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Abstract. Let X be a normed linear space. We investigate properties of vector functions
F : [a, b] → X of bounded convexity. In particular, we prove that such functions coincide
with the delta-convex mappings admitting a Lipschitz control function, and that convexity
Kb

aF is equal to the variation of F ′
+ on [a, b). As an application, we give a simple alternative

proof of an unpublished result of the first author, containing an estimate of convexity of a
composed mapping.
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1. Introduction

If C is a convex subset of a (real) normed linear space X , then f : C → R is

called a d.c. function (or a delta-convex function) if it can be represented as a

difference of two continuous convex functions on C. In [17], the notion of a d.c.

function was extended to the notion of a d.c. mapping between arbitrary Banach

spaces and a theory of such mappings was developed (see Introduction in [6] for a

brief review). A well-known result of Roberts and Varberg ([12], [13]) asserts that a

function f : [a, b] → R is a difference of two Lipschitz convex functions if and only

if f has a finite convexity Kb
af . The notion of convexity goes back to de la Vallée

Poussin (1908) and Riesz (1911) (see [13, p. 28]), and was already studied and applied

also in the case of Banach space-valued functions ([14], [17], [4], [7]).

The first aim of this article is to present basic properties of vector functions of

bounded convexity. All these properties either are known or follow by known meth-

ods, but the proofs need some effort. In particular, using [17, Theorem 9] and the

ideas of its proof, we prove a generalization of the above-mentioned result of Roberts

and Varberg:
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A Banach space-valued function F on [a, b] has a bounded convexity if and only if

it is a d.c. mapping (in the sense of [17]) which has a Lipschitz control function.

Note that in [17], only d.c. mappings defined on open convex sets were studied.

However, the definition of d.c. mappings on arbitrary convex sets has a good sense

and even some deeper results can be proved for d.c. mappings on closed convex sets

(see [19], where some Hartman’s [9] results on compositions of d.c. functions are

generalized).

We also prove that the equality Kb
aF = V (F ′

+, [a, b)) holds for each mapping F

with a finite convexity Kb
aF , which seems to be a new result for vector functions.

As an application of the main Theorem 3.1, we give in Section 4 a simple alternative

proof of an unpublished result of the first author, containing an estimate of convexity

of a composed mapping; this is the second aim of the present article.

2. Preliminaries

Let X be a Banach space and F an X-valued mapping defined a.e. on [a, b]. By

the symbol
∫ b

a
F we denote the Bochner integral (and so, the Lebesgue integral, if

X = R) with respect to the Lebesgue measure. If a > b, we set
∫ b

a
F := −

∫ a

b
F .

The least Lipschitz constant of a Lipschitz mapping F between metric spaces will

be denoted by LipF . If X is a normed linear space, M ⊂ R, and F : M → X , we

define the variation of F on M as

V (F, M) := sup

{ n∑

i=1

‖F (xi−1) − F (xi)‖

}
,

where the supremum is taken over all finite collections of points x0 < . . . < xn inM .

We say that F : [a, b] → X is of bounded variation provided V b
a F := V (F, [a, b]) < ∞.

We set V a
a F := 0 and V b

a F := −V a
b F if a > b.

If F is absolutely continuous and a.e. differentiable on [a, b], then

(1) V b
a F =

∫ b

a

‖F ′(x)‖ dx.

Indeed, the absolute continuity of F implies (see [5, Theorem 3.3 and Remark 3.4])

that V b
a F =

∫ b

a
md(F, x) dx, where md(F, x) := lim

t→0
‖F (x + t) − F (x)‖/|t| is the

“metric derivative”. Since clearly md(F, x) = ‖F ′(x)‖ if F ′(x) exists, we obtain (1).

(For mappings F which are Lipschitz and a.e. differentiable, (1) follows from [10,

Theorem 7] and [8, 2.10.13].)

The following notion of convexity goes back to de la Vallée Poussin (1908); cf.

[13].
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Definition 2.1. Let X be a normed linear space and F : [a, b] → X a mapping.

For every partition D = {a = x0 < x1 < . . . < xn = b} of [a, b], we put

K(F, D) =
n−1∑

i=1

∥∥∥
F (xi+1) − F (xi)

xi+1 − xi

−
F (xi) − F (xi−1)

xi − xi−1

∥∥∥.

(If n = 1, we put K(F, D) := 0.) Then the convexity of F on [a, b] is defined as

Kb
aF = supK(F, D),

where the supremum is taken over all partitions D of [a, b]. If Kb
aF < ∞, we say

that F has a bounded (or finite) convexity.

R em a r k 2.2. Clearly Kb
aF = Kb

a(−F ) = K−a
−b F̃ , where F̃ (x) := F (−x), x ∈

[−b,−a]. Indeed, K(F, D) = K(F̃ , D̃) for D̃ := {−xn < . . . < −x1 < −x0}.

We state the following basic definition from [17] for mappings defined on arbitrary

(not necessarily open) convex sets.

Definition 2.3. Let X, Y be normed linear spaces, let C ⊂ X be a convex set,

and let F : C → Y be a continuous mapping. We say that F is d.c. (or delta-

convex ) if there exists a continuous (necessarily convex) function f : C → R such

that y∗ ◦F + f is convex on C whenever y∗ ∈ Y ∗, ‖y∗‖ = 1. In this case we say that

f controls F , or that f is a control function for F .

R em a r k 2.4. Similarly to [17], it is easy to check the following fact: if Y = R
n

(equipped with an arbitrary norm) and F = (F1, . . . , Fn), then the mapping F is d.c.

if and only if all its components Fi are d.c.

An elegant alternative equivalent definition of d.c. mappings is given by the prop-

erty (ii) of the following Proposition 2.5. For the proof, it is sufficient to observe

that the proof of the first part of [17, Proposition 1.13] does not use the assumption

that A is open.

Proposition 2.5. Let X , Y be normed linear spaces, let A ⊂ X be a convex set,

and let F : A → Y , f : A → R be continuous. Then the following conditions are

equivalent.

(i) F is d.c. with a control function f .

(ii) ‖λF (x) +µF (y)−F (λx + µy)‖ 6 λf(x) +µf(y)− f(λx+ µy) whenever x ∈ A,

y ∈ A, λ > 0, µ > 0, λ + µ = 1.
∥∥∥

F (z + kv) − F (z)

k
−

F (z) − F (z − hv)

h

∥∥∥(iii)

6
f(z + kv) − f(z)

k
−

f(z) − f(z − hv)

h

whenever z ∈ A, v ∈ X , z + kv ∈ A, z − hv ∈ A, k > 0, h > 0.
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The following easy lemma is well-known.

Lemma 2.6. Let X be a Banach space and G : [a, b] → X with V (G, [a, b)) < ∞.

Then the limit lim
x→b−

G(x) exists in X . Moreover,

V (G, [a, b]) = V (G, [a, b)) + ‖G(b) − lim
x→b−

G(x)‖.

P r o o f. Observe that G is bounded. Further, if a 6 x0 < x1 < . . . <

xn = b, then
n∑

i=1

‖G(xi−1) − G(xi)‖ 6 V (G, [a, b)) + 2 sup
x∈[a,b]

‖G(x)‖. Consequently,

V (G, [a, b]) < ∞. Now the statement of the lemma follows from [2, Lemma 5.2]. �

R em a r k 2.7. Quite similarly we obtain the symmetric version of Lemma 2.6:

V (G, [a, b]) = V (G, (a, b]) + ‖G(a) − lim
x→a+

G(x)‖ whenever V (G, (a, b]) < ∞.

Let us recall the definition of the one-sided strict derivative.

Definition 2.8. Let X be a Banach space. We say that F : [x, x + δ] → X has

at x a strict right derivative A ∈ X if

lim
(y,z)→(x,x)

y 6=z, y>x, z>x

F (z) − F (y)

z − y
= A.

(The strict left derivative is defined analogously.)

We will need also the following version of the mean value theorem (see Proposi-

tion 3 in [1, I.2]).

Lemma 2.9. Let X be a Banach space, F : [c, d] → X a continuous mapping,

and A ∈ X . Suppose that F ′
+(t) exists for each t ∈ (c, d). Then

(2)
∥∥∥

F (d) − F (c)

d − c
− A

∥∥∥ 6 sup
x∈(c,d)

‖F ′
+(x) − A‖.

As an easy consequence we obtain the following lemma.

Lemma 2.10. Let X be a Banach space, let a < b be real numbers, and let

F : [a, b] → X be a continuous mapping. Suppose that F ′
+(t) exists for each t ∈ (a, b),
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and the limits lim
t→a+

F ′
+(t), lim

t→b−
F ′

+(t) exist. Then F ′
+(a) and F ′

−(b) exist as strict

one-sided derivatives, and

(3) F ′
+(a) = lim

t→a+
F ′

+(t) and F ′
−(b) = lim

t→b−
F ′

+(t).

P r o o f. If a 6 y < z < b, we apply Lemma 2.9 with [c, d] := [y, z] and

A := lim
t→a+

F ′
+(t), and obtain

∥∥∥
F (z) − F (y)

z − y
− lim

t→a+
F ′

+(t)
∥∥∥ 6 sup

x∈(y,z)

‖F ′
+(x) − lim

t→a+
F ′

+(t)‖,

which implies that F ′
+(a) = lim

t→a+
F ′

+(t) is the strict right derivative of F at a. The

latter part of the statement can be proved quite similarly. �

3. Properties of vector functions of bounded convexity

For the following easy fact see [14, Proposition 2.3]; the proof therein does not use

the completeness of X .

Proposition A. Let X be a normed linear space and F : [a, b] → X a mapping

with Kb
aF < ∞. Then F is Lipschitz.

The following Theorem B is also known; its first part coincides with [17, Theo-

rem 2.3], and the second with [18, Lemma 3.10].

Theorem B. Let X be a Banach space and F : (a, b) → X a continuous mapping.

Then the following conditions are equivalent.

(i) F is d.c. on (a, b).

(ii) F ′
+(x) exists for each x ∈ (a, b), and V d

c F ′
+ < ∞ for each [c, d] ⊂ (a, b).

(iii) Kd
c F < ∞ for each interval [c, d] ⊂ (a, b).

Moreover, if the above equivalent conditions are satisfied and z ∈ (a, b), then

(4) F (x) = F (z) +

∫ x

z

F ′
+, x ∈ (a, b).

Using Theorem B and ideas of its proof, we prove the following main result of this

article.
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Theorem 3.1. Let X be a Banach space and let F : [a, b] → X be continuous.

Then the following conditions are equivalent.

(i) F is a d.c. mapping with a Lipschitz control function.

(ii) Kb
aF < ∞.

(iii) F ′
+(x) exists for each x ∈ [a, b), and V (F ′

+, [a, b)) < ∞.

(iv) There exists a mapping of bounded variation G : [a, b] → X such that F (x) =

F (a) +
∫ x

a
G for each x ∈ [a, b].

Moreover, if the above equivalent conditions hold, then

(a) F (x) = F (a) +
∫ x

a
F ′

+ for each x ∈ [a, b];

(b) Kb
aF 6 f ′

−(b) − f ′
+(a) whenever f is a control function of F ;

(c) the function fa(x) :=
∫ x

a
(V t

a F ′
+) dt, x ∈ [a, b], is a Lipschitz control function of

F ;

(d) Kb
aF = V (F ′

+, [a, b)) = (fa)′−(b) − (fa)′+(a);

(e) Kb
aF = 2 · min{Lip f : f controls F}.

P r o o f. Let f be a control function for the mapping F . Consider a partition

D = {a = x0 < x1 < . . . < xn = b} of [a, b]. By Proposition 2.5,

Kb
a(F, D) 6

n−1∑

i=1

(f(xi+1) − f(xi)

xi+1 − xi

−
f(xi) − f(xi−1)

xi − xi−1

)

=
f(xn) − f(xn−1)

xn − xn−1
−

f(x1) − f(x0)

x1 − x0
6 f ′

−(b) − f ′
+(a).

It follows that (i) implies (ii) and (b).

To prove (ii) ⇒ (iii), suppose Kb
aF < ∞. Then the right derivative F ′

+(x) exists

for every x ∈ [a, b) by [14, Proposition 2.4]. Consider a partition D = {a = x0 <

x1 < . . . < xn = d} of an interval [a, d] ⊂ [a, b) and set

V (F ′
+, D) :=

n−1∑

i=0

‖F ′
+(xi+1) − F ′

+(xi)‖.

For an arbitrary ε > 0 find δ > 0 such that xi + δ < xi+1 (0 6 i 6 n− 1), d + δ < b,

and ‖F ′
+(xi) −

1
δ
(F (xi + δ) − F (xi))‖ < ε (0 6 i 6 n). Then

V (F ′
+, D) 6 2nε +

n−1∑

i=0

∥∥∥
F (xi+1 + δ) − F (xi+1)

δ
−

F (xi + δ) − F (xi)

δ

∥∥∥

6 2nε +

n−1∑

i=0

(∥∥∥
F (xi+1 + δ) − F (xi+1)

δ
−

F (xi+1) − F (xi + δ)

xi+1 − (xi + δ)

∥∥∥

+
∥∥∥

F (xi+1) − F (xi + δ)

xi+1 − (xi + δ)
−

F (xi + δ) − F (xi)

δ

∥∥∥
)

6 2nε + Kd+δ
a F.

326



Therefore we easily obtain that

(5) V (F ′
+, [a, b)) 6 Kb

aF whenever Kb
aF < ∞,

and so (iii) follows.

Now, suppose (iii). By Lemma 2.6, the limit L := lim
x→b−

F ′
+(x) exists in X . Con-

sider the following extension G : (a − 1, b + 1) → X of F ′
+:

G(x) =





F ′
+(x) for x ∈ [a, b);

F ′
+(a) for x ∈ (a − 1, a);

L for x ∈ [b, b + 1).

It is easy to see that V (G, (a − 1, b + 1)) < ∞ and G is the right derivative of the

following extension of F to (a − 1, b + 1):

F̃ (x) =





F (x) for x ∈ [a, b];

F (a) + F ′
+(a)(x − a) for x ∈ (a − 1, a);

F (b) + L(x − b) for x ∈ [b, b + 1).

Now, applying Theorem B to F̃ , we obtain (a). Thus we have proved that (iii)

implies (iv) and (a).

Let us prove (iv)⇒ (i). Let G be as in (iv). The function v(x) := V x
a G is bounded

and nondecreasing on [a, b]. Consequently, the function h(x) =
∫ x

a
v is Lipschitz and

convex on [a, b]. We will show that h controls F . For each norm-one functional

y∗ ∈ X∗ we have

y∗(F (x)) + h(x) = y∗(F (a)) +

∫ x

a

(y∗ ◦ G + v), x ∈ [a, b].

To obtain that y∗ ◦F +h is convex, it suffices to show that the function y∗ ◦G+ v is

nondecreasing on [a, b] (see [13, I.12, Theorem A, and B on p. 13]); and this is easy.

Indeed, a 6 x < y 6 b implies (y∗ ◦ G + v)(y) − (y∗ ◦ G + v)(x) = V y
x G + y∗(G(y) −

G(x)) > V y
x G − ‖G(y) − G(x)‖ > 0.

It remains to prove (c), (d) and (e). Let the (equivalent) conditions (i)–(iv) be

satisfied. By (a), the condition (iv) holds with G(x) = F ′
+(x) for x ∈ [a, b), G(b) =

lim
x→b−

F ′
+(x). Hence, we can use h = fa in the above proof of (iv) ⇒ (i). This

implies (c).

To show (d), observe that (5), (b) and (c) imply that

(6) V (F ′
+, [a, b)) 6 Kb

aF 6 (fa)′−(b) − (fa)′+(a) 6 (fa)′−(b)
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since fa is nondecreasing. Let {xn} ⊂ (a, b) be an increasing sequence of points of

continuity of the nondecreasing function t 7→ V t
a F ′

+ such that xn → b. Then the well-

known properties of convex functions (see [13, (6) on p. 7]) and indefinite integrals

give

(fa)′−(b) = lim
x→b−

(fa)′+(x) = lim
n→∞

(fa)′(xn) = lim
n→∞

V xn

a F ′
+ = V (F ′

+, [a, b)).

Thus (6) implies (d).

The inequality “6” from (e) holds by (b). Set

f(x) := fa(x) −
(fa)′−(b) + (fa)′+(a)

2
· x for x ∈ [a, b].

Then f clearly controls F , and (d) implies that f ′
−(b) = 1

2Kb
aF and f ′

+(a) = − 1
2Kb

aF .

Since f is convex, we have Lip f = max{|f ′
+(a)|, |f ′

−(b)|} = 1
2Kb

aF ; so we have proved

(e). �

R em a r k 3.2. Note that the above proof gives that F is of bounded convexity

on [a, b] if and only if F is a restriction of a d.c. mapping G : (a − 1, b + 1) → X

(cf. [4, Lemma 5.5.]).

The following result is an important supplement to Theorem 3.1.

Proposition 3.4. Let X be a Banach space and let F : [a, b] → X be continuous.

Then the following conditions are equivalent.

(i) F ′
+(x) exists for each x ∈ (a, b), and V (F ′

+, (a, b)) < ∞.

(ii) Kb
aF < ∞.

(iii) F ′
−(x) exists for each x ∈ (a, b), and V (F ′

−, (a, b)) < ∞.

Moreover, if the above equivalent conditions hold, then

(7) Kb
aF = V (F ′

+, (a, b)) = V (F ′
−, (a, b)).

P r o o f. Suppose that (i) holds. Choose c ∈ (a, b). Applying Remark 2.7

(with G(x) := F ′
+(x) for x ∈ (a, c] and G(a) := 0) we obtain that lim

t→a+

F ′
+(t)

exists. By Lemma 2.10, F ′
+(a) = lim

t→a+
F ′

+(t). So, using Lemma 2.6 once more (now

with G(a) := F ′
+(a)), we obtain that V (F ′

+, (a, c]) = V (F ′
+, [a, c]). Consequently,

V (F ′
+, (a, b)) = V (F ′

+, [a, c]) + V (F ′
+, [c, b)) = V (F ′

+, [a, b)) = Kb
aF by Theorem 3.1

(iii), (d).

The implication (ii) ⇒ (i) is obvious by Theorem 3.1. It remains to prove that

(ii) ⇔ (iii) and Kb
aF = V (F ′

−, (a, b)), which can be done using Remark 2.2. �
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In the rest of this section, we will deduce some further properties of vector functions

of bounded convexity, which are well-known in the scalar case. They are mainly

consequences of Theorem 3.1(d).

Proposition 3.4. Let X be a Banach space, F : [a, b] → X with Kb
aF < ∞.

Then

(i) F has a strict right derivative at each point of [a, b), and a strict left derivative

at each point of (a, b];

(ii) lim
t→x+

F ′
±(t) = F ′

+(x) for x ∈ [a, b), and lim
t→x−

F ′
±(t) = F ′

−(x) for x ∈ (a, b];

(iii) the set A := {x ∈ (a, b) : F ′
+(x) 6= F ′

−(x)} is at most countable and∑
x∈A

‖F ′
+(x) − F ′

−(x)‖ 6 Kb
aF ;

(iv) Kb
aF = V b

a G, where G(x) := F ′
+(x) for x ∈ [a, b) and G(b) := F ′

−(b);

(v) if [c, d] ⊂ [a, b), then V (F ′
+, [c, d]) = Kd

c F + ‖F ′
+(d) − F ′

−(d)‖;

(vi) Kb
aF = V b

a H , where H(x) := F ′
−(x) for x ∈ (a, b], and H(a) := F ′

+(a).

P r o o f. For an arbitrary x ∈ [a, b), Theorem 3.1 and Lemma 2.6 (with [x, b]

instead of [a, b]) imply existence of lim
t→x+

F ′
+(t). So, Lemma 2.10 implies that F ′

+(x)

is the strict right derivative. Similarly, if x ∈ (a, b], Remark 2.7 and Lemma 2.10

imply that F ′
−(x) exists and is the strict left derivative. Thus we have proved (i).

Obviously, (i) implies (ii); it is sufficient to use the definition of one-sided limits

and definitions of one-sided and strict one-sided derivatives.

Let {x1 < x2 < . . . < xn} be an arbitrary finite subset of A. By (ii), there

exist points y1, y2, . . . , yn such that a < y1 < x1 < y2 < x2 < . . . < yn < xn and

‖F ′
+(yi) − F ′

−(xi)‖ < ε/n for 1 6 i 6 n. Then, by Theorem 3.1(d), we have

n∑

i=1

‖F ′
+(xi) − F ′

−(xi)‖ 6

n∑

i=1

‖F ′
+(xi) − F ′

+(yi)‖ + ε

6 V (F ′
+, [a, b)) + ε = Kb

aF + ε,

which proves that
∑

x∈A0

‖F ′
+(x) − F ′

−(x)‖ 6 Kb
aF for each finite set A0 ⊂ A. Now,

(iii) easily follows.

The properties (iv) and (v) follow immediately from Lemma 2.6, Theorem 3.1(d),

and (ii). The property (vi) easily follows from (iv) via Remark 2.2. �

R em a r k 3.5. Note that properties (i) and (ii) follow immediately also from

Remark 3.2 and [17, Note 3.2]. However, [17, Note 3.2] is stated with a hint of the

proof only.
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Proposition 3.6. Let X be a Banach space, a < c < b, and F : [a, b] → X . Then

Kb
aF < ∞ if and only if both Kc

aF < ∞ and Kb
cF < ∞, and in this case

Kb
aF = Kc

aF + Kb
cF + ‖f ′

+(c) − f ′
−(c)‖.

P r o o f. By Proposition A, we can suppose that F is Lipschitz. By Lemma 2.6

and the first part of Theorem 3.1, the following chain of equivalences holds:

Kb
aF < ∞ ⇔ F ′

+ exists on [a, b) and V (F ′
+, [a, b)) < ∞

⇔ F ′
+ exists on [a, b) and V (F ′

+, [a, c)) < ∞, V (F ′
+, [c, b)) < ∞

⇔ Kc
aF < ∞, Kb

cF < ∞.

Moreover, if these conditions are satisfied, then Proposition 3.4(v) and Theo-

rem 3.1(d) imply

Kb
aF = V (F ′

+, [a, b)) = V (F ′
+, [a, c]) + V (F ′

+, [c, b))

= Kc
aF + ‖F ′

+(c) − F ′
−(c)‖ + Kb

cF.

�

Proposition 3.7. Let X be a Banach space, F : [a, b] → X with Kb
aF < ∞. Let

p(x) := Kx
aF for x ∈ (a, b] and q(x) := Kb

xF for x ∈ [a, b). Then

(i) p is left-continuous at each x ∈ (a, b] and p(a+) = 0;

(ii) p(x+) − p(x) = ‖F ′
+(x) − F ′

−(x)‖ for each x ∈ (a, b);

(iii) q is right-continuous at each x ∈ [a, b), q(b−) = 0;

(iv) q(x−) − q(x) = ‖F ′
+(x) − F ′

−(x)‖ for each x ∈ (a, b).

P r o o f. Fix x ∈ (a, b]. By Theorem 3.1(d) and the definition of variation, we

have

p(x−) = lim
t→x−

V (F ′
+, [a, t)) = sup

t∈(a,x)

V (F ′
+, [a, t)) = V (F ′

+, [a, x)) = p(x).

So the first part of (i) is proved. Further, consider t ∈ (a, b) and use (7) to obtain

0 6 p(t) = V (F ′
+, (a, t)) 6 V (F ′

+, (a, t]) = V (F ′
+, (a, b]) − V (F ′

+, [t, b]).

Since clearly lim
t→a+

V (F ′
+, [t, b]) = V (F ′

+, (a, b]), the second part of (i) follows.

Now, fix x ∈ (a, b) and observe that, by Proposition 3.6,

p(t) = p(x) + ‖F ′
+(x) − F ′

−(x)‖ + Kt
xF for t ∈ (x, b).
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Using the second part of property (i) (with [x, b] instead of [a, b]), we obtain

lim
t→x+

Kt
xF = 0, and consequently (ii).

The parts (iii), (iv) can be proved similarly. We can also apply (i) and (ii) to the

mapping F̃ (x) = F (−x), x ∈ [−b,−a], using Remark 2.2. �

The following result generalizes [12, Corollary on p. 571].

Theorem 3.8. Let X be a Banach space, F : [a, b] → X with Kb
aF < ∞. Let F

be differentiable on [a, b], and let F ′ be absolutely continuous and a.e. differentiable.

Then

(8) Kb
aF =

∫ b

a

‖F ′′(x)‖ dx.

P r o o f. It is sufficient to apply Proposition 3.4(iv) and (1). �

Of course, if X has the Radon-Nikodým property, then we can ommit the as-

sumption of a.e. differentiability of F ′ in Theorem 3.8, since it follows from absolute

continuity of F (see [3]).

Finally, we show that for continuous mappings F convexity can be defined in a

natural alternative way.

If F : [a, b] → X and a 6 u < v 6 b are given, then we denote QF (u, v) :=

(F (v) − F (u))(v − u)−1. For a partition D = {a = x0 < x1 < . . . < xn = b} of [a, b],

we define its norm ν(D) := max{xi − xi−1 : 1 6 i 6 n}.

Proposition 3.9. Let X be a normed linear space and F : [a, b] → X . Then the

following statements hold.

(i) If D1 and D2 are partitions of [a, b] and D2 is a refinement of D1, then

K(F, D1) 6 K(F, D2).

(ii) If F is continuous and (Dn)∞1 is a sequence of partitions of [a, b] with

lim
n→∞

ν(Dn) = 0, then lim
n→∞

K(F, Dn) = Kb
aF .

P r o o f. The statement (i) immediately follows from [14, Lemma 2.2] (consider-

ing, e.g., F as the mapping into the completion ofX). To prove (ii), consider an arbi-

trary real numberA < Kb
aF . Now find a partitionD = {a = x0 < x1 < . . . < xk = b}

with K(F, D) > A. Set ε := (K(F, D)−A)/k. Continuity of F easily gives existence

of δ > 0 such that

∣∣‖QF (xi−1, xi) − QF (xi, xi+1)‖ − ‖QF (x̃i−1, x̃i) − QF (x̃i, x̃i+1)‖
∣∣ < ε(9)

whenever a 6 x̃0 6 x̃1 6 . . . 6 x̃k 6 b and |xi − x̃i| < δ for i = 0, . . . , k.
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Choose n0 ∈ N such that

ν(Dn) < δ̃ := min
{
δ, 1

2 min{xi − xi−1 : 1 6 i 6 k}
}

for each n > n0. Fix an n > n0. Then we can easily find x̃i ∈ Dn such that

|xi − x̃i| < δ̃ for i = 1, . . . , k − 1. Then clearly D̃ := {x̃0 := a < x̃1 < . . . < x̃k := b}

is a partition of [a, b]. Using (9) and the definition of ε, we obtain K(F, D̃) > A.

Since Dn is a refinement of D̃, we have K(F, Dn) > A by (i), which completes the

proof. �

4. Convexity of a composed mapping

Now we will give a short alternative proof of an unpublished result (Theorem 4.1

below) of the first author [16] on convexity of a composed mapping. We show that

this result is an easy consequence of the following Proposition C (originally essentially

proved in [15]) and Theorem 3.1.

Proposition C. Let X, Y, Z be normed linear spaces, A ⊂ X and B ⊂ Y convex

sets. Let F : A → B and G : B → Z be d.c. mappings with control functions f : A →

R and g : B → R, respectively. If G and g are Lipschitz onB with Lipschitz constants

LG and Lg, then G ◦ F is d.c. on A with a control function h = g ◦F + (LG + Lg)f .

P r o o f. This was proved in [17] (Proposition 4.1) assuming that the sets A, B

are also open. However, it is easy to see that the proof does not need this additional

assumption, since it is based on Proposition 2.5 which holds for an arbitrary convex

set A. �

Theorem 4.1. Let X , Y be Banach spaces, A ⊂ X a convex set, and let F : A →

Y be a nonconstant Lipschitz mapping which admits a Lipschitz control function f .

Let ϕ : [a, b] → A be Lipschitz. Then

(10) Kb
a (F ◦ ϕ) 6 (Lip F + Lip f)Kb

a ϕ + 2 Lip f Lipϕ.

P r o o f. Since F is nonconstant, LipF > 0, and thus we can suppose Kb
aϕ < ∞.

By Theorem 3.1(c),(d) we can choose a Lipchitz control function c of ϕ such that

Kb
aϕ = c′−(b)−c′+(a). By Proposition C we obtain that h := f ◦ϕ+(LipF +Lip f) ·c

controls F ◦ ϕ. So, by Theorem 3.1(b), we obtain

Kb
a(F ◦ ϕ) 6 h′

−(b) − h′
+(a)

= ((f ◦ ϕ)′−(b) − (f ◦ ϕ)′+(a)) + (Lip F + Lip f)(c′−(b) − c′+(a))

6 (LipF + Lip f)Kb
aϕ + 2 Lip f Lipϕ.
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Note that Theorem 4.1 is related to the following open problem ([17, Problem 7]):

Let X, Y be Banach spaces, A ⊂ X an open convex set, and F : A → Y a

Lipschitz mapping. Suppose that there are α > 0, β > 0 such that

(11) K1
0 (F ◦ ϕ) 6 αK1

0ϕ + β Lipϕ

whenever ϕ : [0, 1] → A is Lipschitz. Is then F d.c. on A?

Since every d.c. mapping on (an open convex set) A is locally Lipschitz, Theo-

rem 4.1 immediately implies that, if F is d.c. on A, then the corresponding α, β

always exist locally. More precisely, every x0 ∈ A is contained in an open con-

vex set A0 ⊂ A such that, for some α, β > 0, (11) holds for each Lipschitz curve

ϕ : [0, 1] → A0.

Note that this problem is only one version of the following natural rough question:

Is it possible to characterize d.c. functions (or even mappings) of more variables in

the language of “curves” (i.e. mappings of one real variable) only?

Another version of this question is the following Problem 6 of [17]: Let X, Y be

Banach spaces, A ⊂ X an open convex set, and F : A → Y a mapping. Suppose

that F ◦ ϕ is d.c. on (0, 1) whenever ϕ : (0, 1) → A is d.c. Is then F locally d.c.

on A?

This problem was answered in negative for X = ℓ3, Y = ℓ∞ in [6] and also for

X = ℓ3 and Y = R (see [11]), but it is open, e.g., for X = R
n, Y = R.

Finally, we note that (10) can be improved in an interesting special case, and

establish an easy estimate for convexity of an inverse function.

Proposition 4.2. Let ϕ : [a, b] → [c, d] be an increasing continuous bijection with

Kb
aϕ < ∞. Let Y be a Banach space, F : [c, d] → Y with Kd

c F < ∞. Let f be a

control function of F . Then:

(i)

Kb
a (F ◦ ϕ) 6 LipF · Kb

a ϕ + Lipϕ · Kd
c F 6 LipF · Kb

a ϕ + 2 Lip f · Lipϕ;

(ii) the function ϕ−1 has bounded convexity if and only if it is Lipschitz; in this

case

(12) Kd
c ϕ−1 6

(
Lip(ϕ−1)

)2
· Kb

aϕ.
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P r o o f. Let t0 < t1 < . . . < tn be arbitrary points in [a, b). Observe that

(F ◦ ϕ)′+(t) = F ′
+(ϕ(t)) · ϕ′

+(t) for each t ∈ [a, b), and thus

‖(F ◦ ϕ)′+(ti+1) − (F ◦ ϕ)′+(ti)‖ 6 ‖F ′
+(ϕ(ti+1))ϕ

′
+(ti+1) − F ′

+(ϕ(ti+1))ϕ
′
+(ti)‖

+ ‖F ′
+(ϕ(ti+1))ϕ

′
+(ti) − F ′

+(ϕ(ti))ϕ
′
+(ti)‖

6 sup
x∈[c,d)

‖F ′
+(x)‖ · |ϕ′

+(ti+1) − ϕ′
+(ti)|

+ sup
t∈[a,b)

|ϕ′
+(t)| · ‖F ′

+(ϕ(ti+1)) − F ′
+(ϕ(ti))‖.

Summing over i and using Theorem 3.1(d), we easily obtain the first inequality in

(i). Now, the second inequality in (i) follows by Theorem 3.1(e).

To prove (ii), first observe that if ϕ−1 has bounded convexity, then it is Lipschitz

by Proposition A. So, suppose that ϕ−1 is Lipschitz. Let x0 < x1 < . . . < xn be

arbitrary points in [c, d), and ti := ϕ−1(xi). Then

∣∣(ϕ−1)′+(xi+1) − (ϕ−1)′+(xi)
∣∣ =

∣∣∣
1

ϕ′
+(ti+1)

−
1

ϕ′
+(ti)

∣∣∣

= |ϕ′
+(ti+1) − ϕ′

+(ti)| · |(ϕ
−1)′+(xi+1)| · |(ϕ

−1)′+(xi)|.

Summing over i and using Theorem 3.1(d), we easily obtain (12). �
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