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Pcf theory and cardinal invariants of the reals

Lajos Soukup

Abstract. The additivity spectrum ADD(I) of an ideal I ⊂ P(I) is the set of all
regular cardinals κ such that there is an increasing chain {Aα : α < κ} ⊂ I with
⋃

α<κ
Aα /∈ I.

We investigate which set A of regular cardinals can be the additivity spectrum
of certain ideals.

Assume that I = B or I = N , where B denotes the σ-ideal generated by the
compact subsets of the Baire space ωω , and N is the ideal of the null sets.

We show that if A is a non-empty progressive set of uncountable regular
cardinals and pcf(A) = A, then ADD(I) = A in some c.c.c generic extension
of the ground model. On the other hand, we also show that if A is a countable
subset of ADD(I), then pcf(A) ⊂ ADD(I).

For countable sets these results give a full characterization of the additivity
spectrum of I: a non-empty countable set A of uncountable regular cardinals
can be ADD(I) in some c.c.c generic extension iff A = pcf(A).

Keywords: cardinal invariants, reals, pcf theory, null sets, meager sets, Baire
space, additivity

Classification: 03E04, 03E17, 03E35

1. Introduction

Many cardinal invariants are defined in the following way: we consider a family
X ⊂ P(

[

ω
]ω
) and define our cardinal invariant x as x = min{|X | : X ∈ X} or

x = sup{|X | : X ∈ X}. The set {|X | : X ∈ X} is called the spectrum of x.

For example, consider the family A = {A ⊂
[

ω
]ω

: A is a MAD family}. Then
a = min{|A| : A ∈ A}, so we can say that the spectrum of a is the cardinalities of

the maximal almost disjoint subfamilies of
[

ω
]ω
.

The value of many cardinal invariants can be modified almost freely by using
a suitable forcing, but their spectrums should satisfy more requirements.

In [8] Shelah and Thomas investigated the cofinality spectrum of certain groups.
Denote CF(Sym(ω)) the cofinality spectrum of the group of all permutation of
natural numbers, i.e. the set of regular cardinals λ such that Sym(ω) is the
union of an increasing chain of λ proper subgroups. Shelah and Thomas showed
that CF(Sym(ω)) cannot be an arbitrarily prescribed set of regular uncountable
cardinals: if A = 〈λn : n ∈ ω〉 is a strictly increasing sequence of elements of
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CF(Sym(ω)), then pcf(A) ⊆ CF(Sym(ω)). On the other hand, they also showed
that if K is a set of regular cardinals which satisfies certain natural requirements
(see [8, Theorem 1.3]), then CF(Sym(ω)) = K in a certain c.c.c generic extension.

In this paper we investigate the additivity spectrum of certain ideals in a similar
style. Denote Reg the class of all infinite regular cardinals. Given any ideal
I ⊂ P(I) for each A ∈ I+ put

ADD(I, A) = {κ ∈ Reg : ∃ increasing {Aα : α < κ} ⊂ I s.t.
⋃

α<κ

Aα = A},

and let

ADD(I) =
⋃

{ADD(I, A) : A ∈ I+}.

Clearly add(I) = minADD(I). We will say that ADD(I) is the additivity spec-

trum of I.
As usual, M and N denote the null and the meager ideals, respectively. Let

B denote the σ-ideal generated by the compact subsets of ωω. Clearly we have

B = {F ⊂
[

ω
]ω

: F is ≤∗-bounded }.

So the poset 〈ωω,≤∗〉 has a natural, cofinal, order preserving embedding Φ into
〈B,⊂〉 defined by the formula Φ(b) = {x : x ≤∗ b}. Denote by ADD(〈ωω,≤∗〉) the
set of all regular cardinals κ such that there is an unbounded ≤∗-increasing chain
{bα : α < κ} ⊂ ωω. Clearly ADD(B) ⊇ ADD(〈ωω,≤∗〉) and b = minADD(B) =
minADD(〈ωω,≤∗〉). Farah, [4], proved that if GCH holds in the ground model
then given any non-empty set A of uncountable regular cardinals with ℵ1 ∈ A
we have ADD(〈ωω,≤∗〉) = A in some c.c.c extension of the ground model. So
ADD(〈ωω,≤∗〉) does not have any closedness property. Moreover, standard forc-
ing arguments show that ADD(I)∩{ℵn : 1 ≤ n < ω} can also be arbitrary, where
I ∈ {B,M,N}.

However, the situation changes dramatically if we consider the whole spectrum
ADD(I). Let I = B or I = N . On one hand, we show that ADD(I) should be
closed under certain pcf operations: if A is a countable subset of ADD(I), then
pcf(A) ⊂ ADD(I) (see Theorems 3.10 and 3.6).

On the other hand, we show that if A is a non-empty set of uncountable regular
cardinals, |A| < min(A)+n for some n ∈ ω (especially, if A is progressive), and
pcf(A) = A, then ADD(I) = A in some c.c.c generic extension of the ground
model (see Theorem 2.3).

For countable sets these results give a full characterization of the additivity
spectrum of I: a non-empty countable set A of uncountable regular cardinals can
be ADD(I) in some c.c.c generic extension iff A = pcf(A).

2. Construction of additivity spectrums

To start with we recall some results from pcf-theory. We will use the notation
and terminology of [1]. A set A ⊂ Reg is progressive iff |A| < min(A).
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The proofs of the next two propositions are standard applications of pcf theory,
they could be known, but the author was unable to find them in the literature.
Proposition 2.2 is similar to [8, Theorem 3.20], but we do not use any assumption
concerning the cardinal arithmetic.

Proposition 2.1. Assume that A = pcf(A) ⊂ Reg is a progressive set, and

λ ∈ Reg. Then there is a family F ⊂
∏

A with |F| < λ such that for each

g, h ∈
∏

A

if g <J<λ[A] h then there is f ∈ F such that g < max(f, h).

Proof: For each µ ∈ pcf(A) = A let Bµ ⊂ A be a generator of J<µ+ [A], i.e.

J<µ+ [A] = 〈J<µ[A] ∪ {Bµ}〉gen .

Since cf(〈
∏

Bµ,≤〉) = maxpcf(Bµ) = µ by [1, Theorem 4.4], we can fix a family
Fµ ⊂

∏

Bµ with |Fµ| = µ such that Fµ is cofinal in 〈
∏

Bµ,≤〉.
We claim that

F = {max(fµ1

1 , . . . , fµn

n ) : µ1 < · · · < µn < λ, fµi

i ∈ Fµi
}

satisfies the requirements.
Since A is progressive, |F| ≤ sup(A ∩ λ) < λ.
Assume that g <J<λ[A] h for some g, h ∈

∏

A. Let X = {a ∈ A : g(a) ≥ h(a)}.
Then X ∈ J<λ[A], so there are µ1, . . . µn ∈ pcf(A) ∩ λ = A ∩ λ such that X ⊂
Bµ1

∪ · · · ∪Bµn
. For each 1 ≤ i ≤ n choose fµi

i ∈ Fµi
with g ↾ Bµi

< fµi

i .
Then g < max(h, fµ1

1 , . . . , fµn

n ) and max(fµ1

1 , . . . , fµn

n ) ∈ F . �

Proposition 2.2. Assume that A = pcf(A) ⊂ Reg is a progressive set, and

λ ∈ Reg \ A. If 〈gα : α < λ〉 ⊂
∏

A then there are K ∈
[

λ
]λ

and s ∈
∏

A such

that gα < s for each α ∈ K.

Proof: If λ > maxpcf(A), then the equality cf 〈
∏

A,<〉 = maxpcf(A) yields
the result. So we can assume λ < maxpcf(A).

The poset
〈

∏

A,<J
<λ+ [A]

〉

is λ+-directed by [1, Theorem 3.4]. Since λ /∈

pcf(A), we have J<λ[A] = J<λ+ [A], and so the poset
〈
∏

A,<J<λ[A]

〉

is λ+-
directed, as well. Thus there is h ∈

∏

A such that gα <J<λ[A] h for each α < λ.
By Proposition 2.1 there is a family F ⊂

∏

A with |F| < λ such that for each
α < λ there is fα ∈ F such that gα < max(h, fα). Since |F| < λ = cf(λ), there

are K ∈
[

λ
]λ

and f ∈ F such that fα = f for each α ∈ K.

Then s = max(h, f) ∈
∏

A and K ∈
[

λ
]λ

satisfy the requirements. �

Theorem 2.3. Assume that I is one of the ideals B, M and N . If A = pcf(A)
is a non-empty set of uncountable regular cardinals, |A| < min(A)+n for some

n ∈ ω, then A = ADD(I) in some c.c.c generic extension V P .

Especially, if ∅ 6= Y ⊂ pcf({ℵn : 1 ≤ n < ω}) then pcf(Y ) = ADD(I) in some

c.c.c generic extension V P .
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The proof is based on Theorem 2.5 below. To formulate it we need the following
definition.

Definition 2.4. Let ϕ be a formula with one free variable, and assume that

ZFC ⊢ “Iϕ = {x : ϕ(x)} is an ideal”.

We say that the ideal Iϕ has the Hechler property iff given any σ-directed poset Q
there is a c.c.c poset P such that

V P |= Q is order isomorphic to some cofinal subset of 〈I,⊂〉.

If “ZFC ⊢ Iϕ = Iψ”, then clearly Iϕ is Hechler iff Iψ is. So for well-known
ideals, i.e. for B and for N , we will speak about the Hechler property of I instead
of the Hechler property of Iφ, where φ is one of the many equivalent definitions
of I.

Theorem 2.5. Assume that the ideal I has the Hechler property. If A = pcf(A)
is a non-empty set of uncountable regular cardinals, |A| < min(A)+n for some

n ∈ ω, then in some c.c.c generic extension V P we have A = ADD(I).

Proof of Theorem 2.3 from Theorem 2.5: To prove the first part of the
theorem, it is enough to show that I has the Hechler property. However,

• Hechler proved in [6] that B has the Hechler property,
• Bartoszynski and Kada showed in [2] that M has the Hechler property,
• Burke and Kada proved in [3] that N has the Hechler property.

This proves the first part of the theorem.
Assume now that ∅ 6= Y ⊂ pcf({ℵn : 1 ≤ n < ω}). Then A = pcf(Y ) has

cardinality < ω4 by the celebrated theorem of Shelah. Thus |A| < min(A)+4, so
we can apply the first part of the present theorem for the set A. �

Remark. The problem whether N and M have the Hechler property was raised
in a preliminary version of the present paper.

Corollary 2.6. If the ideal I has the Hechler property and cf(
[

ℵω
]ω
,⊂) > ℵω+1,

then in some c.c.c generic extension ADD(I)∩ℵω is infinite, but ℵω+1 /∈ ADD(I).

Proof of the corollary: If maxpcf({ℵn : 1 ≤ n < ω}) = cf(
[

ℵω
]ω
,⊂) >

ℵω+1, then there is an infinite set X ⊂ {ℵn : n ∈ ω} such that pcf(X) = X ∪
{ℵω+2}. Now we can apply Theorem 2.5 for A = X∪{ℵω+2} to obtain the desired
extension. �

Proof of Theorem 2.5: Since |A| < min(A)+n, there is a partition F ∪∗ Y of
A such that F is finite, Y is progressive, and max(F ) < min(Y ). Observe that
Y = pcf(Y ), and clearly F = pcf(F ).

Let Q = 〈
∏

A,≤〉, where f ≤ f ′ iff f(κ) ≤ g(κ) for each κ ∈ A. Then Q
is σ-directed because ℵ0 /∈ A. Since I has Hechler property, there is a c.c.c
poset P such that in V P the ideal I has a cofinal subset {Iq : q ∈ Q} which is
order-isomorphic to Q, i.e. Iq ⊂ Iq′ iff q <Q q′.
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We are going to show that the model V P satisfies our requirement.

Claim 2.7. A ⊂ ADD(I).

Proof: Fix κ ∈ A. For each α < κ consider the function gα ∈
∏

A defined by
the formula

gα(a) =

{

α if a = κ,

0 otherwise.

Then {gα : α < ℵn} is ≤-increasing and unbounded in Q, so {Igα : α < κ} is
increasing and unbounded in 〈I,⊂〉. Hence κ ∈ ADD(I). �

Claim 2.8. ADD(I) ⊂ A.

Proof of the claim: Assume that λ ∈ Reg \A. We show that λ /∈ ADD(I).
Let J = {Jα : α < λ} ⊂ I be increasing.
For each α < λ pick gα ∈

∏

A such that Jα ⊂ Igα .
Since λ /∈ pcf(A), applying Proposition 2.2 twice, first for Y , then for F , we

obtain K ∈
[

λ
]λ

and s ∈
∏

A such that gα < s for each α ∈ K.
Thus Jα ⊂ Is for α ∈ K. Since the sequence J = {Jα : α < λ} is increasing,

and K is cofinal in λ, we have
⋃

{Jα : α < λ} =
⋃

{Jα : α ∈ K} ⊂ Is.

So the sequence J = {Jα : α < λ} does not witness that λ ∈ ADD(I).
Since J was arbitrary, we proved the Claim. �

The two claims complete the proof of the theorem. �

3. Restrictions on the additivity spectrum

The first theorem we prove here resembles [8, Theorem 2.1].

Theorem 3.1. Assume that I ⊂ P(I) is a σ-complete ideal, Y ∈ I+, and

A ⊂ ADD(I, Y ) is countable. Then pcf(A) ⊂ ADD(I, Y ).

Proof: For each a ∈ A fix an increasing sequence Fa = {F aα : α < a} ⊂ I such
that

⋃

Fa = Y .
Let κ ∈ pcf(A). Fix an ultrafilter U on A such that cf(

∏

A/U) = κ and fix an
≤U -increasing, ≤U -cofinal sequence {gα : α < κ} ⊂

∏

A. For g ∈
∏

A let

U(g) =
{

x ∈ I : {a ∈ A : x ∈ F ag(a)} ∈ U
}

.

In the next three claims we show that the sequence {U(gα) : α < κ} witnesses
κ ∈ ADD(I, Y ).

Claim 3.2. U(g) ∈ I for each g ∈
∏

A.

Indeed, U(g) ⊂
⋃

{F a
g(a) : a ∈ A} ∈ I because I is σ-complete.

Claim 3.3. If g1, g2 ∈
∏

A, g1 ≤U g2, then U(g1) ⊂ U(g2).
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Indeed, fix x ∈ I. Since

{a ∈ A : x ∈ F ag2(a)} ⊃ {a ∈ A : x ∈ F ag1(a)} ∩ {a ∈ A : g1(a) ≤ g2(a)}

and {a ∈ A : g1(a) ≤ g2(a)} ∈ U , we have that {a ∈ A : x ∈ F a
g1(a)

} ∈ U implies

{a ∈ A : x ∈ F a
g2(a)

} ∈ U , i.e., if x ∈ U(g1), then x ∈ U(g2), too.

Claim 3.4.
⋃

{U(gα) : α < κ} = Y .

Indeed, fix y ∈ Y . For each a ∈ A choose g(a) < a such that y ∈ F a
g(a). Then

y ∈ U(g). Pick α < κ such that g ≤U gα. Then U(g) ⊂ U(gα) and so y ∈ U(gα).

The three claims together give that sequence 〈U(gα) : α < κ〉 ⊂ I really wit-
nesses that κ ∈ ADD(I, Y ). �

Corollary 3.5. If I ∈ {B,N ,M}, Y ∈ I+, and A ⊂ ADD(I, Y ) is countable,

then pcf(A) ⊂ ADD(I, Y ).

As we will see in the next two subsections, for the ideals B and N we can prove
stronger closedness properties.

3.1 The ideal B. If F ⊂ ωω and h ∈ ωω, we write F ≤∗ h iff f ≤∗ h for each
f ∈ F .

Theorem 3.6. If A ⊂ ADD(B) is progressive and |A| < h, then pcf(A) ⊂
ADD(B).

Proof: For each a ∈ A fix an increasing sequence Fa = {F aα : α < a} ⊂ B with
⋃

Fa /∈ B. We can assume that the functions in the families F aα are all monotone
increasing.

Let κ ∈ pcf(A). Pick an ultrafilter U on A such that cf(
∏

A/U) = κ, and fix
an ≤U -increasing, ≤U -cofinal sequence {gα : α < κ} ⊂

∏

A.
For g ∈

∏

A let

Bd(g) =
{

h ∈ ωω : {a ∈ A : F ag(a) ≤
∗ h} ∈ U

}

,

and

In(g) = {x ∈ ωω : x ≤∗ h for each h ∈ Bd(g)}.

Claim 3.7. For g1, g2 ∈
∏

A, if g1 ≤U g2, then we have Bd(g1) ⊃ Bd(g2) and

In(g1) ⊂ In(g2).

Proof of the claim: For each h ∈ ωω,

{a ∈ A : F ag1(a) ≤
∗ h} ⊃ {a ∈ A : F ag2(a) ≤

∗ h} ∩ {a ∈ A : g1(a) ≤ g2(a)}.

Since {a ∈ A : g1(a) ≤ g2(a)} ∈ U , we have that {a ∈ A : F a
g2(a)

≤∗ h} ∈ U

implies {a ∈ A : F a
g1(a)

≤∗ h} ∈ U , i.e., if h ∈ Bd(g2), then h ∈ Bd(g1), too.

From the relation Bd(g1) ⊃ Bd(g2) the inclusion In(g1) ⊂ In(g2) is straightfor-
ward by the definition of the operator In. �
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Claim 3.8. Bd(g) 6= ∅ for each g ∈
∏

A.

Indeed, for each a ∈ A let ha ∈ ωω be such that F a
g(a) ≤

∗ ha. Since |A| < h ≤ b,

there is h ∈ ωω such that ha ≤∗ h for each a ∈ A. Then h ∈ Bd(g).

Claim 3.9. The sequence F = 〈In(gα) : α < κ〉 witnesses that κ ∈ ADD(B).

By Claim 3.7, we have In(gα) ⊂ In(gβ) for α < β < κ, and each In(gα) is in B
by Claim 3.8.

So all we need is to show that F =
⋃

{In(gα) : α < κ} /∈ B, i.e. F is not
≤∗-bounded. Let x ∈ ωω be arbitrary. We will find y ∈ F such that y 6≤∗ x.

For each a ∈ A let F a =
⋃

{F aα : α < a}, and put

J (a) = {E ⊂ ω : ∃f ∈ F a x ↾ E <∗ f ↾ E}.

Since the functions in F a are all monotone increasing and F a is unbounded in
〈ωω,≤∗〉, for each B ∈

[

ω
]ω

the family {f ↾ B : f ∈ F a} is unbounded in
〈

ωB,≤∗
〉

, so B contains some element of J (a). In other words, J (a) is dense in
〈ωω,⊂∗〉. Since every J (a) is clearly open and |A| < h,

J =
⋂

{J (a) : a ∈ A}

is also dense in 〈ωω,⊂∗〉. Fix an arbitrary E ∈ J . For each a ∈ A pick fa ∈ F a

which witnesses that E ∈ J (a), i.e. x ↾ E <∗ fa. Choose g(a) < a with fa ∈
F ag(a).

Define the function y ∈ ωω as follows:

y(n) =

{

x(n) + 1 if n ∈ E,

0 otherwise.

Then y ≤∗ fa ∈ F a
g(a), and so if F a

g(a) ≤
∗ h, then y ≤∗ h. Thus y ∈ In(g). Fix

α < κ such that g ≤U gα. By Claim 3.7, In(g) ⊂ In(gα), hence y ∈ In(gα) ⊂ F
and clearly y 6≤∗ x, and so F 6≤∗ x. Since x was an arbitrary element of ωω, we
are done. �

3.2 The ideal N .

Theorem 3.10. If A ⊂ ADD(N ) ∩Reg is countable, then pcf(A) ⊂ ADD(N ).

To prove the theorem above we need some preparation. Denote λ the product
measure on 2ω, and λω the product measure of countable many copies of 〈2ω, λ〉.
By [5, 417J] the products of measures are associative. Since ω×ω = ω, and 〈2ω, λ〉
itself is the product of countable many copies of the natural measure space on 2
elements, we have the following fact.

Fact 3.11. There is a bijection f : 2ω → (2ω)ω such that λ(X) = λω(f [X ]) for
each λ-measurable set X ⊂ 2ω. So

(†) ADD(N ) = ADD(Nω),
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where Nω = {X ⊂ (2ω)ω : λω(X) = 0}.

Denote λ∗ the outer measure on 2ω. Clearly for some X ⊂ 2ω we have λ∗(X) >
0 iff X /∈ N .

As we will see soon, Theorem 3.10 follows easily from the next result.

Theorem 3.12. If A ⊂ ADD(N ) is countable, then there is Y ⊂ 2ω such that

λ∗(Y ) = 1 and A ⊂ ADD(N , Y ).

Proof of Theorem 3.10 from Theorem 3.12: By Theorem 3.12 there is
Y ⊂ 2ω such that A ⊂ ADD(N , Y ) and λ∗(Y ) = 1. Now apply Theorem 3.1
for Y and A to obtain pcf(A) ⊂ ADD(N , Y ) ⊂ ADD(N ). �

Proof of Theorem 3.12: First we prove some easy claims.

Claim 3.13. If X ⊂ 2ω is measurable, 1 > λ(X) > 0, then there is x ∈ 2ω such

that λ(X ∪ (X + x)) > λ(X), where X + x = {x′ + x : x′ ∈ X}.

Proof of the claim: By the Lebesgue density theorem, there are y, z ∈ 2ω

and ε > 0 such that for each 0 < δ < ε we have λ(X ∩ [y − δ, y + δ]) > δ and
λ(X ∩ [z − δ, z + δ]) < δ. Let x = z − y. Then λ((X ∪ (X + x)) ∩ [z − δ, z + δ]) ≥
λ(X ∩ [y − δ, y + δ]) > δ > λ(X ∩ [z − δ, z + δ]). So λ(X ∪ (X + x)) > λ(X). �

Claim 3.14. If X ⊂ 2ω is Lebesgue-measurable, λ(X) > 0, then there is a set

{xn : n < ω} ⊂ 2ω such that λ(
⋃

{X + xn : n ∈ ω}) = 1.

Proof of the claim: Apply Claim 3.13 as long as you can increase the mea-
sure. We should stop after countable many steps. �

Claim 3.15. If X ⊂ 2ω, λ∗(X) > 0, then there are real numbers {xn : n < ω}
such that λ∗(

⋃

{X + xn : n ∈ ω}) = 1.

Proof of the claim: Fix a Lebesgue measurable set Y such that X ⊂ Y and
for each measurable set Z with Z ⊂ Y \X we have λ(Z) = 0. Apply Claim 3.14 for
Y : we obtain a set {xn : n < ω} ⊂ 2ω such that taking Y ∗ =

⋃

{Y + xn : n < ω}
we have λ(Y ∗) = 1. Let X∗ =

⋃

{X + xn : n < ω}. Then λ∗(X∗) = 1. Indeed, if
Z ⊂ Y ∗ is measurable with λ(Z) > 0, then there is n such that λ(Z∩(Y +xn)) > 0.
Let T = (Z − xn) ∩ Y . Then T ⊂ Y is measurable with λ(T ) > 0, so there is
t ∈ T ∩X . Then t+ xn ∈ Z ∩X∗, i.e. Z 6⊂ Y ∗ \X∗. �

Lemma 3.16. If 0 < λ∗(X), then there is X∗ ⊂ 2ω such that λ∗(X∗) = 1 and

ADD(N , X∗) = ADD(N , X).

Proof: Fix {xn : n < ω} ⊂ 2ω such that λ(X∗) = 1, whereX∗ =
⋃

{X+xn : n <
ω}. If κ ∈ ADD(N , X), then there is an increasing sequence 〈Iν : ν < κ〉 ⊂ N
such that

⋃

ζ<κ Iν = X . Let Jν =
⋃

{Iν + xn : n < ω}. Then the sequence

〈Jν : ν < κ〉 witnesses κ ∈ ADD(N , X∗).
If 〈Jν : ν < κ〉 witnesses that κ ∈ ADD(N , X∗), then Iν = Jν ∩ X witnesses

that κ ∈ ADD(N , X). �

Denote λ∗
ω the outer measure generated by λω on (2ω)ω .
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Lemma 3.17. If {Yn : n < ω} ⊂ P(2ω) with λ∗(Yn) = 1, then λ∗
ω(
∏

Yn) = 1.

Proof: Write Y ∗ =
∏

Yn.
Assume on the contrary that there is Z ⊂ (2ω)ω \ Y ∗ with λω(Z) > 0. Since

the measure λω is regular, we can assume that Z is compact. By induction, we
pick elements y0 ∈ Y0, . . . , yn ∈ Yn, . . . such that λω(Zn) > 0, where

Zn = {z ∈ (2ω)ω : 〈y0, . . . , yn−1〉
⌢ z ∈ Z}.

Especially Z0 = Z.
If Zn is defined, let

Tn = {t ∈ 2ω : λ({z : 〈t〉⌢ z ∈ Zn}) > 0}.

By Fubini theorem, λ(Tn) > 0, so we can pick yn ∈ Tn ∩ Yn.
Let y = 〈yn : n < ω〉 ∈

∏

Yn. Then for each n ∈ ω there is some z such that
(y ↾ n)⌢z ∈ Z, and so y ∈ Z because Z is compact. �

We are ready to conclude the proof of Theorem 3.12.
Enumerate first A as {κn : n < ω}. For each n < ω apply Lemma 3.16 to get

Xn ⊂ 2ω such that λ∗(Xn) = 1 and κn ∈ ADD(N , Xn), and fix an increasing
sequence 〈T nν : ν < κn〉 ⊂ N with

⋃

ν<κn
T nν = Xn.

Let X∗ =
∏

n∈ωXn ⊂ (2ω)ω. Then λ∗(X∗) = 1 by 3.17, and so the increasing
sequence

〈(

∏

m<n

Xm

)

× T nν ×
(

∏

m>n

Xm

)

: ν < κn
〉

⊂ Nω

witnesses that κn ∈ ADD(Nω, X
∗) for n < ω. But A ⊂ ADD(Nω, X

∗) implies
pcf(A) ⊂ ADD(Nω, X

∗) ⊂ ADD(Nω) by Theorem 3.1. Finally, ADD(Nω) =
ADD(N ) by (†) from Fact 3.11, so we are done. �

Corollary 3.18. Let I be either the ideal B or the ideal N . Assume that A is

a non-empty set of uncountable regular cardinals. If A is countable, or maxA ≤
cf(

[

ℵω
]ω
,⊂), then the following statements are equivalent:

(1) A = ADD(I) in some c.c.c extension of the ground model,

(2) A = pcf(A).

Proof: (2)=⇒(1): if A is countable, then A is progressive.

If sup(A) ≤ cf(
[

ℵω
]ω
,⊂), then we have A ⊂ pcf(ℵn : 1 ≤ n < ω), and so

|A| < ω4 ≤ min(A)+4 by the celebrated theorem of Shelah [7].
So in both cases we can apply Theorem 2.5 to get (1).

(1)=⇒(2): By Theorems 3.6 and 3.10, we have that

(⋆) A =
⋃

{pcf(A′) : A′ ∈
[

A
]ω
}.

If A is countable, (⋆) gives immediately that A = pcf(A).
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If sup(A) ≤ cf(
[

ℵω
]ω
,⊂), then A ⊂ pcf(ℵn : 1 ≤ n < ω), so by the Localization

Theorem (see [1, Theorem 6.6.]) we have pcf(A) =
⋃

{pcf(A′) : A′ ∈
[

A
]ω
}. Thus

even in this case, (⋆) gives A = pcf(A). �

Finally we mention a problem. We could not prove that if A ⊂ ADD(M) is
countable, then pcf(A) ⊂ ADD(M) because the following question is open:

Problem 3.19. Is it true that if A ⊂ ADD(M) is countable, then
A ⊂ ADD(M, Y ) for some Y /∈ M?
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