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Abstract. For a bipartite graph G and a non-zero real α, we give bounds for the sum of
the αth powers of the Laplacian eigenvalues of G using the sum of the squares of degrees,
from which lower and upper bounds for the incidence energy, and lower bounds for the
Kirchhoff index and the Laplacian Estrada index are deduced.
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1. Introduction

Let G be a simple finite undirected graph with n vertices and m edges. Let

A(G) be the (0, 1) adjacency matrix and D(G) the diagonal matrix of vertex degrees

of G. The matrix L(G) = D(G) − A(G) is known as the Laplacian matrix of G.

Denote by µ1 > µ2 > . . . > µn−1 > µn the Laplacian eigenvalues of G, that is the

eigenvalues of L(G). It is known that µn = 0 and the multiplicity of zero is equal to

the number of connected components of G, see [2]. For more details on the Laplacian

eigenvalues, see [3], [4].

Let α be a real number. Let sα(G) be the sum of the αth powers of the non-zero

Laplacian eigenvalues of G,

sα(G) =

h
∑

i=1

µα
i ,
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where h is the number of non-zero Laplacian eigenvalues of G. The cases α = 0, 1

are trivial as s0(G) = h and s1(G) = 2m, where m is the number of edges. Various

lower and upper bounds for the sum of powers of Laplacian eigenvalues have been

established in [16], [17]. For a graph G, denote by Z(G) the sum of the squares of

degrees of G. It is known as the first Zagreb index in mathematical chemistry [5],

[15]. Let dv be the degree of the vertex v of the graph G. Note that

s2(G) =
∑

v∈V (G)

(d2
v + dv) = Z(G) + 2m,

see [11], and s1/2(G) is a kind of incidence energy [6].

For a connected graph G with n vertices, ns−1(G) is equal to its Kirhhoff index [7],

[13]. The Laplacian Estrada index of the graph G is defined as

LEE(G) =

n
∑

i=1

eµi .

For further results concerning LEE(G), see [17], [1], [20].

In this paper we give new bounds for sα of bipartite graphs using the sum of the

squares of degrees, where α is a non-zero real number. We discuss lower and upper

bounds for the incidence energy, and lower bounds for the Kirchhoff index and the

Laplacian Estrada index of bipartite graphs.

2. Preliminaries

Let Ka,b be the complete bipartite graph with two partite sets having a and b

vertices, respectively. Let L(G) be the line graph of G.

Lemma 1 ([3]). Let G be a connected graph with diameter d. Then G has at

least d + 1 distinct Laplacian eigenvalues.

For a bipartite graph G, its Laplacian eigenvalues are just its signless Laplacian

eigenvalues, i.e., eigenvalues of the signless Laplacian matrix D(G) + A(G). Thus,

we have

Lemma 2 ([18], [23], [19]). Let G be a bipartite graph with m > 1 edges. Then

µ1 >
Z(G)

m

with equality if and only if L(G) is regular.
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3. Sum of powers of the Laplacian eigenvalues

Some bounds for the sum of powers of the Laplacian eigenvalues of bipartite graphs

have been given in [16], [14]. The bounds obtained here improve the results in [16]

and have much simpler forms than the results in [14]. As in [16], the sum of squares

of degrees appears in our bounds.

Theorem 1. Let α be a non-zero real number, and let G be a connected bipartite

graph with n > 3 vertices, m edges and t spanning trees. Then

(1) sα(G) >

(Z(G)

m

)α

+ (n − 2)
( tnm

Z(G)

)α/(n−2)

with equality if and only if G ∼= K1,n−1 or G ∼= Kn/2,n/2.

P r o o f. By the matrix-tree theorem (see [4]),
n−1
∏

i=1

µi = tn. By the arithmetic-

geometric mean inequality, we have

sα(G) > µα
1 + (n − 2)

(n−1
∏

i=2

µα
i

)1/(n−2)

= µα
1 + (n − 2)

( tn

µ1

)α/(n−2)

with equality if and only if µ2 = . . . = µn−1. It may be easily seen that f(x) =

xα + (n − 2)(tn/x)α/(n−2) is increasing for x > (tn)1/(n−1) whether α > 0 or α < 0.

By Lemma 2 and the Cauchy-Schwarz inequality and the arithmetic-geometric

mean inequality, we have µ1 > Z(G)/m > 2
√

Z(G)/n > 4m/n > 2m/(n − 1) >

(tn)1/(n−1). Thus, sα(G) > f(Z(G)/m), from which (1) follows, with equality if and

only if µ2 = . . . = µn−1 and µ1 = Z(G)/m.

Suppose that equality holds in (1). Then L(G) is regular, and G is a graph with

at most three distinct Laplacian eigenvalues. By Lemma 1, G is a bipartite graph

with diameter at most 2. Then G is bipartite with constant degrees on each of the

two parts. Thus, it is easily seen that G ∼= K1,n−1 or G ∼= Kn/2,n/2.

Conversely, it is easily seen that µ2 = . . . = µn−1, µ1 = Z(G)/m, and then (1) is

an equality if G ∼= K1,n−1 or G ∼= Kn/2,n/2. �

Let α be a non-zero real number, and let G be a connected bipartite graph with

n > 3 vertices and t spanning trees. By the proof above, the lower bound in (1) is

better than the one in [16]:

sα(G) >

(

2

√

Z(G)

n

)α

+ (n − 2)

(

tn

2
√

Z(G)/n

)α/(n−2)

.
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Theorem 2. Let G be a connected bipartite graph with n > 3 vertices and

m edges.

(i) If α < 0 or α > 1, then

(2) sα(G) >

(Z(G)

m

)α

+

(

2m − Z(G)/m
)α

(n − 2)α−1

with equality if and only if G ∼= K1,n−1 or G ∼= Kn/2,n/2.

(ii) If 0 < α < 1, then

(3) sα(G) 6

(Z(G)

m

)α

+

(

2m − Z(G)/m
)α

(n − 2)α−1

with equality if and only if G ∼= K1,n−1 or G ∼= Kn/2,n/2.

P r o o f. Suppose first that α < 0 or α > 1. Then xα is a strictly convex function,

and thus by Jensen’s inequality, we have

(n−1
∑

i=2

1

n − 2
µi

)α

6

n−1
∑

i=2

1

n − 2
µα

i ,

i.e.,
n−1
∑

i=2

µα
i >

1

(n − 2)α−1

(n−1
∑

i=2

µi

)α

with equality if and only if µ2 = . . . = µn−1. It follows that

sα(G) > µα
1 +

1

(n − 2)α−1

(n−1
∑

i=2

µi

)α

= µα
1 +

(2m − µ1)
α

(n − 2)α−1
.

It is easily seen that g(x) = xα + (2m − x)α/(n − 2)α−1 is increasing for x >

2m/(n − 1). Note that µ1 > Z(G)/m > 2
√

Z(G)/n > 4m/n > 2m/(n − 1). Thus,

sα(G) > g(Z(G)/m) for α < 0 or α > 1, and then (2) follows.

If 0 < α < 1, then −xα is a strictly convex function, and thus, by an argument

similar to the above, sα(G) 6 g(Z(G)/m), and then (3) follows.

Either equality in (2) or (3) holds if and only if µ2 = . . . = µn−1 and µ1 =

Z(G)/m, which, by the same argument as in the proof of Theorem 2, is equivalent

to G ∼= K1,n−1 or G ∼= Kn/2,n/2. �
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Note that for α = 1 we have equalities in (2) and (3).

Let G be a connected bipartite graph with n > 3 vertices and m edges. By the

proof above, we have: If α < 0 or α > 1, the lower bound in (2) is better than the

one in [16]:

sα(G) >

(

2

√

Z(G)

n

)α

+

(

2m − 2
√

Z(G)/n
)α

(n − 2)α−1
,

and if 0 < α < 1, then the upper bound in (3) is better than the one in [16]:

sα(G) 6

(

2

√

Z(G)

n

)α

+

(

2m − 2
√

Z(G)/n
)α

(n − 2)α−1
.

Note that the bounds in Theorems 1 and 2 for α > 0 hold also for disconnected

bipartite graphs with n vertices and m > 1 edges. Since the multiplicity of the zero

eigenvalue determines the number of connected components, the equality holds if

and only if µ1 = Z(G)/m and µ2 = . . . = µn−1 = 0, or equivalently, m = 1.

4. Incidence energy

Recall the energy of a matrix is defined as the sum of its singular values [12]. The

incidence energy IE(G) of G is defined as the energy of the vertex-edge incidence

matrix B(G) of G [9], and the directed incidence energy DIE(G) of G is defined as

the energy of the oriented vertex-edge incidence matrix B
′(G) of G [6]. Note that

B(G)B(G)T = D(G) + A(G) and B
′(G)B′(G)T = L(G). Thus if G is bipartite,

then IE(G) = DIE(G) = s1/2(G) [6]. Here we give an immediate consequence of

Theorems 1 and 2 (ii). Let G be a connected bipartite graph with n > 3 vertices,

m edges, and t spanning trees. Then

IE(G) >

√

Z(G)

m
+ (n − 2)

( tnm

Z(G)

)1/(2(n−2))

,

IE(G) 6

√

Z(G)

m
+

√

(n − 2)
(

2m −
Z(G)

m

)

with either equality if and only if G ∼= K1,n−1 or G ∼= Kn/2,n/2.

Note that the above bounds hold also for disconnected bipartite graphs with at

least one edge, and the bounds are attained if and only if m = 1, see [18].
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5. Kirchhoff index

Let G be a connected graph. The Kirchhoff index Kf(G) of G is defined as the

sum of resistance distances between all unordered pairs of vertices of G [7], [10]. As

mentioned above, we have Kf(G) = ns−1(G) . A recent result on the Kirchhoff index

may be found in [21], [22]. Here we give an immediate consequence of Theorems 1

and 2 (i). Let G be a connected bipartite graph with n > 3 vertices, m edges, and

t spanning trees. Then [23]

Kf(G) > n
[ m

Z(G)
+ (n − 2)

(Z(G)

tnm

)1/(n−2)]

,

Kf(G) > n
[ m

Z(G)
+

(n − 2)2

2m − Z(G)/m

]

with either equality if and only if G ∼= K1,n−1 or G ∼= Kn/2,n/2.

6. Laplacian Estrada index

We note that lower bounds for sα with integer α > 1 may be converted to the

bounds of the Laplacian Estrada index.

Theorem 3. Let G be a connected bipartite graph with n > 3 vertices, m edges,

and t spanning trees. Then

LEE(G) > 1 + eZ(G)/m + (n − 2)e(tnm/Z(G))1/(n−2)

,

LEE(G) > 1 + eZ(G)/m + (n − 2)e(2m−Z(G)/m)/(n−2)

with either equality if and only if G ∼= K1,n−1 or G ∼= Kn/2,n/2.

P r o o f. Using the Taylor expansion of the exponential function ex, we have

LEE(G) = 1 +

n−1
∑

i=1

eµi = 1 +
∑

k>0

sk(G)

k!
.

The proof follows from Theorems 1 and 2. �

Recall that s0(G) = n − 1 and s1(G) = 2m for the graph G in Theorem 3. Then

the first inequality in Theorem 3 may be improved slightly to

LEE(G) > 1 + 2m −
Z(G)

m
− (n − 2)

( tnm

Z(G)

)1/(n−2)

+ eZ(G)/m + (n − 2)e(tnm/Z(G))1/(n−2)

.
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Moreover, if we use s2(G) = Z(G) + 2m, then Theorem 3 may still be improved

slightly to

LEE(G) > 1 + 3m +
Z(G)

2
−

Z(G)

m
−

Z(G)2

2m2

− (n − 2)
( tnm

Z(G)

)1/(n−2)

−
1

2
(n − 2)

( tnm

Z(G)

)2/(n−2)

+ eZ(G)/m + (n − 2)e(tnm/Z(G))1/(n−2)

,

LEE(G) > 1 + m +
Z(G)

2
−

Z(G)2

2m2
−

(2m − Z(G)/m)2

2(n − 2)

+ eZ(G)/m + (n − 2)e(2m−(Z(G)/m))/(n−2).

Note that the second bound in Theorem 3 holds also for disconnected bipartite

graphs with at least one edge, and the bound is attained if and only if m = 1. The

corresponding lower bounds from [17] are thus improved.

7. Concluding remarks

Let G be a bipartite graph with bipartition V (G) = A ∪ B, |A| = a and |B| = b.

By Lemma 2 and the Cauchy-Schwarz inequality,

µ1 >
Z(G)

m
=

1

m

(

∑

v∈A

d2
v +

∑

v∈B

d2
v

)

>
1

m

(m2

a
+

m2

b

)

=
m(a + b)

ab
,

with equality if and only if the vertices from A and B have equal degrees. As

in Sections 3 and 4, we may get bounds for the sum of powers of the Laplacian

eigenvalues and lower bounds for the Laplacian Estrada index of the bipartite graph

with a vertices in one partite set and b vertices in the other partite set and with

m > 1 edges using a, b, and m.

We mention that our bounds in this paper depend on the numbers of vertices and

edges, the sum of the squares of degrees (and sometimes, the number of the spanning

trees). These graph invariants can be easily computed. We may also find bounds

depending on some information on the structure of the graphs. For example, some

bounds for sα of bipartite graphs have been given in [14] by applying the lower bound

for µ1 which uses the neighborhood information:

µ1 >

Ã

∑

u∈V (G)

[

du(d2
u + tu) +

∑

v∈N(u)(d
2
v + tv)

]2

∑

u∈V (G)(d
2
u + tu)2

,
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where tu is the sum of degrees of the neighbors of u, and Nu denotes the set of

neighbors of u in G.

Finally, we point out that the method in Theorem 2 may be used to estimate the

sum of powers of singless Laplacian eigenvalues of graphs that are not necessarily

bipartite, by applying lower bounds for the largest signless Laplacian eigenvalue

eigenvalue µ+
1 . For example, the lower bound in Lemma 2 is also a lower bound

for µ+
1 of a graph with at least one edge.

By the same arguments as in [19] and using the lower bound
√

Z(G)/n for the

largest eigenvalue λ(G) of a graph G with n vertices to its line graph L(G), we obtain

an improved lower bound for µ+
1 :

µ+
1 = 2 + λ(L(G)) > 2 +

Ã

1

m

∑

uv∈E(G)

(du + dv − 2)2

= 2 +

Ã

1

m

(

∑

v∈V (G)

d3
v − 4

∑

v∈V (G)

d2
v + 2

∑

uv∈E(G)

dudv + 4m

)

.

The equality holds for a connected graph G if and only if L(G) is a regular or

(bipartite) semi-regular, i.e., G is a regular graph, or a (bipartite) semi-regular graph

or a path with four vertices [23].
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[21] B. Zhou, N. Trinajstić: A note on Kirchhoff index. Chem. Phys. Lett. 445 (2008),
120–123.
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