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THE SINGLE (AND MULTI) ITEM PROFIT MAXIMIZ-
ING CAPACITATED LOT–SIZE (PCLSP) PROBLEM
WITH FIXED PRICES AND NO SET–UP

Kjetil K. Haugen, Asmund Olstad, Krystsina Bakhrankova
and Erik Van Eikenhorst

This paper proposes a specialized LP-algorithm for a sub problem arising in simple
Profit maximising Lot-sizing. The setting involves a single (and multi) item production
system with negligible set-up costs/times and limited production capacity. The producer
faces a monopolistic market with given time-varying linear demand curves.
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1. INTRODUCTION

Lot-size problems has drawn a great deal of attention in OR/Operations Manage-
ment research literature. In their purest form, lot-size problems focus on the trade-off
between set-up and inventory costs in generalized production environments. Single
item lot-size problems are successfully treated through specialized Dynamic Pro-
gramming algorithms [10, 12], while multi item problems prove harder to solve.
Many authors have proposed various algorithmic approaches in order to handle the
NP-hardness of these problems – see e. g. [3]. Recently, several authors have analyzed
extensions to classical lot-sizing through pricing. Examples of this line of research
may be found in [5, 6] and [8]

Following the notation of Haugen et al. in [5], we look at a version of the PCLSP-
problem with a single product and negligible set-up costs. Such a problem may be
formulated as:

Max Z =

T∑

t=1

[(αt − βt · pt)pt − htIt − ctxt] (1)
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s.t.

atxt ≤ Rt ∀ t (2)

xt + It−1 − It = αt − βt · pt ∀ t (3)

xt ≥ 0 ∀ t (4)

It ≥ 0, ∀ t (5)
αt

βt
≥ pt ≥ 0 ∀ t (6)

with decision variables (xt, It, pt) and parameters (T, αt, βt, ht, ct, at, Rt):

xt = the amount produced (of the given product) in period t

It = amount of product held in inventory between periods t and t+ 1

pt = price of item in period t

T = number of time periods

αt = constant in linear demand function for item in period t

βt = slope of linear demand function in period t

ht = unit storage cost between periods t and t+ 1

ct = unit production cost in period t

at = consumption of capacitated resource in period t

Rt = amount of resource available in period t.

2. SIMPLIFYING ASSUMPTIONS

2.1. The capacity constraint

Without loss of generality, equation (2) can be substituted with xt ≤ R̂t where
R̂t =

Rt

at
.

2.2. Given prices

If we assume that all prices p1, . . . , pT are given, let’s say by p̂1, . . . , p̂T , the objec-
tive (1) can be rewritten as:

Max Z =

T∑

t=1

(αt − βt · p̂t)p̂t −
T∑

t=1

[htIt + ctxt] = C −
T∑

t=1

[htIt + ctxt] (7)

or

Min Ẑ =
T∑

t=1

[htIt + ctxt] . (8)

Additionally, defining;

D̂t = αt − βt · p̂t (9)
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problem (1) – (6) may be redefined as the following LP-problem:

Min Ẑ =

T∑

t=1

[htIt + ctxt] (10)

s.t.

xt ≤ R̂t ∀ t (11)

xt + It−1 − It = D̂t ∀ t (12)

xt ≥ 0 ∀ t (13)

It ≥ 0, ∀ t. (14)

2.3. Reasonable assumptions on c and h to support a fast problem-
specific LP-algorithm

Logistics problems of this type (“Lot-sizing”) will typically not have a very large
time horizon. Consequently, making assumptions on stability of production and
storage costs seems reasonable. We assume the following:

c1 = c2 = . . . , cT = c and h1 = h2 = . . . , hT = h. (15)

Given these assumptions, the objective (8) may be expressed:

T∑

t=1

[htIt + ctxt] = h

T∑

t=1

It + c

T∑

t=1

xt. (16)

Next, it is straightforward to realize by summing up the left and right side of
equation (12) that;

T∑

t=1

xt = IT − I0
1 +

T∑

t=1

D̂t. (17)

The right hand side of equation (17) is a constant, so is h and c. As a consequence,
the objective may again be reformulated as:

Min Z̄ =

T∑

t=1

It (18)

or verbally: minimizing total inventory. Now, relaxing the capacity constraints (11),
the optimal solution to the remaining LP is straightforward:

x∗
t = D̂t and I∗t = 0, ∀ t. (19)

Taking the capacity constraints back into consideration it is (again) straightfor-
ward to realize that with the given objective, (minimal total storage) the optimal
solution (to the constrained problem) is easily constructed as follows: Any capacity
constraint violation can be “corrected” by producing necessary amounts in previous
periods as close as possible to the period with capacity constraint violation as such
a strategy will lead to total inventory minimization.

1I0 is initial inventory and a ssumed a given constant optimization wise.
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3. THE ALGORITHM

Now, a formalized algorithm for the optimal solution of the LP-problem (10) – (14)
and added parametric constraints (15) can be formulated:

0. LET x∗
t = D̂t, ∀ t

1. IF x∗
t ≤ R̂t, ∀ t STOP (x∗

t is optimal)

2. IF next period is T + 1 STOP

3. ELSE find next period, τ where x∗
t > R̂t and produce a total of

x∗
t − R̂t in previous periods τ − 1, τ − 2, . . . as close as possible to

τ . (If impossible, problem is infeasible STOP)

4. SET x∗
τ = R̂τ and update x∗

τ−1, x
∗
τ−2, . . . correspondingly

5. GOTO 2.

4. RELAXING THE COST ASSUMPTIONS OF SUBSECTION 2.3

It may be interesting to judge the characteristics of our algorithmic framework if we
allow a more general cost structure.

4.1. Constant production costs and time varying inventory costs

If we assume,

c1 = c2 = . . . , cT = c and h1 6= h2 6= . . . hT (20)

the basic arguments behind equations (16) through (18) holds. However, as the
inventory costs now may vary over time, the objective of equation (18) must be
changed to:

Min Ẑ =
T∑

t=1

htIt. (21)

Fortunately, the (new) objective of equation (21) does not imply changes in the
algorithm of section 3. Obviously, the unconstrained “just in time solution” of
equation (19) still holds with the objective (21) as minimal storage costs are obtained
with no storage. Likewise, when adjusting production to fit capacity constrains, it
is no point in spreading production over more periods than necessary. This will only
lead to increased inventory as well as increased total inventory costs. Consequently,
the objectives (21) and (18) with added constraints are both minimized through the
algorithm of section 3.

4.2. Decreasing production costs and general storage costs

Based on the previous arguments, it is also straightforward to deduce that a relax-
ation of the constant production cost assumption to the following situation:

c1 > c2 > · · · > cT and h1 6= h2 6= . . . hT (22)
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will work just as well. Now, we open up for time-varying production costs, but

with a decreasing pattern – i. e. dc(t)
dt ≤ 0. Given this situation, the “just-in-time”

unconstrained solution is still optimal and it is always cheapest to find the closest
“move-point”.

To sum up: Our proposed algorithm (of section 3) guarantees optimal solutions for
all cases except (possibly) situations with increasing production costs. Additionally,
such situations should be practically rare – in most situations one should be able
to produce cheaper (not more expensive) over time. Still, if the need for increasing
production costs are there, another assumption will prove handy.

4.3. A constant ratio between production and inventory costs

In Operations Management/Logistics it is fairly common to assume existence of an
“inventory interest”. Such an assumption means that the value of stored goods is
the main component in computation of inventory costs. Following Nahmias [7] such
an assumption implies2:

ct
ht

= Constant = c ⇒ ct = c · ht. (23)

Now, rewriting the inventory balance constrains (3) as:

xt = D̂t + It − It−1 (24)

and substituting in for ct from equation (23) into the objective (10), we get:

Ẑ =

T∑

t=1

[
htIt + c · ht(D̂t + It − It−1)

]
. (25)

Now, assuming a given initial inventory I0 and the elimination of a constant, the
objective Ẑ above may be replaced by the following:

Z =

T∑

t=1

ĥtIt (26)

where

ĥt = (c+ 1)ht + cht+1 and hT+1 = 0. (27)

Finally, comparing the objectives Z of equation (26) and Ẑ of equation (21), we
observe structural equality and our algorithm would work also for the case with a
constant ratio between production and inventory costs.

2In most reasonably competitive markets, the value of a product is proportional to the pro-
duction costs. Of course, in a perfectly competitive market, price equals marginal costs and the
assumption is “correct” if the main contribution to inventory costs is due to storage value.
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5. MULTIPLE PRODUCTS

The single item LP of equations (10) – (14) is easily extendible to the multi item
case:

Min Ẑ =

I∑

i=1

T∑

t=1

[hitIit + citxit] (28)

s.t.

I∑

i=1

aitxit ≤ Rt ∀ t (29)

xit + Ii,t−1 − Iit = D̂it ∀ i, t (30)

xit ≥ 0 ∀ t (31)

Iit ≥ 0, ∀ t. (32)

In the above problem (equations (28) – (32)), a new subscript i is introduced, one
for each product, with I as the total number of products. Additionally, we assume a
common per period resource pool leading to the capacity constrains of equation (29).
Finally, ait represents the resource consumption by product i in time period t.

Now, moving back to the original assumptions in subsection 2.3, it is obvious that
relaxation of the capacity constraint (29) leaves us with I decoupled LPs, structurally
identical to the singe item case. Hence, given the original assumption of time con-
stant inventory and production costs, the algorithmic structure of section 3 may be
applied with minor modifications. These modifications involve the following argu-
ment: Look at a time period (say τ) where the capacity constraint is violated. Then
we must move to a time period t (< τ) (with spare production capacity) as close
to τ as possible to keep inventory at a minimum. Now, we must determine which
product we should start producing, and it is obviously cost effective to choose the
product (with unsatisfied demand in τ) with the smallest ratio cit

ait
. This secures cost

minimization. Such a procedure must (obviously) be repeated until all infeasibilities
are removed. The remaining solution is then optimal.

Surely, the above procedure is too simple for the more general cases of section 4.
However, as discussed previously, logistic time horizons are short, so cost stationarity
(constant costs) may be a reasonable practical assumption. Refer also to section 7
for further discussion on this matter.

6. SOME SIMPLE NUMERICAL EXPERIMENTS

Tables 1 and 23 show the results of some simple4 numerical experiments. Our
algorithm was implemented in Fortran 95 and speed5 was compared to state of the

3k and m mean 103 and 106 respectively.
4The data used was based on simple randomization, and the main variable dimension was

the length of the time horizon. As such, the reported performance comparisons, should not be
taken as any kind of proof. However, the simplicity of our algorithm indicates by itself, that it
should compare favourably with any Simplex-based algorithm. Our cases are of course available
for inspection for any interested readers.

5Surely, our initial assumption of a relatively short time horizon still holds, so these examples
should not be taken as any encouragement to apply such long time horizons in practical applications.
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Table 1. A single item example – speed in CPU-secs.

T = 10k T = 100k T = 1m

CPLEX 0.219 1.766 31.156
Algorithm 0.031 0.093 0.672
Change (%) 700 % 1893 % 4637 %

Table 2. A multi item (I = 10) example – speed in CPU-secs.

T = 1k T = 10k T = 100k T = 1m

CPLEX 0.188 2.281 41.953 N/A
Algorithm 0.078 0.141 0.953 40.045
Change (%) 240 % 1623 % 4401% N/A %

art optimization software – CPLEX. As the tables indicate, our algorithm performs
very favourably against CPLEX.

7. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

As demonstrated above, the proposed algorithm is able to solve very large single
(and multi) item lot-size problems with negligible set-up costs under certain cost
function assumptions. Furthermore, such problems may arise as sub-problems in
certain dynamic pricing problems. Additionally, a closer inspection of the LP in
equations (28) – (32) also reveals a fixed set-up (or negligible set-up cost) CLSP
problem. The CLSP or Capacitated Lot-Size Problem problem is a MILP which has
been intensively studied in OR/Mathematical Programming research literature. An
excellent survey may be found in [3]. Complexity issues are discussed by Florian
et. al. in [4] while some noteworthy solution attempts may be examined in [2, 11]
and [9]. Different sets of test cases may be found in [1]. Many of the available
test cases apply cost stationarity, making our multi-item cost function assumptions
relevant.

One interesting (and promising) candidate for further research is to try to use
our fixed set-up specialized LP algorithm as a sub-problem solver in a Lagrangian
relaxation procedure relatively similar to the approach in [5]. By substituting the
“Thomas Algorithm” [10] with the likewise efficient Wagner/Whitin algorithm [12],
a similar procedure as in [5] may be tested.

Obviously, it should be possible also to relax the strict cost function assumptions
in our multi item version – perhaps with some relatively simple algorithmic mod-
ifications. Still, this approach is mainly based on specialized cost structures, so it
seems unlikely that a generalized procedure based on these principles are readily
available.



422 K.K. HAUGEN, A. OLSTAD, K. BAKHRANKOVA AND E. VAN EIKENHORST

ACKNOWLEDGEMENT

Grants from both The Norwegian Research Council and eea grants (Research Support Fund
project CZ 0046: subproject B/CZ0046/2/0021) are gratefully acknowledged.

(Received April 14, 2010)

REFERENCES

[1] G. Belvaux and L.A. Wolsey: Lotsizelib: A Library of Models and Matrices for
Lot-sizing Problems. Internal Report, Universite Catholique de Louvain, Center for
Operations Research and Econometrics, 1999.

[2] M. Diaby, H.C. Bahl, M.H. Karwan, and S. Zionts: A Lagrangean relaxation approach
for very-large-scale capacitated lot-sizing. Management Sci. 38 (1992), 9, 1329–1340.

[3] A. Drexl and A. Kimms: Lot sizing and scheduling – survey and extensions. European
J. Oper. Res. 99 (1997), 221–235.

[4] M. Florian, J. K. Lenstra, and A.H. G Rinnooy Kan: Deterministic production plan-
ning: algorithms and complexity. Management Sci. 26 (1980), 669–679.

[5] K.K. Haugen, A. Olstad, and B. I. Pettersen: The profit maximizing capacitated
lot-size (pclsp) problem. European J. Oper. Res. 176 (2007), 165–176.

[6] K.K Haugen, A. Olstad, and B. I. Pettersen: Solving large-scale profit maximization
capacitated lot-size problems by heuristic methods. J. Math. Modelling and Algo-
rithms 6 (2007), 1, 135–149.

[7] S. Nahmias: Production and Operations Analysis. Fifth edition. McGraw Hill, Boston
2005.

[8] A. Olstad: Dynamic Pricing and Lot-sizing Within Manufacturing. PhD Thesis,
Norwegian School of Economics and Business Administration 2006.

[9] J.M. Thizy and L.N. Van Wassenhove: Lagrangean relaxation for the multi-item
capacitated lot-sizing problem: A heuristic implementation. IEE Trans. 17 (1985), 4,
308–313.

[10] J. Thomas: Price-production decisions with deterministic demand. Management Sci.
18 (1970), 11, 747–750.

[11] W.W. Trigeiro, L. J. Thomas, and J. O. McClain: Capacitated lot sizing with setup
times. Management Sci. 35 (1989), 3, 353–366.

[12] H.M. Wagner and T.M. Whitin: Dynamic version of the economic lot size model.
Management Sci. 5 (1958), 3, 89–96.

Kjetil K. Haugen, Molde University College, Box 2110, 6402 Molde. Norway.

e-mail: Kjetil.Haugen@himolde.no

Asmund Olstad, Molde University College, Box 2110, 6402 Molde. Norway.

e-mail: Asmund.Olstad@himolde.no

Krystsina Bakhrankova, Molde University College, Box 2110, 6402 Mold. Norway.

e-mail: Krystsina.Bakhrankova@hiMolde.no

Erik Van Eikenhorst, Edinburgh University, City of Edinburgh, EH8 9YL. United Kingdom.

e-mail: dhr.van.eikenhorst@hotmail.com


		webmaster@dml.cz
	2013-09-21T15:29:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




