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Abstract. We discuss the interior Holder everywhere regularity for minimizers of quasi-
linear functionals of the type

A(u; ) :/ A%’B(x,u)DauiDguj dz
Q

whose gradients belong to the Morrey space L?™~2(€Q, [R”N).
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1. INTRODUCTION

In this paper we study the interior everywhere regularity of functions minimizing
variational integrals

(1.1) Au; Q) = /QAZB(a:,u)DauiDguj dz

where u: Q — RV, N > 1,Q C R, n > 3 is a bounded open set, x = (21,...,7,) €
Q, u(z) = (ul(z),...,uN(x)), Du = {Dyu'}, Dy = /024, & = 1,...,n, i =
1 N.

Throughout the whole text we use the summation convention over repeated in-
dices. We call a function u € W2(Q, RY) a minimizer of the functional A(u; ) if
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and only if A(u; Q) < A(v; Q) for every v € WH2(Q, RY) with u — v € Wy %(Q, RN).
For more information see [6], [9].
On the functional A we assume the following conditions:
(i) A(yﬁ = Af;’, A(w are contlnuous functions in u € RY for every z €  and there

ex1stsM>OSuchthat|A Alz,u)| < M,¥YzeQ,VueRN.
(ii) (ellipticity) There exists v > 0 such that

(1.2) AP (@, )€l > vlE?, Yz eQ, YueRY, veeR™W.

(iii) (oscillation of coefficients) There exists a real function w continuous on [0, co)
which is bounded, nondecreasing, concave, w(0) = 0 and such that for all z € Q
and u, v € RV

(1.3) 4G (2, u) = A (2,0)] < w (lu—v]) -

)

We set woo = hm w(t) < 2M.

t—o0o
(iv) For all u € RV, A%ﬁ( ,u) € VMO(Q) (uniformly with respect to u € RY).
It is well known (see [6], p. 169) that (iii) implies absolute continuity of w on [0, c0). In
what follows, by pointwise derivative w’ of w we will understand the right derivative
which is finite on (0, 00). Considering the assumption (iv) it is worth recalling that
since C? is a proper subset of VMO, the continuity of coefficients A of — Aa’B (z,u)
with respect to x is not supposed.

In this paper we deal with the case n > 3 because for n = 2 higher integrability of
the gradient of minimizer (see Preliminaries, Lemma 2.4) and the Sobolev imbedding
theorem imply that u is locally Holder continuous in . From many examples (see [4],
[6], [9], [10], [12], [14]) for n > 3 it is known that the minimizer u of the functional
(1.1) need not be continuous or bounded even in the case of smooth coefficients
Afjﬁ . For this reason the so called partial regularity for minimizers of the functional
(1.1) was studied by many authors ([7], [8], [5]). In our paper (which is motivated
by [3]) we concentrate on conditions that imply an everywhere regularity result.
More precisely, we state conditions which imply that the minimizer v with gradient
Du € L*"~2(Q,R"Y) belongs to C%7(2, RY). The condition Du € L*"~2(Q,R"V)
seems to be natural with respect to the paper [2].

Now we can state the following result:

Theorem 1.1. Let u € WH2(Q, RY) be a minimizer of the functional (1.1) such
that Du € L?>"~2(Q,R™Y) and let the hypotheses (i), (ii), (iii), (iv) be satisfied.
Assume that there exists p > 1 such that

Qp ::min{ sup g(u)”/(p_l))(ﬁ),/ t_ldi

te(0,00) At 0 t

(WP =V (1) dt} < oo
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and let v € (0,1). Then the inequality
(1.4) (@pll Dull 2n—2( mw)) P < wC

implies that u € C%7 (9, RY).

Here
2

3¢(n, N, p, M/v)(2n+3L)2n/ (=)’

where L is from Lemma 2.3.

2. PRELIMINARIES

If € R™ and r is a positive real number, we set B,.(z) = {y € R": |y — x| < r},
Q,(x) = QN By(x). Denote by

1
Ugp = 7o uydy=][ u(y) dy
192, (z) Q- (z) ) Q. () )

the mean value of the function u € L'(€, RY) over the set 2,.(x), where |Q,.(z)| is
the n-dimensional Lebesgue measure of Q,(x).

Beside the standard space C§°(Q2, RY), Holder space C%(Q,RY) and Sobolev
spaces WFP(Q, RY), Wé“’(Q7 RY) we use Morrey spaces L%*(£2, RY) (for more detail
see e.g. [11]).

For f € L'(Q2), 0 < a < 0o we set

Mo(f,9) = sup ][ )= Sl

zeQ,r<a

Definition 2.1 (see [13]). A function f € L(Q) is said to belong to BMO() if
Mdiam o (f, Q) < o0;
a function f € L'(Q) is said to belong to VMO(Q) if
lim M(f,©) = 0.

In the proof of the theorem we will use the following results.
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Lemma 2.1 ([15], p.37). Let ¢: [0,00) — [0,00] be a non decreasing function
which is absolutely continuous on every closed interval of finite length, ¥(0) = 0. If
w > 0 is measurable and E(t) = {y € R™: w(y) > t} then

o wdy = / (B (@) dt.

R™

Proposition 2.1 (see [1], [6], [11]). For a bounded domain @ C R™ with a Lip-
schitz boundary, for q € [1,00) and 0 < A < p < n we have
(a) Lo#(Q,RN) ¢ LIA(©Q, RY);
(b) L®"(Q, RYN) is isomorphic to the L= (2, RY);
(c) if u € WEA(Q,RY) and Du € LZMNQ,R™), X € (n — 2,n) then u €

loc loc

CO(Q,RN), a=(A+2—n)/2.

Lemma 2.2 (see [1]). Let A, d be positive constants, 5 € (0,n). Then there exist
€9, C positive such that for any nonnegative, nondecreasing function ¢ defined on
[0, 2d] and satisfying the inequality

o n
(2.1) (o) (A(R) +K)p2R)  Y0<o<R<d
with K € (0,e0] we have
(2.2) o(o) < CoP(2d)Pp(2d), Vo: 0 <o <d.

Lemma 2.3 (see e.g. [1], [6]). Let u € W12(Q,RY) be a weak solution to the
system

—Do(A; Dgu?) =0, i=1,...,N

where Aiajﬁ are constants satisfying (i) and (ii). Then there exists a constant L =
L(n, M/v) > 1 such that for every weak solution v € W12(Q, RY), for every z € Q
and 0 < 0 < R < dist(z, 092) the estimate

O'Tl

Du(y)* dy < L(Z / \Duy)P® dy
/Bm) (R) Br(z)

holds.
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Lemma 2.4 (see [6], [9]). Let u € WH2(Q,RN) be a minimum of the func-
tional (1.1) under the assumptions (i) and (ii). Then Du € L2 (Q, R™N) for some

loc

p > 1 and there exists a constant ¢ = ¢(n,p, M /v) such that for all balls Bag(x) C

1/2p 1/2
< f | Du|?P dy> < c< f | Du? dy>
Br(z) Bagr(z)

holds.
Let xp be any fixed point of 2, 0 < R < dist(zo, 92). We set
(A g = | A ()
Br(zo)

If v is a solution to the system

(2'3) { Da((AZ'ﬁ(uzo,R))zo,RDﬁvj) =0in BR(xo),

v —u e Wy (Br(zo), RY)
then the next lemma is true.

Lemma 2.5 (see [6], [9]). Let v € W12(Bg(zo), RY) be a solution to the prob-
lem (2.3) with u € W12 (Bg(x0),RY), p > 1. Then

/ Duf? dy < e(M/v) / Dul dy
Br(x) Br(x)

holds.

Remark 2.1. Revising proofs of Lemmas 2.4 and 2.5 one can see that the
constants from the above estimates depend increasingly on M/v.

3. PROOF OF THEOREM

We set p(r) = p(zo,7) = fBr(xo) |Du(y)|* dy for B,.(z0) C Q. Now let 2o be any
fixed point of Q, dist (zg,dQ) > 2d > 0, R < d and let v be a minimizer of the frozen
functional

A°(v; Br(zo)) :/ (Af‘jﬁ(uR))RDavingj dz
BR(IQ)

among all functions in W2(Bg(xo), RY) taking the values u on Bgr(zp).
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From the Euler equation for v and from Lemma (2.3) we have

(3.1) / |Dvf? dz < L(i) / IDv2dz, V0<o<R.
Bo(z0) R Br(zo)

Put w = u — v. It is clear that w € W3 *(Bg(x), RN). Using (3.1), by standard
arguments we obtain
(3.2)

/ |Du|?dx < 2(1—|—2L(£> ) / |Dw|2dx—|—4L(g) / |Dul? d.
Bo(z0) R Br(zo) R Br(zo)

In the sequel we will estimate the first integral on the right hand side of (3.2).
From [8] (see Lemma 2.1) we have

(3.3) L(QmWM<§ﬁm&mm—ﬁm&mm>

2 « « 7 ]
< —{/ (A (ur))r — A3 (2, ur))Dou’ Dgu? dz
Br(zo)

v

+/ (Afjﬁ(x,uR) - A%’B(x,u))DauiDguj dx
Br(z0)
+/ (A?jﬂ(x,uR) - (A%B(UR))R)Davingj dz
Br(z0)
—l—/B ( )(A;’jﬁ(a:,v) —A?jﬂ(x,uR))Davingj dz
R\(Zo

+AWBMMD—AWBM%D}
= % {I+ II+T1II+1IV + A(U,BR(iL'o)) — A(’U;BR({E()))}
< %(I+II+III+IV).

Notice that A (u; Br(zo)) — A (v; Br(z0)) < 0, since v is a minimizer.

Now we will estimate the terms I, II, III and IV from (3.3). We will denote
(Afjﬁ ) =: A. Using the Holder inequality and higher integrability of the gradient of
minima (p > 1, p’ = p/(p — 1)) we obtain

|ﬂ</’(ﬁmwmm—A@wmmem
BRI

, 1/p' 1/p
cemv( [ Jatum) - Al a) - (f jpua)
Br(zo) Br(zo)

, 1/p'
<c(n, N, p,M/y)R"/p< / (A(ur)) - A, ug)|” da:) ][ | Dul? da.
B B

r(z0) 2R (T0)
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Taking into account the assumptions (i), (iv) and Definition 2.1 we obtain
(3.4) 1| < e(n, N, p, M/v)(2M)M? (Mg (A(ur))' o(2R).

A similarity of the terms I and III enables us to write (by means of Lemma 2.5,
see [2] for details) the inequality

(3.5) L] < e(n, N, p, M/v)(2M)Y? (Mg (A(,ur)) P @(2R).

Using the Holder inequality, property (iii) and Lemma 2.4 we get

1/p'
11| < ¢(n, N,p, M/v) (L/ w? (|u—uR|)dx) ©(2R).
R?’L BR(I())

Taking in Lemma 2.1 ¢(t) = w? (t), w = |u — ug| on Br(xy) and w = 0 out of
Br(zg), we have Er(t) = {y € Br: |u—ugr| >t} and so we get

’ o0 d ’
[ el do = [ [0 0 (Erlo) at.
Br(z0) 0 t
Now under the assumptions of Theorem 1.1 if we suppose
e’} . d ,
Q= W)W dt <o,
0 dt

then (taking into account that u(Eg(t)) <t~! fot w(Er(s))ds) we have

[ e olumnenacs [ g G [ umaonas) a
< Qp /BR(:co) |u —upg|de.

On the other hand, if we suppose Q, = sup (d/dt)(w?’)(t) < co then
t€(0,00)

oo d ,
| 5@ uEroyae <@y [ ju-unlas
0 Br(zo)
holds as well. So in both the cases we have

[ e ar<a, [ - uar
Br(zo)

Br(zo)
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Using the Poincaré inequality and the assumption about Du we finally get

(3.6) 1] < e(n, N, p, M/v)Qy/” | Dull i oy 9(2R).

Combining the last arguments with Lemma 2.4 and Lemma 2.5 we can conclude in
a similar way

(3.7) V| < e(n, N, p, M/V)QYY [ Dul| 2, -2 gy (2R).

Estimates (3.2), (3.3), (3.4), (3.5), (3.6) and (3.7) lead to the following inequality

o= [ PRCTRE
<{an(f) 45 (1e2n())

x c[(2M) Y7 (Mg (A ur) + (QpllDull 22 g )

"ho2m)
where ¢ = ¢(n, N, p, M/v).

Now we can use Lemma 2.2 in the following manner:
We take v € (0,1) and set

1

A=4L, €0 = 2(2n 3 L) (n=2+27)/2(1—7)

and

K = 1/p'

R | oo

(14 2L) c(2M)7 (M (A ur))' " + (QplDull 2n-20,0m)) 7 -

Then the assumption (1.4) and a suitable small d > 0 (remember the condition (iv)
and Definition 2.1) imply that K < ¢g and hence

o(0) < o™,

The result is then a consequence of Proposition 2.1.(c)
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