

τ .
(τ and τ ′ are roots of the polynomial x2−x−1.) Since the algebraic fields Q(τ) and
Q(τ ′) coincide, the isomorphism σ defined by (11) is now an involutive automorphism
of the field Q(τ), i. e. σ2(z) = z for all z ∈ Q(τ). We also use the fact known from [9]
that the set Fin(τ) of numbers with finite τ -expansions is a ring.

Theorem 6.2. L⊕(−τ) = 2 = L⊗(−τ).

P r o o f . Consider x, y ∈ Z−τ , i. e.

x =

k∑

i=0

xi(−τ)i , y =

l∑

i=0

yi(−τ)i

with (−τ)-expansions

〈x〉−τ = xkxk−1 . . . x0•−τ ,
〈y〉−τ = ylyl−1 . . . y0 •−τ .

Applying the automorphism σ to x, y, we obtain — by using −τ ′ = τ−1 — that

σ(x) =

k∑

i=0

xi(−τ ′)i =

0∑

i=−k

x−iτ
i , σ(y) =

l∑

i=0

yi(−τ ′)i =

0∑

i=−l

y−iτ
i .

Digit strings x0 •τ x1 . . . xk, y0 •τ y1 . . . yl are τ -representations of numbers σ(x),
σ(y). Since xi, yi ∈ {0, 1}, we can use Lemma 6.1 to derive that σ(x), σ(y) belong
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to Fin(τ). As Fin(τ) is closed under addition, we have σ(x) + σ(y) = z for some
z ∈ Fin(τ). We have

σ(x), σ(y) <

0∑

i=−∞

τ i =
1

1 − τ−1
= τ2 ,

and therefore z < 2τ2 < τ4. This implies that the τ -expansion of z is of the form

〈z〉τ = z3z2z1z0 •τ z−1 . . . z−N

for some integer N , i. e.

z =

3∑

i=−N

ziτ
i , zi ∈ {0, 1} , zi · zi−1 = 0 .

Applying the automorphism σ to z, we obtain

σ(z) =

3∑

i=−N

ziτ
′i =

N∑

i=−3

z−i(−τ)i .

The string z−N . . . z0 •−τ z1z2z3 is a (−τ)-representation of σ(z). Since zi ∈ {0, 1}
and zi · zi−1 = 0, by item 3. of Lemma 6.1, we get

σ(z) = σ
(
σ(x) + σ(y)

)
= x + y ∈ (−τ)−2Z−τ .

By that, we have shown L⊕(−τ) ≤ 2. The opposite inequality is verified by giving
the example

1111 •−τ +1111•−τ = 110000 •−τ 11 .

The procedure for proving L⊗(−τ) ≤ 2 is analogous to the case of addition. Here
σ(x) · σ(y) = z where z < (τ2)2 = τ4, thus we obtain the same number of fractional
digits. In order to prove L⊗(−τ) ≥ 2, we take the example

1111 •−τ ×1111•−τ = 11100 •−τ 11 .

�

7. (−τ)-INTEGERS

In the previous section we have focused on the arithmetical properties of the base −τ .
Here we show that the set of non-negative (−τ)-integers coincides with non-negative
β-integers where β = τ2. We give the proof by first showing that the distances
between (−τ)-integers take the same values as the distances between (τ2)-integers.
Then we show that the infinite word coding (−τ)-integers is the fixed point of the
same morphism as for (τ2)-integers.

First recall the facts about (τ2)-integers. Realize that β = τ2 is the greater root
of x2 − 3x+ 1. The infinite Rényi expansion of 1 in the base τ2 is therefore equal to
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d∗τ2(1) = 21ω. Recall (see [20]) that the distances between consecutive (τ2)-integers
take values

∆0 = 1 and ∆1 =
1

τ
.

Writing the distances between the (τ2)-integers, as they are ordered, one obtains
the bidirectional infinite word

. . .∆0∆1∆0∆0|∆0∆0∆1∆0 . . . , (19)

where the delimiter | marks the position of 0. Note that the word is symmetric with
respect to 0, since Zτ2 is symmetric with respect to 0 by definition. It is therefore
sufficient to study the one-directional infinite word

uτ2 = ∆0∆0∆1∆0 . . .

coding the distances between non-negative (τ2)-integers. It is known [6] that the
infinite word uτ2 is the fixed point of the following morphism over the alphabet
{∆0, ∆1},

ϕ(∆0) = ∆0∆0∆1 , ϕ(∆1) = ∆0∆1 . (20)

Repeated application of the morphism ϕ on the letter ∆0 leads to

∆0 7→ ∆0∆0∆1 7→ ∆0∆0∆1∆0∆0∆1∆0∆1 7→ . . .

where every iteration has the previous iteration as its prefix. Infinite repetition
leads to the word u = limn→∞ ϕn(∆0), where the limit is taken with respect to the
product topology. We have u = uτ2 .

In what follows, we show that the distances between consecutive (−τ)-integers
also take values ∆0 = 1 and ∆1 = τ−1, and their ordering corresponds to an infinite
word which is a fixed point of the substitution (20). For that we use Lemma 5.1 which
characterizes digit strings admissible as (−τ)-expansions using forbidden strings. For
m = n = 1, Lemma 5.1 states that the digit string xNxN−1 . . . x1x0 •, xi ∈ {0, 1}, is
the (−τ)-expansion of some (−τ)-integer if and only if xNxN−1 . . . x1x00

ω does not
contain the forbidden string 10j1 for any j odd, and it does not end in 0 1 0ω.

Lemma 7.1. Let x, y be consecutive (−τ)-integers, x < y. If the (−τ)-expansion
of x is of the form 〈x〉−τ = xNxN−1 . . . x10 •, then y − x = ∆0 = 1. If 〈x〉−τ =
xNxN−1 . . . x11 •, then y − x = ∆1 = 1

τ .

P r o o f . We distinguish two cases according to the last digit of the (−τ)-expansion
of x. We provide the (−τ)-expansion of x+∆, where ∆ = 1 in Case 1. and ∆ = τ−1

in Case 2. It is then easy to check that no digit string zlzl−1 . . . z1z0 • lies between
〈x〉−τ and 〈x+∆〉−τ in alternate order, and thus no (−τ)-integer lies between x and
x + ∆. Therefore x + ∆ = y is the right neighbor of x.

Case 1. Let 〈x〉−τ = xNxN−1 . . . x10 •. We give the (−τ)-expansion of x + 1.

Subcase 1.1. If x = 0, we add 1 = τ2 − τ to obtain

〈x〉−τ = 0 0 0 •
〈x + 1〉−τ = 1 1 0 •
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Subcase 1.2. If 〈x〉−τ ends in exactly one 0, then we have for k ≥ 1

〈x〉−τ = . . . 1k 0 •
〈x + 1〉−τ = . . . 1k 1 •

Subcase 1.3. If 〈x〉−τ ends in two 0s, then

〈x〉−τ = . . . 1 1 0 0 •
〈x + 1〉−τ = . . . 0 0 1 1 •

Subcase 1.4. If 〈x〉−τ ends in an odd number of 0s, 2k + 3, k ≥ 0, then

〈x〉−τ = . . . 1 1 02k 0 0 0 •
〈x + 1〉−τ = . . . 1 1 02k 1 1 0 •

Subcase 1.5. If 〈x〉−τ ends in an even number of 0s, 2k + 4, k ≥ 0, then

〈x〉−τ = . . . 1 1 0 02k 0 0 0 •
〈x + 1〉−τ = . . . 0 0 1 02k 1 1 0 •

Case 2 Let 〈x〉−τ = xNxN−1 . . . x11 •. Note that x1 is necessarily equal to 1. We
give the (−τ)-expansion of x + τ−1.

Subcase 2.1. If x = −τ−1, then

〈x〉−τ = 1 1 •
〈x + τ−1〉−τ = 0 0 •

Subcase 2.2. k ≥ 0

〈x〉−τ = . . . 1 1 02k 1 1 •
〈x + τ−1〉−τ = . . . 1 1 02k 0 0 •

Subcase 2.3. k ≥ 0

〈x〉−τ = . . . 0 0 1 02k 1 1 •
〈x + τ−1〉−τ = . . . 1 1 0 02k 0 0 •

�

Lemma 7.2. Let x, y ∈ Z−τ be consecutive (−τ)-integers, x < y. If y−x = 1, then

[τ2x, τ2y] ∩ Z−τ = {τ2x, τ2x + 1, τ2x + 1 + 1, τ2x + 1 + 1 + τ−1 = τ2y} .

If y − x = τ−1, then

[τ2x, τ2y] ∩ Z−τ = {τ2x, τ2x + 1, τ2x + 1 + τ−1 = τ2y} .
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P r o o f . Let first y − x = 1. The (−τ)-expansion of −τy ends obviously in 0,
and thus the right neighbor of −τy among (−τ)-integers is −τy + 1. Since −τx =
−τy + τ = (−τy + 1) + τ−1 is also a (−τ)-integer, we have

[−τy,−τx] ∩ Z−τ = {−τy,−τy + 1,−τy + 1 + τ−1 = −τx} . (21)

Let now y − x = τ−1. The (−β)-expansion of −τy ends again in 0, and thus the
right neighbor of −τy among (−τ)-integers is −τy + 1 = −τx. Therefore

[−τy,−τx] ∩ Z−τ = {−τy,−τy + 1 = −τx} . (22)

Applying the rules (21) and (22) twice, we obtain the result. �

Writing the distances between consecutive (−τ)-integers by symbols ∆0, ∆1, the
above lemma states that the infinite word

u−τ = . . . ∆1∆0∆1|∆0∆0∆1∆0 . . .

coding (−τ)-integers is invariant under the morphism (20), i. e.

u−τ = . . . ∆0∆1|∆0∆0∆1 . . . = . . . ϕ(∆0)ϕ(∆1)|ϕ(∆0)ϕ(∆0)ϕ(∆1) . . . (23)

We have thus shown the following theorem.

Theorem 7.3. Z−τ ∩ [0, +∞) = Zτ2 ∩ [0, +∞).

Note that the theorem connects only the non-negative part of (−τ)- and (τ2)-
integers. This is because whereas Zτ2 is in some sense ‘artificially’ defined on the
negative half-line, negative (−τ)-integers are defined naturally. The bidirectional
infinite word u−τ of (23) can be seen by the bidirectional limit limn→∞ ϕn(1)|ϕn(0).
The same is not true for the bidirectional word (19) coding the (τ2)-integers over all
real line. Such phenomena could be, for example, used to solve problems mentioned
in [5].

8. CONCLUSIONS AND OPEN PROBLEMS

The present paper answers several questions raised in [14] about arithmetics in
numeration systems with negative base −β where β is a quadratic Pisot number.
Nevertheless, other problems about arithmetical properties of such systems remain
unsolved, such as efficient algorithms for performing addition and multiplication,
description of numbers with purely periodic (−β)-expansion, etc.

There are also other aspects of numeration in non-standard systems that deserve
to be explored. Properties, known for Rényi numeration with positive base, likely
to hold also for the case of negative base, are for example the description of the
distribution of (−β)-integers, given for positive base in [2], or the connection of
(−β)-numeration to substitution dynamical systems established for β-integers in [6].
Many such properties are studied in [13] for number systems with positive base which
are generalizations of the Rényi numeration.
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It may, however, happen that the analogues for negative base will not be straight-
forward. Although numerical experiments suggest that the analogues of certain
properties are valid, the classical methods for proofs fail. An example of such a
situation is the study of existence of morphisms generating the set of (−β)-integers
performed by different methods in [1] and [19].

The relation of numeration with positive base and negative base should be further
studied. In here, we show a – in the general context rather surprising – coincidence
between integers in the numeration systems with base −τ , where τ is the golden
ratio, and integers in the system with positive base τ2. Such a simple relation,
however, cannot be expected even in case of other quadratic bases. For, as shown
in [1], the distances between consecutive (−β)-integers need not be smaller than 1,
and it is even not obvious whether they are in general bounded.
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[17] A. Rényi: Representations for real numbers and their ergodic properties. Acta Math.
Acad. Sci. Hung. 8 (1957), 477–493.

[18] K. Schmidt: On periodic expansions of Pisot numbers and Salem numbers. Bull.
London Math. Soc. 12 (1980), 269–278.

[19] W. Steiner: On the structure of (−β)-integers. Preprint 2010.

[20] W.P. Thurston: Groups, tilings, and finite state automata. AMS Colloquium Lecture
Notes, American Mathematical Society, Boulder 1989.
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