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FUZZIFICATION OF CRISP DOMAINS

Roman Frič and Martin Papčo

The present paper is devoted to the transition from crisp domains of probability to fuzzy
domains of probability. First, we start with a simple transportation problem and present its
solution. The solution has a probabilistic interpretation and it illustrates the transition from
classical random variables to fuzzy random variables in the sense of Gudder and Bugajski.
Second, we analyse the process of fuzzification of classical crisp domains of probability
within the category ID of D-posets of fuzzy sets and put into perspective our earlier results
concerning categorical aspects of fuzzification. For example, we show that (within ID) all
nontrivial probability measures have genuine fuzzy quality and we extend the corresponding
fuzzification functor to an epireflector. Third, we extend the results to simplex-valued
probability domains. In particular, we describe the transition from crisp simplex-valued
domains to fuzzy simplex-valued domains via a “simplex” modification of the fuzzification
functor. Both, the fuzzy probability and the simplex-valued fuzzy probability is in a sense
minimal extension of the corresponding crisp probability theory which covers some quantum
phenomenon.

Keywords: domain of probability, fuzzy random variable, crisp random event, fuzzy ob-
servable, fuzzification, category of ID-poset, epireflection, simplex-valued do-
mains

Classification: 60A86, 60A05

1. INTRODUCTION

Since the pioneering paper by L. A. Zadeh ([20]), who proposed to extend the do-
main of probability from classical random events to fuzzy random events, the fuzzy
probability, underwent a considerable evolution. For example, fuzzy random vari-
ables and fuzzy observables (dual notion), as a generalization of classical random
variables and classical observables, have been introduced in order to capture some
quantum phenomena. Categorical methods are suitable when comparing different
models of probability theory and help to understand the transition from classical
probability theory to fuzzy probability theory.

The first part of the present paper is devoted to discrete probability spaces and
a simple transportation problem. It illustrates some fundamental constructions of
the fuzzy probability theory. The second part is devoted to the category ID of D-
posets of fuzzy sets and the transition from classical to fuzzy probability. A crucial
role is played by the so-called fuzzification functor. In the final part we study the
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fuzzification process of simplex-valued generalized probability.
Basic information on fuzzy probability theory and fundamental applications to

quantum physics can be found in [1, 2, 13]. Information about quantum structures
and generalized probability can be found in [4, 5, 14, 15, 19, 20] and information
concerning a categorical approach to probability theory can be found in [3, 6, 7, 10,
11, 12, 16, 17, 18]. For the reader’s convenience we recall here some basic notions.

Let (Ω,A, p) be a probability space in the classical Kolmogorov sense (i. e. Ω is a
set, A is a σ-field of subsets of Ω, we assume that singletons are measurable, and p
is a probability measure on A). A measurable map f of Ω into the real line R, called
random variable, sends p into a probability measure pf , called the distribution of f ,
defined on the real Borel sets BR via pf (B) = p(f←(B)), B ∈ BR. In fact, f induces
a map sending probability measures P(A) on A into probability measures P(BR)
on BR. The preimage map f←, called observable, maps BR into A. Points of Ω are
called elementary events, sets in A are called sample random events and sets in BR

are called real random events. Each random variable f can be viewed as a channel
through which the probability p of the original probability space is transported to
the distribution pf , a probability measure on the real Borel sets and hence, in fact,
a channel through which the probability measures on the sample random events are
transported to the probability measures on the real random events; observe that
each degenerated point probability measure δω ∈ P(A), ω ∈ Ω (defined for A ∈ A by
δω(A) = 1 if ω ∈ A and δω(A) = 0 otherwise), is transported to a degenerated point
probability measure δf(ω) ∈ P(BR).

To compare the classical and the fuzzy probability theory we consider a more gen-
eral situation. Let (X,A), (Y,B) be classical measurable spaces and let f : X → Y
be a map. If f is measurable, then the (dual) preimage map fd : B → A defined
by fd(B) = f←(B) = {x ∈ X ; f(x) ∈ B}, B ∈ B, is a sequentially continu-
ous (with respect to the pointwise convergence of characteristic functions) Boolean
homomorphism of B into A. Indeed, the assertion is a corollary of the following
straightforward observation. For each B ⊆ Y we have χf←(B) = χB ◦ f and the
measurability of f is equivalent to the following condition

(∀B ∈ B) (∃A ∈ A) [χB ◦ f = χA]. (M)

Now, if p is a probability measure on A and f is measurable, then the composition
p ◦ fd = pf is a probability measure on B. This sends probability measures P(A)
on A to probability measures P(B) on B; denote Tf the resulting distribution map.

In the fuzzy probability theory, we start with a map T of P(A) into P(B) satisfy-
ing a natural measurability condition which guarantees the existence of a dual map
T d of all measurable functions M(B) of Y into the closed unit interval I = [0, 1]
into all measurable functions M(A) of X into I so that T d has some natural prop-
erties (it is sequentially continuous and preserves the D-poset structure, i. e., it is
an ID-morphism; from a general duality theory, see [10, 16], it follows that for each
ID-morphism h of M(B) into M(A) there exists a fuzzy random variable T sending
P(A) into P(B) such that h = T d). This way M(A) and M(B) become fuzzy ran-

dom events, T becomes a fuzzy random variable and T d becomes fuzzy observable.
However, a degenerated point probability measure on A can be mapped to a nonde-
generated probability measure on B and, consequently, fuzzy random variables and
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fuzzy observables do have genuine quantum and fuzzy properties. For example, a
fuzzy observable, unlikely a classical observable, can map a crisp event (a set in B)
to a genuine fuzzy event (a function in M(A)).

2. TRANSPORTATION PROBLEM

Let B be a bottle containing one litre of liquid, let Ω = {ω1, ω2, . . . , ωn} and Ξ =
= {ξ1, ξ2, . . . , ξm} be two finite sets of empty glasses such that the content of each
is one litre. Let q be a map of Ξ into [0,1] such that

∑m

k=1 q(ξk) = 1. Distribute
the whole content (1 litre) of B into Ω so that each ωl contains p(ωl) of it, that is,
0 ≤ p(ωl) ≤ 1 and

∑n
l=1 p(ωl) = 1.

2.1. Classical case

Question C. Is it possible to pour the whole content p(ωl) of each glass ωl into
some (empty) glass ξk in such a way that the glass ξk, k ∈ {1, 2, . . . , m}, will contain
exactly q(ξk) of the liquid?

Fig. 1. Classical pipeline.

Answer C. It is easy to see that in general the answer is NO. Indeed, for instance,
if n = 2, m = 3 and q(ξ1) = q(ξ2) = q(ξ3), then there is no way how to get the
result.

Observe that our problem has the following purely probabilistic reformulation.
Let (Ω, p) and (Ξ, q) be finite probability spaces, let T be a map of Ω into Ξ, and
let T← be the preimage map (T←(ξk) = {ωl; T (ωl) = ξk}). If q = p ◦ T←, i. e.,
q(ξk) =

∑

ωl∈T←(ξk) p(ωl), k ∈ {1, 2, . . . , m}, then T is said to be a random map and
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(Ξ, q) is said to be a random transform of (Ω, p). Each random map T can be visual-
ized as a system of n pipelines ωl 7→ T (ωl) through which p(ωl) flows to ξk = T (ωl).
If ξk is the target of several pipelines, then q(ξk) is the sum

∑

ωl∈T←(ξk) p(ωl), i. e.,

the total influx through the pipelines in question. (See Figure 1.) Now the question
is whether for each pair of finite probability spaces (Ω, p) and (Ξ, q) there exist a
random map T transforming (Ω, p) into (Ξ, q).

Note that, for discrete probability spaces, random variables are special transfor-
mations, where the underlying set of the target probability space is a set of real
numbers.

2.2. Fuzzy case

Question F. Is there a more complex way how to transport the liquid from Ω into
Ξ so that we end up with q : Ξ → [0, 1],

∑m
k=1 q(ξk) = 1?

Strategy F. Instead of sending each p(ωl) to some ξk via a simple “pipeline”
ωl 7→ ξk = T (ωl), we can try to distribute p(ωl), simultaneously sending to each ξk,
k ∈ {1, 2, . . . , m}, via a complex “distribution pipeline” some fraction wklp(ωl) of
p(ωl). Of course, not arbitrarily, but in such a way that the fractions sum up “prop-
erly”, i. e.,

∑n

l=1 wklp(ωl) = q(ξk) and
∑m

k=1

∑n

l=1 wklp(ωl) =
∑n

l=1 p(ωl)
∑m

k=1 wkl =
=

∑m
k=1 q(ξk) = 1. (See Figure 2.) To comply with the second condition it suffices to

guarantee that
∑m

k=1 wkl = 1. In fact, this means that to each ωl, l ∈ {1, 2, . . . , n},
we assign a suitable probability function ql = (w1l, w2l, . . . , wml) on Ξ.

Fig. 2. Distribution pipeline.

Algorithm F. The construction of a “distribution pipeline” is based on a simple
probabilistic idea: equip the product set Ω × Ξ with a suitable probability r such
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that p =
(

p(ω1), p(ω2), . . . , p(ωn)
)

and q =
(

q(ξ1), q(ξ2), . . . , q(ξm)
)

are marginal
probabilities (always possible, for example, put r = p×q) and wkl become conditional
probabilities.

Let
{

rkl; l ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , m}
}

be non-negative numbers such that
∑m

k=1 rkl = p(ωl), l ∈ {1, 2, . . . , n} and
∑n

l=1 rkl = q(ξk), k ∈ {1, 2, . . . , m}. For
l ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , m} define wkl = 1/m if p(ωl) = 0 (any choice
such that

∑m

k=1 wkl = 1 does the same trick) and

wkl =
rkl

p(ωl)
=

Pr

(

{ξk} ∩ {ωl}
)

Pr

(

{ωl}
) = Pr

(

{ξk}|{ωl}
)

otherwise. Clearly,
∑n

l=1 wklp(ωl) = q(ξk) for all k ∈ {1, 2, . . . , m} and
∑m

k=1 wkl =
= 1. Clearly, this defines a “distribution pipeline”.

Answer F. YES, there is a “distribution pipeline” which transforms p to q.

Every “distribution pipeline” yields a generalized transformation of (Ω, p) to
(Ξ, q); p flows trough the pipeline and it is transformed to q. The generalized
transformation has a surprising background: fuzzy probability.

2.3. Distribution pipeline

The “distribution pipeline” can be viewed as a matrix W having m rows, n columns
and having some additional properties. First, the elements of W are numbers from
I = [0, 1]. Second, each column qk, k ∈ {1, 2, . . . , m}, is a probability function on Ξ.
Third, each row wk, k ∈ {1, 2, . . . , m} is a fuzzy subset of Ω. To transport p to
q, it suffices to guarantee that

∑n

l=1 wklp(ωl) = q(ξk), k ∈ {1, 2, . . . , m}. If r is a
probability on the product set Ω × Ξ such that p and q are marginal probabilities,
then the case when p and q are independent, i. e., r(ωl, ξk) = p(ωl)q(ξk), in symbols
r = p × q, gives a “trivial” solution: ql = q, l ∈ {1, 2, . . . , n}, meaning that all
columns of W are the same. Now, let W be any matrix having m rows and n columns
and the elements of which are numbers from I = [0, 1] such that each column qk,
k ∈ {1, 2, . . . , m}, is a probability function on Ξ. Then W represents a map of the set
P(Ω) of all probability functions on Ω into the set P(Ξ) of all probability functions
on Ξ: for each p ∈ P(Ω), put

(

W(p)
)

(k) =
∑n

l=1 wklp(ωl) = s(k), k ∈ {1, 2, . . . , m}.
Since

∑m

k=1 s(k) = 1, W(p) is a probability on Ξ. In fact, the resulting map is a
discrete fuzzy random variable in the sense of S. Gudder and S. Bugajski (see [13],
[1], [2], [6]): each elementary event ω ∈ Ω is mapped to some probability measure
on Ξ. Dually, W represents a fuzzy observable sending each (crisp) event {ξk} in Ξ
to the fuzzy event wk (the k-th row of W) in Ω, k ∈ {1, 2, . . . , m}.

3. FUZZIFICATION – CLASSICAL CASE

In this section we briefly analyse the process of fuzzification of classical crisp do-
mains of probability within the category ID of D-posets of fuzzy sets and put into
perspective our earlier results concerning categorical aspects of fuzzification. The
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category ID is a natural larger category (containing fields of sets) in which probabil-
ity measures and states (generalizations of probability measures) are morphisms of
the same type as observables (maps dual to generalized random variables), namely,
both are exactly “the structure preserving maps”. Consequently, the additivity of
probability measures becomes “the preservation of a less restrictive structure on
events (the ID-structure) than the Boolean one” (see [3, 12]).

3.1. D-posets

D-posets have been introduced by F. Kôpka and F. Chovanec in [14] (see also [4])
in order to model events in quantum probability. They generalize MV -algebras and
other probability domains and provide a category in which observables and states
become morphisms. Recall that a D-poset is a partially ordered set with the greatest
element 1, the least element 0, and a partial binary operation called difference, such
that a ⊖ b is defined iff b ≤ a, and the following axioms are assumed:

(D1) a ⊖ 0X = a for each a ∈ X ;

(D2) If c ≤ b ≤ a, then a ⊖ b ≤ a ⊖ c and (a ⊖ c) ⊖ (a ⊖ b) = b ⊖ c.

Fundamental to applications ([6]) are D-posets of fuzzy sets, i. e. systems X ⊆ IX ,
I = [0, 1], carrying the coordinatewise partial order, coordinatewise convergence of
sequences, containing the top and bottom elements of IX , and closed with respect
to the partial operation difference defined coordinatewise; we always assume that
X is reduced, i. e., if x 6= y then u(x) 6= u(y) for some u ∈ X . Denote ID the
category having D-posets of fuzzy sets as objects and having sequentially continuous
D-homomorphisms as morphisms. Objects of ID are subobjects of the powers IX .

3.2. Domains in ID

As in [11], our approach to domains of probability can be summarized as follows.

• Start with a “system A of events”;

• Choose a “cogenerator C” – usually a structured set suitable for “measuring”
(e.g., the two-element Boolean algebra {0,1}, the interval I = [0, 1] carrying
the  Lukasiewicz MV -structure, D-poset structure, . . . );

• Choose a set X of “properties” measured via C so that X separates A;

• Represent each event a ∈ A via the “evaluation” of A into CX sending a ∈ A
to aX ∈ CX , aX ≡ {x(a); x ∈ X};

• Form the minimal “subalgebra” D of CX containing {aX ; a ∈ A};

• The subalgebra forms a probability domain D ⊆ CX which has nice categorical
properties. For C = {0, 1} and C = [0, 1] (considered as ID-posets), respec-
tively, the classical probability domains (σ-fields of sets) and fuzzy probability
domains (measurable functions into [0,1]) become special cases.
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• An observable is a “structure preserving map” of one probability domain into
another one. The image of the former is a subdomain of the latter.

• A state (generalized probability measure) is a “structure preserving map” of
the probability domain D into C.

3.3. From crisp to fuzzy

L. A. Zadeh in [20] proposed to extend the domain of probability from σ-fields of
sets to suitable systems of fuzzy sets. Namely, to fuzzy subsets A of the Euclidean
n-space Rn such that the membership function µA : Rn → [0, 1] is Borel measurable.
If P is a probability measure over Borel sets, then the probability of A is defined
as the Lebesgue–Stieltjes integral

∫

Rn µA(x) dP . The fuzzification of probability
theory underwent a considerable evolution. The reader is referred to a survey by
R. Mesiar [15], to seminal papers by S. Gudder [13], S. Bugajski [1, 2], B. Riečan
and D. Mundici [19].

Let A be a σ-algebra of (crisp) subsets of a set X ; we consider A as the ID-poset
of characteristic functions. Let M(A) be the set of all measurable functions into the
interval I = [0, 1]. It is known that both ID-posets A and M(A) are sequentially
closed in IX , each probability measure m on A can be uniquely extended to a state
mt on M(A) defined by mt(u) =

∫

u dm, u ∈ M(A), and both m and mt are ID-
morphisms into I (cf. [8]). Denote CFSD the (full) subcategory of ID the objects
of which are σ-fields of sets and denote CGBID the (full) subcategory of ID the
objects of which are of the form M(A). The objects of CFSD are the domains
of classical probability theory and the objects of CGBID are the domains of fuzzy
probability theory. This leads to the following question.

Question T. What is the transition from classical probability to fuzzy probability
(fuzzification) from the viewpoint of category theory?

The question has been answered in [10], the crucial being the construction and
understanding of “fuzzification functor” F : CFSD → CGBID in [8]. The functor
sends a classical probability domain, a σ-field A, into its fuzzification M(A) = F(A)
and sends a classical observable h, a Boolean homomorphism of one classical domain
into another classical domain, into its fuzzification F(h), a D-homomorphism from
one fuzzy domain into another fuzzy domain. In this sense, the identity map of A

is sent to the identity map of M(A), hence crisp (classical) events are embedded in
fuzzy events and F(h) is an extension of h.

Next, we try to put the ideas and results from [10, 11, 12] and [3] into a perspec-
tive. In particular, we point out the role of cogenerators.

To understand the transition from the classical probability theory to the fuzzy
probability theory it is natural to understand the transition from {0, 1} (the cogen-
erator of classical domains of probability) to I = [0, 1] (the cogenerator of fuzzy
domains of probability).

First, we identify {0, 1} and the trivial σ-field T = {∅, {ω}} of all subsets of
a singleton–a classical probability domain containing only one elementary event ω
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and, similarly, we identify I = [0, 1] and the fuzzy domain I{ω} of all (measurable)
fuzzy events in this trivial σ-field T; observe that I{ω} = M(T).

Second, observe that [0, 1] is the minimal of all D-posets of fuzzy sets X ⊆ I{ω}

containing T such that

(i) X is divisible (recall that a D-poset of fuzzy subsets Y ⊆ IY of Y is said to be
divisible if for each u ∈ Y ⊆ IY and for each positive natural number n there
exits v ∈ Y ⊆ IY such that for all y ∈ Y we have nv(y) = u(y);

(ii) X is sequentially closed in I{ω}.

While the second condition is a natural assumption in any “continuous” proba-
bility theory: domains are closed with respect to limits of sequences of events, the
first condition is a necessary assumption guaranteeing positive “fuzzy solution” of
the “Bottle problem”.

Now, let h be an observable from a classical probability domain A ⊆ {0, 1}X

into T. Applying the fuzzification functor F we get a fuzzy observable F(h) :
M(A) → M(T) = I. Observe that if A = χA is a crisp event, then

(

F(h)
)

(χA) ∈
∈ {0, 1}. Only a genuine fuzzy observable g : M(A) → M(T) = I can send χA to
g(χA) ∈ (0, 1) ⊂ I. This of course means that each nontrivial probability measure
p on A is the restriction of a genuine fuzzy observable gp of M(A) to M(T). Sur-
prising? Yes, each genuine probability measure p is an intrinsic notion of the fuzzy

probability theory within the category ID.
There is another (not surprising) fuzzy feature of probability measures: each

probability measure p on A is (as a map of A into I) a fuzzy subset of A and a
sequentially continuous D-homomorphism, i. e., a morphism of ID.

Answer T. The transition from classical to fuzzy probability theory can be de-
scribed via the fuzzification functor F sending A to M(A). The fuzzification is
necessary to implement genuine fuzzy observables (sending some crisp event to a
fuzzy event) and genuine fuzzy random variables (sending some degenerated point-
probability measure to a non degenerated probability measure). Due to the one-to-
one correspondence between σ-fields and measurable functions ranging in I = [0, 1],
the former theory can be considered as a special case of the latter. Indeed, each
A is embedded into F(A) = M(A) and for each classical observable g its image
F(g) is its extension sending crisp events to crisp events. Within ID, the transition
from classical probability domains to fuzzy domains is “the best possible”: F “em-
beds” A into M(A), A and M(A) have “the same” probabilities and, finally, each
probability measure is an intrinsic notion of the fuzzy probability theory.

4. EPIREFLECTION

Since the fuzzification functor F sends crisp domains to fuzzy domains and CGBID
is not a subcategory of CFSD (the two categories have no object in common), to
embed A into M(A) as an epireflector we need a larger category EID containing
both CFSD and CGBID and a functor E such that F is the restriction of E, i. e.
E(A) = M(A) for all objects A of CFSD.
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4.1. The category EID

Let A be a σ-field of subsets of X . Denote N+ the set of all positive natural
numbers. For n ∈ N+, consider the set {0, 1/n, 2/n, . . . , (n−1)/n}. Let Cn be the
corresponding canonical D-poset and let Mn(A) be the D-poset of all measurable
functions ranging in Cn; clearly, M1(A) = A. If u ∈ Mn(A), then u is a simple

function of the form
∑k

i=1 aiχAi
, where 1 ≤ k ≤ n, ai ∈ Cn, and the sets Ai form a

measurable partition of X , i. e., sets Ai ∈ A are mutually disjoint and
⋃k

i=1 Ai = X .
Denote s(A) the set of all simple measurable functions, i. e., functions of the type
∑k

i=1 aiχAi
, where k ∈ N+, ai ∈ I, and the sets Ai form a measurable partition

of X .
Denote EID the full subcategory of ID consisting of all objects of the form

Mn(A) and M(A). We shall show that the assignment Mn(A) 7→ M(A) yields
the desired epireflector E.

Lemma 4.1.1. Let A and B be σ-fields of subsets of X and Y , respectively. Let
h, g be sequentially continuous D-homomorphisms of M(A) into M(B) such that
h(χA) = g(χA) for all A ∈ A. Then

(i) h(χA/n) = g(χA/n) for all A ∈ A, n ∈ N+;

(ii) h(u) = g(u) for all u =
∑k

i=1 aiχAi
∈ Mn(A), n ∈ N+;

(iii) h(u) = g(u) for all u =
∑k

i=1 aiχAi
∈ s(A);

(iv) h(u) = g(u) for all u ∈ M(A).

P r o o f . (i) From the definition of a D-homomorphism it follows that h(χA/n) =
= h(χA)/n = g(χA/n) = g(χA)/n.

(ii) Let u =
∑k

i=1 aiχAi
∈ Mn(A) for some n ∈ N+. Clearly, for a = k/n,

1 < k < n, A ∈ A, we have h(aχA) = ah(χA) and if A, B ∈ A are disjoint, then

h(χA+χB) = h(χA)+h(χB). Hence h(u) =
∑k

i=1 aih(χAi
) =

∑k

i=1 aig(χAi
) = g(u).

(iii) Let u =
∑k

i=1 aiχAi
∈ s(A). Then there are functions ul =

∑k

i=1 ailχAi
∈

∈ Ml(A), l ∈ N+, such that ai = liml→∞ ail. Since h(ul) =
∑k

i=1 ailh(χAi
) =

=
∑k

i=1 ailg(χAi
) = g(ul), u = liml→∞ ul, and h, g are sequentially continuous, it

follows that h(u) = g(u).
(iv) Let u ∈ M(A). Then there is an increasing sequence of simple functions

ul ∈ Ml(A) such that u = liml→∞ ul. Since h(ul) = g(ul) and h, g are sequentially
continuous, it follows that h(u) = g(u). �

Corollary 4.1.2. Let A and B be σ-fields of subsets of X and Y , respectively.
Let O(A) and O(B) be objects of EID and let h, g be sequentially continuous
D-homomorphisms of O(A) into O(B). If h(A) = g(A) for all A ∈ A, then h = g.

P r o o f . 1. Let O(A) = Mn(A) for some n ∈ N+. Then the assertion can be
proved virtually in the same way as (i) and (ii) in the previous lemma.

2. Let O(A) = M(A). Then the assertion can be proved virtually in the same
way as the previous lemma. �
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Corollary 4.1.3. Let A be a σ-fields of subsets of X and let O(A) be an object of
EID. Let let h be a sequentially continuous D-homomorphism of O(A) into I.

(i) Then there exists a unique probability measure m on A such that for each
u ∈ O(A) we have h(u) =

∫

u dm.

(ii) For u ∈ M(A) put h(u) =
∫

u dm. Then h is the unique sequentially continu-
ous D-homomorphism of M(A) into I such that h(u) = h(u) for all u ∈ O(A).

P r o o f . Denote hA the restriction of h to A. It is known (Proposition 3.1. in [10])
that there exists a unique probability measure m on A such that m(A) = hA(χA) for
all A ∈ A. The Lebesgue integral

∫

u dm, u ∈ M(A), is a sequentially continuous
D-homomorphism of M(A) into I. Denote h(u) =

∫

u dm, u ∈ M(A). Then the
restriction h ↾ O(A) of h to O(A) is a sequentially continuous D-homomorphism
of O(A) into I = M(T) and, according to the previous corollary, h ↾ O(A) = h.
Consequently, both (i) and (ii) are satisfied. �

Theorem 4.1.4. Let A and B be σ-fields of subsets of X and Y , respectively.
Let O(A) and O(B) be objects of EID and let h be a sequentially continuous
D-homomorphism of O(A) into O(B). Then there exists a unique sequentially
continuous D-homomorphism h of M(A) into M(B) such that h(u) = h(u) for all
u ∈ O(A)

P r o o f . The case O(A) = M(A) is trivial. So, assume that O(A) = Mn(A) for
some n ∈ N+. To avoid technicalities, we consider A, Mn(A), s(A), and Mn(A)
as canonical subobjects of IX and, similarly, we consider B, Mn(B), s(B), and
M(B) as canonical subobjects of IY . Further, we identify each point x ∈ X and the
degenerated point probability δx and, similarly, we identify each point y ∈ Y and
the degenerated point probability δy.

Denote hA the restriction of h to A. It is known that to hA there corresponds a
unique map T of P(A) into P(B) such that for each A ∈ A and each y ∈ Y we have
(

hA(χA)
)

(y) =
(

T (δy)
)

(A) (see Lemma 3.1 in [6]). Define a map hT of M(A) into

IY as follows:
(

hT (u)
)

(y) =
∫

u dT (δy). Then hT is a sequentially continuous D-
homomorphism (remember the Lebesgue Dominate Convergence Theorem). Since
hT (χA) = h(χA) for each A ∈ A, according to Corollary 4.1.2. we have hT (u) = h(u)
for all u ∈ O(A).

Now, it suffices to prove that hT maps M(A) into M(B). Indeed, then hT

determines the desired extension h of h, the uniqueness of which is guaranteed by
Lemma 4.1.1.

If l ∈ N+ and u =
∑k

i=1 aiχAi
∈ Ml(A), then hT (u) =

∑k

i=1 aihT (χAi
). But

hT (χAi
) = h(χAi

) ∈ O(B), hence hT (u) ∈ M(B).
If u ∈ s(A), then there are functions ul ∈ Ml(A) such that u = liml→∞ ul and

hence hT (u) ∈ M(B).
Finally, if u ∈ M(A), then there are functions ul ∈ s(A) such that u = liml→∞ ul

and hence hT (u) ∈ M(B), as well. �
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For an object O(A) in EID define E(O(A)) = M(A) and for a morphism h of
O(A) into O(B) define E(h) = h, where h is the unique morphism of M(A) into
M(B) determined as an extension of h.

Lemma 4.1.5. E is a functor of EID into CGBID.

P r o o f . We have to prove that E preserves the identity maps and compositions.
Both assertions are straightforward consequences of Corollary 4.1.2. The identity
map of M(A) onto M(A) is the unique extension of the identity map of O(A) onto
O(A). Similarly, if h maps O(A) into O(B) and g maps O(B) into O(C), then the
composition of extensions g ◦ h and the extension of the composition g ◦ h coincide.
Thus E(g ◦ h) = E(g) ◦ E(h). �

The next assertion follows directly from Corollary 4.1.2.

Theorem 4.1.6. E is an epireflection of EID into CGBID.

5. FUZZIFICATION – SIMPLEX CASE

5.1. Simplex-valued domains

In [11] we introduced the category SnD cogenerated by a cogenerator
Sn = {(x1, x2, . . . , xn) ∈ In;

∑n
i=1 xi ≤ 1} carrying the coordinatewise partial

order, difference, and sequential convergence (essentially, the objects of SnD are
subobjects of the powers SX

n ) and we showed how basic probability notions can be
defined within SnD. In the resulting SnD-probability we have n-component proba-
bility domains in which each event represents a body of competing components and
the range of a state represents a simplex Sn of n-tuples of possible “rewards” — the
sum of the rewards is a number from [0, 1]. For n = 1 we get fuzzy events and the
corresponding fuzzy probability theory.

Let X be a nonempty set and let S X
n be the set of all maps of X into Sn; if

X is a singleton {a}, then S
{a}
n will be condensed to Sn. Let f ∈ S X

n . Then
there are n maps f1, f2, . . . , fn of X into I such that for each x ∈ X we have
f(x) =

(

f1(x), f2(x), . . . , fn(x)
)

; we shall write f = (f1, f2, . . . , fn). In what follows,
S X

n carries the coordinatewise partial order (g ≤ f iff gi ≤ fi for all i, 1≤ i≤ n),
the coordinatewise partial difference (for g ≤ f define f ⊖ g = (f1 ⊖ g1, f2 ⊖ g2, . . . ,
fn ⊖ gn)), and the coordinatewise sequential convergence inherited from Sn. Ele-
ments (f1, f2, . . . , fn) ∈ S X

n such that
∑n

i=1 fi(x) = 1, x ∈ X , are maximal. If
for some index i, 1 ≤ i ≤ n, we have fj(x) = 0 for all j 6= i and all x ∈ X , then
(f1, f2, . . . , fn) is said to be pure; denote pi the corresponding maximal pure element
of S X

n . Clearly, if for all i, 1 ≤ i ≤ n, the functions fi are constant zero functions,
then

(

f1(x), f2(x), . . . , fn(x)
)

is the least element of S X
n ; it is called the bottom

element and denoted by b. To avoid complicated notation, if no confusion can arise,
then the bottom element, resp. the i-th maximal pure elements, will be denoted by
the same symbol b, resp. pi, 1 ≤ i ≤ n, independently of the ground set X . — For
n = 2 see Figure 3.
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Let X be a nonempty set. We are interested in subsets X ⊆ S X
n closed with

respect to the difference, containing the bottom element and all maximal pure el-
ements of S X

n . For n = 1 we get D-posets of fuzzy sets and for n > 1 we get a
structure which generalizes fuzzy events to higher dimensions.

Let B1,B2, . . . ,Bn ⊆ IX be reduced ID-posets. Define S(B1,B2, . . . ,Bn) to be
the set of all (f1, f2, . . . , fn) ∈ S X

n such that fi ∈ Bi, 1 ≤ i ≤ n. If there exists an
ID-poset B ⊆ I X such that B = Bi, 1 ≤ i ≤ n, then S(B1,B2, . . . ,Bn) is condensed
to Sn(B). In what follows we consider only the latter case.

Fig. 3. Construction of S
X

n for n = 2, i. e. S
X

2 .

Definition 5.1.1. Let X be a nonempty set. Let X be a subset of S X
n , carrying the

coordinatewise order, the coordinatewise convergence and closed with respect to the
inherited difference. Assume that X contains the bottom element and all maximal
pure elements. Then (X ,≤,⊖,b,p1, . . . ,pn) is said to be an SnD-domain. If there
is a (reduced) ID-poset B ⊆ IX such that X = Sn(B), then (X ,≤,⊖,b,p1, . . . ,pn)
is said to be a simple SnD-domain and B is said to be the base of X .

If no confusion can arise, then (X ,≤,⊖,b,p1, . . . ,pn) will be reduced to X . In

what follows, all SnD-domains are assumed to be simple.

Definition 5.1.2. Let h be a map of a simple SnD-domain X into a simple SnD-
domain Y such that

(i) h(v) ≤ h(u) whenever u,v ∈ X and v ≤ u, and then h(u⊖v) = h(u)⊖h(v);

(ii) h maps the bottom element of X to the bottom element of Y and the i-th
maximal pure element of X to the i-th maximal pure element of Y, for all
i, 1 ≤ i ≤ n.
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Then h is said to be an SnD-homomorphism. A sequentially continuous SnD-
homomorphism of X into Y is said to be an SnD-observable. A sequentially contin-
uous SnD-homomorphism of X into I is said to be an SnD-valued state or, simply,
a state.

Denote SnD the category of simple SnD-domains and sequentially continuous
SnD-homomorphisms. Clearly, the categories ID and S1D coincide and each SX

n is
a simple SnD-domain.

Lemma 5.1.3. (Theorem 3.1 in [9].) Let X = Sn(A) ⊆ SX
n and Y = Sn(B) ⊆ SY

n

be simple SnD-domains.

(i) Let h be a D-homomorphism of A into B. For f = (f1, f2, . . . , fn) ∈ X put
h(f) =

(

h(f1), h(f2), . . . , h(fn)
)

∈ Y and denote h the resulting map of X into
Y. Then h is an SnD-homomorphism.

(ii) Let h be an SnD-homomorphism of X into Y. Then there exists a unique
D-homomorphism h of A into B such that for each f = (f1, f2, . . . , fn) ∈ X
we have h(f) =

(

h(f1), h(f2), . . . , h(fn)
)

.

P r o o f . The proof of (i) is straightforward and it is omitted.
(ii) Given g = (g1, g2, . . . , gn) ∈ SZ

n , for each k, 1 ≤ k ≤ n, define redk(g) =
(h1, h2, . . . , hn), where hk = gk and hj = 0Z otherwise.

Let f = (f1, f2, . . . , fn) ∈ Sn(A) and let h(f) = (u1, u2, . . . , un) ∈ Sn(B). Since
h(f ⊖ redn(f)) = h(f) ⊖ h(redn(f)) = h

(

(f1, f2, . . . , fn−1, 0X)
)

∈ Sn(B) and h

preserves order, necessarily there are elements vk ∈ Sn(B), 1 ≤ k ≤ n, such
that h

(

(f1, f2, . . . , fn−1, 0X)
)

= (v1, v2, . . . , vn−1, 0Y ) ∈ Sn(B) and h
(

redn(f)
)

=

(0Y , 0Y , . . . , 0Y , vn). Hence h
(

redn(f)
)

= (0Y , 0Y , . . . , 0Y , un) = redn(u1, u2, . . . , un)

and h
(

(f1, f2, . . . , fn−1, 0X)
)

= (u1, u2, . . . , un−1, 0), i. e., ui = vi for all i, 1 ≤ i ≤ n.

Inductively, h
(

redk(f)
)

= redk(u1, u2, . . . , un), 1 ≤ k ≤ n. For each k, 1 ≤ k ≤ n,
define Xk = {(g1, g2, . . . , gn) ∈ Sn(A); gl = 0X for all l 6= k, 1 ≤ l ≤ n}.
Then h on Xk can be identified with an SnD-homomorphism hk on A into B and
h(f) =

(

h1(f1), h2(f2), . . . , hn(fn)
)

. Now, it suffices to prove that hi = hj for all
i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Contrariwise, suppose that there exists f ∈ A and i < j
such that u = hi(f) < hj(f) = v. Define g = (g1, g2, . . . , gn) ∈ Sn(A) as follows:
gi = 1X⊖f , gj = f , and gk = 0X otherwise. Then h(g) = (w1, w2, . . . , wn) ∈ Sn(B),
where wi = hi(1X ⊖ f) = 1 − u, wj = hj(f) = v, and wk = 0Y otherwise. Then
∑n

i=1 wi = 1Y − u + v > 1Y , a contradiction. �

5.2. Simplex-valued crisp and fuzzy

Denote CrSnD the full subcategory of SnD the objects of which are simple SnD-
domains of the form Sn(A) (i. e. the base A is a σ-field of subsets considered as an
ID-poset); such domains are said to be crisp.

Denote FuSnD the full subcategory of SnD the objects of which are simple SnD-
domains of the form Sn(M

(

A)
)

(i. e. the base M(A) is the set of all measurable
functions into I considered as an ID-poset); such domains are said to be fuzzy.
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We present a simple situation leading to n-dimensional crisp events: credit system
— grading of university students.

Example 5.2.1. Consider a university and a student of a Bc program:

X . . . . . . . . . . . . . . . . available courses
x ∈ X . . . . . . . . . . . . a course
J . . . . . . . . . . . . . . . . . student JOHN
J(x) . . . . . . . . . . . . . . the grade of JOHN at x, J(x) ∈ S5

(1, 0, 0, 0, 0) . . . . . . . A
(0, 1, 0, 0, 0) . . . . . . . B
(0, 0, 1, 0, 0) . . . . . . . C
(0, 0, 0, 1, 0) . . . . . . . D
(0, 0, 0, 0, 1) . . . . . . . E
(0, 0, 0, 0, 0) . . . . . . . Fx — failed or NOT enrolled
J ∈ SX

5 . . . . . . . . . . . the performance of JOHN (crisp event)

Consider the fuzzification functor F sending each σ-field A ⊆ {0, 1}X to the set
M(A) ⊆ [0, 1]X of all measurable functions ranging in I = [0, 1], both considered as
D-posets of fuzzy subsets of X . Recall that F sends objects of CFSD (crisp events)
into objects of CGBID (fuzzy events) and each ID-morphism h : A → B to the
unique ID-morphism F(h) : M(A) → M(B). Given a positive natural number n,
define a map Fn sending each object Sn(A) ⊆ SX

n of CrSnD to the corresponding
object Sn

(

M(A)
)

⊆ SX
n of FuSnD. We show that Fn yields a functor sending each

SnD-morphism h of Sn(A) into Sn(B) ⊆ SY
n to the unique SnD-morphism Fn(h)

of Sn

(

M(A)
)

into Sn

(

M(B)
)

. Now, for g = F(h) put Fn(h) = g.

The next assertion is a corollary of Lemma 5.1.3.

Theorem 5.2.2. For each positive natural number n, Fn is a functor from CrSnD
to FuSnD.

We close with some remarks on simplex-valued probability. Using the relationship
between the functors F and Fn it is possible to describe the transition from crisp to
fuzzy simplex-valued probability.

Definition 5.2.3. (i) Let A be a σ-field of subsets of Ω, let Sn(A) be the cor-
responding object of CrSnD, let p be a probability measure on A, let p be the
corresponding state (SnD-morphism ranging in Sn). Then

(

Ω, Sn(A),p
)

is said to
be a generalized crisp probability space.

Let
(

Ω, Sn(A),p
)

and
(

Ξ, Sn(B),q
)

be generalized crisp probability spaces and
let h be an SnD-morphism of Sn(A) into Sn(B). Then h is said to be a generalized

crisp observable. Moreover, if p = q ◦ h, then h is said to be a generalized crisp

random transformation.
(ii) Let A be a σ-field of subsets of Ω, let Sn

(

M(A)
)

be the corresponding
object of FuSnD, let p be a probability measure on A, let pt be the state (ID-
morphism ranging in I) on M(A) defined via integral and let pt be the corresponding
Sn-valued state on Sn

(

M(A)
)

defined by pt(f) =
(

pt(f1), pt(f2), . . . , pt(fn)
)

, f =
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= (f1, f2, . . . , fn) ∈ Sn

(

M(A)
)

. Then
(

Ω, Sn

(

M(A)
)

,pt

)

is said to be a generalized

fuzzy probability space.
Let

(

Ω, Sn

(

M(A)
)

,pt

)

and
(

Ξ, Sn

(

M(B)
)

,qt

)

be generalized fuzzy probability

spaces and let h be an SnD-morphism of Sn

(

M(A)
)

into Sn

(

M(B)
)

. Then h is
said to be a generalized fuzzy observable. Moreover, if p = q ◦ h, then h is said to
be a generalized fuzzy random transformation.

Question GT. What is the transition from generalized crisp probability to gen-
eralized fuzzy probability (fuzzification) from the viewpoint of category theory?

Answer GT. Analogously as in the case of classical and fuzzy probability theories,
we can describe the relationships between the two proposed generalized probability
theories using the properties of the functor Fn : CrSnD → FuSnD.

First, observe that there is a one-to one correspondence between the objects
of CrSnD and the objects of FuSnD: the correspondence between Sn(A) and
Fn

(

Sn(A)
)

= Sn

(

M(A)
)

yields a bijection.
Second, there is a one-to-one correspondence between states (SnD-morphisms

ranging in Sn) on Sn(A) and Sn

(

M(A)
)

.
Third, each observable h (SnD-morphisms) from Sn(A) to Sn(B) can be uniquely

extended to an observable Fn(h) = g from Fn

(

Sn(A)
)

= Sn

(

M(A)
)

into Fn

(

Sn(B)
)

= Sn

(

M(B)
)

.
Fourth, it follows from the properties of F and its relationships to Fn that there

are observables g from Fn

(

Sn(A)
)

= Sn

(

M(A)
)

into Fn

(

Sn(B)
)

= Sn

(

M(B)
)

such that for no observable h from Sn(A) to Sn(B) we have Fn(h) = g. Such
observables have genuine generalized “quantum and fuzzy” qualities. In particular,
if

(

Ω, Sn(A),p
)

is a generalized crisp probability space, then p is the restriction of
a genuine generalized fuzzy observable.

Consequently, passing from the generalized crisp probability to the generalized
fuzzy probability is a minimal extension within the category SnD in which the
objects are “divisible”, generalized probability measures are morphisms, and some
simple genuine generalized “quantum and fuzzy” situations can be modelled.
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public.

e-mail: fric@saske.sk
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