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1. Introduction

The monotone Lindelöf property was studied in generalized ordered spaces by

H. Bennett, D. Lutzer and M. Matveev in [2]. They presented some classical exam-

ples which are not monotonically Lindelöf and proved that any separable GO-space is

hereditarily monotonically Lindelöf, [0, ω1] is a compact LOTS which is not monoton-

ically Lindelöf, and the lexicographic product of two unit intervals is monotonically

Lindelöf. In particular, the double arrow space [0, 1] × {0, 1} with lexicographic

order is monotonically Lindelöf. In [7], [8] we introduced a new topology on the

lexicographic product set X × Y , where X , Y are generalized ordered (GO) spaces.

This new topology contains the usual open-interval topology of the lexicographic

order and also reflects in a natural way the fact that X and Y carry a GO-topology,

rather than just the open interval topology of their linear orderings, which is called

a generalized ordered topological product (GOTP) of the GO-spaces X and Y and is

denoted by GOTP(X ∗ Y ).

Recall that a topological space X is monotonically Lindelöf if for each open cover

U of X there is a countable open cover rU ofX that refines U and has the property

that if an open coverU refines an open cover V , then rU refines rV . In this case, r is
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called a monotone Lindelöf operator for the space X . A linearly ordered topological

space or a LOTS is a triple (X, λ, 6), where (X, 6) is a linearly ordered set and

λ is the interval topology on (X, 6). A generalized ordered space or a GO-space is a

triple (X, τ, 6), where (X, 6) is a linearly ordered set and τ is a topology on (X, 6)

such that λ ⊆ τ and τ has a base consisting of order convex sets, where a set A is

called order convex if x ∈ A for every x lying between two points of A.

In this paper we characterize the monotone Lindelöf property of a generalized

ordered topological product (GOTP) of two GO-spaces. Let X , Y be GO-spaces.

Suppose that Y has both the left endpoint and the right endpoint. We prove that

GOTP(X ∗ Y ) is monotonically Lindelöf if and only if GOTP(X ∗ {0, 1}) and Y are

monotonically Lindelöf. In addition, we show that if Y is monotonically Lindelöf and

has either the maximal or the minimal point but not both of them, thenGOTP(X∗Y )

is monotonically Lindelöf if and only if the GO-spaceX ′ = (X, τ ′, <) is monotonically

Lindelöf, where τ ′ is the topology on X with the subbase τ ∪ {[x,→) : x ∈ X}

(τ ∪ {(←, x] : x ∈ X}).

Throughout this paper, for a set V and a collection U of sets we will write V ≺ U

to mean that V is a subset of some member of U . For a GO-space X = (X, τ, <)

we can define LX = {x ∈ X : (←, x] ∈ τ − λ}, RX = {x ∈ X : [x,→) ∈ τ − λ},

and IX = {x ∈ X : x is an isolated point of X}. Conversely, the generalized ordered

topology τ on X is determined by its subsets LX , RX and IX . For every set A, the

cardinality of X is denoted by |A|.

For the undefined terminology, the reader may refer to [3] and [6].

2. Results

First we introduce the definition of the generalized ordered topological product of

two GO-spaces.

Definition 2.1 ([4]). Let (X, <X), (Y, <Y ) be linearly ordered sets. Then the

lexicographic product X ∗ Y of (X, <X) and (Y, <Y ) is defined as the ordered set

(X×Y,⋖)where⋖ is the lexicographic ordering, i.e., if a = 〈x1, y1〉 and b = 〈x2, y2〉 ∈

X × Y then

a ⋖ b if and only if x1 <X x2 or x1 = x2 and y1 <Y y2.

Definition 2.2 ([8]). Let (X, τX , <X), (Y, τY , <Y ) be GO-spaces. Let λX , λY

be the usual interval topologies on X , Y , respectively, and let λX∗Y be the usual

interval topology on the linearly ordered set X ∗ Y .
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By the generalized ordered topology (abbreviated GOT) τX∗Y we mean a topology

on X ∗ Y which has a subbase

B = λX∗Y ∪ τR ∪ τL

∪ {[〈x, y〉,→) ⊆ X ∗ Y : x ∈ X, y ∈ Y and [y,→) ∈ τY − λY }

∪ {(←, 〈x, y〉] ⊆ X ∗ Y : x ∈ X, y ∈ Y and (←, y] ∈ τY − λY },

where either

τR = ∅ and τL = ∅, if Y does not have endpoints,

or

τR = {[〈x, y0〉,→) : x ∈ X and [x,→) ∈ τX − λX} and τL = ∅,

if Y has a left endpoint y0, but no right one,

or

τR = ∅ and τL = {(←, 〈x, y1〉] : x ∈ X and(←, x] ∈ τX − λX},

if Y has a right endpoint y1, but no left one,

or

τR = {[〈x, y0〉,→) : x ∈ X and [x,→) ∈ τX − λX} and

τL = {(←, 〈x, y1〉] : x ∈ X and(←, x] ∈ τX − λX},

if Y has both a left endpoint y0 and a right endpoint y1.

We say that the space (X ∗ Y, τX∗Y ) is the generalized ordered topological product

(abbreviated as GOTP) of GO-spaces (X, τX , <X) and (Y, τY , <Y ), and denote it by

GOTP(X ∗ Y ). Similarly we denote (X ∗ Y, λX∗Y ) by LOTP(X ∗ Y ).

In Definition 2.2, ifX , Y are LOTS, then τX∗Y = λX∗Y and if Y has two endpoints,

X is a quotient space of GOTP(X ∗ Y ) by Lemma 3.5 in [8]. For each x ∈ X , the

subspace {x} ∗ Y of GOTP(X ∗ Y ) is homeomorphic to Y . Moreover, the GOT on

X ∗ Y is determined by the topologies on X and Y . So the GOTP is a natural

generalization of the lexicographic product with the usual interval topology.

In this paper, we often deal with more than one ordered sets. For different ordered

sets, the orderings may be different. But in most cases, we can distinguish them from

the context. So we will use the symbol < for all the orderings unless it is necessary

to avoid confusions.
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For GO-spaces X and Y , let p : X ∗ Y → X be the projection. For a linearly

ordered set X and a, b ∈ X with a < b, the symbols (a, b), [a, b), (a, b], [a, b] denote

the open interval, left closed and right open interval, left open and right closed,

closed interval respectively, as usual. To distinguish in which linearly ordered set the

interval is taken, we adopt, for example, (a, b)X to convey the interval is taken in X .

Lemma 2.3. Let X , Y be GO-spaces, let Y have both endpoints and let X ′ ⊂ X ,

Y ′ ⊂ Y with Y ′ containing the two endpoints of Y . Then GOTP(X ′ ∗ Y ′) is a

subspace of GOTP(X ∗ Y ).

P r o o f. We only need to prove that a convex subset U of GOTP(X ′ ∗ Y ′)

is open if and only if U is the intersection of X ′ ∗ Y ′ and an open convex subset

of GOTP(X ∗ Y ). For convenience, let y0 be the left endpoint of Y , y1 the right

endpoint of Y . Now let U be an open convex subset of GOTP(X ′ ∗ Y ′). Then for U

one of the following cases may occur:

(i) p(U) is a singleton;

(ii) |p(U)| > 1, and p(U) has neither the maximum nor the minimum element in X ′;

(iii) |p(U)| > 1, and p(U) contains only one of the maximum and minimum elements

in X ′;

(iv) |p(U)| > 1, and p(U) contains both the maximum and minimum elements in X ′.

For Case (i), let p(U) = {x(U)}. Then U ⊂ {x(U)} ∗ Y ′ and U is open convex

in {x(U)} ∗ Y ′. Hence there is an open convex subset V of Y such that U =

{x(U)} ∗ (V ∩ Y ′). There are three subcases we must consider:

Subcase (i-1). V contains no endpoint of Y . Then {x(U)}∗V is open in GOTP(X∗

Y ) since (〈x(U), y0〉, 〈x(U), y1〉) is open in GOTP(X ∗ Y ).

Subcase (i-2). V contains one of the endpoints of Y but not the other one. For

example, V contains the left endpoint but not the right one. Then 〈x(U), y0〉 ∈

U is the minimum element of U . By the definition of GOT, if [x(U),→) is open

in X , then [〈x(U), y0〉, 〈x(U), y1〉) is open in GOTP(X ∗ Y ) and contains {x(U)} ∗V

as its open subset. Hence {x(U)} ∗ V is open in GOTP(X ∗ Y ). If [x(U),→) is

not open in X , then x(U) must have no immediate predecessor in X and there is

a point x′(U) ∈ X such that x′(U) < x(U) and (x′(U), x(U)) ∩ X ′ = ∅. Thus

(〈x′(U), y1〉, 〈x(U), y0〉]∪ {x(U)} ∗ V is an open convex subset of GOTP(X ∗ Y ) and
(

(〈x′(U), y1〉, 〈x(U), y0〉] ∪ {x(U)} ∗ V
)

∩ (X ′ ∗ Y ′) = U .

Subcase (i-3). V contains both the left and right endpoints. Like in subcase (i-2),

we may deal with the right endpoint 〈x(U), y1〉 and find an open convex subset W

of GOTP(X ∗ Y ) such that W ∩ (X ′ ∗ Y ′) = U .

For Case (ii), p(U) is convex in X ′ since U is convex in X ′ ∗ Y ′ and p(U) is open

in X ′. Let V = {x ∈ X : ∃x′, x′′ ∈ p(U) such that x′ < x < x′′}. Then V is an
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open convex subset of X and V ∩X ′ = p(U). Put W = V ∗ Y . Then W is open in

GOTP(X ∗ Y ) and W ∩ (X ′ ∗ Y ′) = U .

For Case (iii), suppose that p(U) has the minimum element x0. Then V = U ∩

({x0} ∗ Y ′) 6= ∅ and V must contain 〈x0, y1〉 since Y ′ contains y1 and U is convex.

Moreover, V is open in {x0} ∗ Y ′. If V does not contain 〈x0, y0〉, then U ′ = V ∪

({x ∈ X : ∃x′, x′′ ∈ p(U) such that x′ < x < x′′} ∗ Y ) is open in GOTP(X ∗ Y )

and U ′ ∩ (X ′ ∗ Y ′) = U . If V also contains 〈x0, y0〉 and [x0,→) is open in X ,

then U ′ = ({x0} ∗ Y ) ∪ ({x ∈ X : ∃x′, x′′ ∈ p(U) such that x′ < x < x′′} ∗ Y )

is open in GOTP(X ∗ Y ) and U ′ ∩ (X ′ ∗ Y ′) = U . If V contains 〈x0, y0〉 but

[x0,→) is not open in X , then x0 has no immediate predecessor in X and there

is x′
0

< x0 such that (x′
0
, x0) ∩ X ′ = ∅. Put U ′ =

(

(x′
0
, x0] ∪ {x ∈ X : ∃x′, x′′ ∈

p(U) such that x′ < x < x′′}
)

∗ Y . Then U ′ is open in GOTP(X ∗ Y ) and U ′ ∩

(X ′ ∗ Y ′) = U . We can similarly discuss the case that p(U) has the maximum

element.

For Case (iv), proceed similarly to Case (iii).

Next suppose that U ′ is a convex subset of GOTP(X ′∗Y ′) which is the intersection

of X ′ ∗ Y ′ and some open convex subset U of GOTP(X ∗ Y ). Now we prove that

U ′ is open in GOTP(X ′ ∗ Y ′). Notice that for each x ∈ X ′, (〈x, y0〉, 〈x, y1〉)X′∗Y ′ =

{〈x, y〉 : y ∈ Y ′ and y0 < y < y1} is an open interval in X ′ ∗ Y ′ since Y ′ contains the

endpoints of Y . Hence U ∩ (〈x, y0〉, 〈x, y1〉)X′∗Y ′ ⊂ U ′ is open in GOTP(X ′ ∗ Y ′).

So to prove that U ′ is open in GOTP(X ′ ∗ Y ′), we only need to prove that for each

x ∈ X ′ if 〈x, y0〉 ∈ U ′ (or 〈x, y1〉 ∈ U ′), then 〈x, y0〉 (or 〈x, y0〉) is an interior point

of U ′ with respect to the GOT on X ′ ∗Y ′. Suppose that 〈x, y0〉 ∈ U ′. If x is not the

minimum point of p(U ′), we may take a point x′ ∈ p(U ′) such that x′ < x and some

y′ > y0 such that [〈x, y0〉, 〈x, y′〉)X′∗Y ′ ⊂ U ′ since U ∩ ({x} ∗ Y ) is open in {x} ∗ Y .

Therefore (〈x′, y1〉, 〈x, y′〉) ⊂ U ′, i.e., 〈x, y0〉 is an interior point of U ′ with respect to

the GOT on X ′ ∗ Y ′. If x is the minimum point of p(U ′), then there are two cases:

(a) [x,→) is open in X . Then [x,→)X′ is also open in X , by the definition of GOT,

we know that 〈x, y0〉 is an interior point of U ′; (b) [x,→) is not open in X . Then

there must be a point x′ ∈ X such that x′ < x, satisfying (x′, x) ∩ X ′ = ∅ since

U ′ = U ∩ (X ′ ∗ Y ′) and U is open in GOTP(X ∗ Y ). Thus (x′,→) is open in X

and (x′,→) ∩X ′ = [x,→)X′ . Therefore [x,→)X′ is open in X ′. Hence 〈x, y0〉 is an

interior point of U ′ with respect to the GOT on X ′ ∗ Y ′. The argument is similar

for the case that 〈x, y1〉 ∈ U ′. �

Remark. In Lemma 2.3, the condition that Y ′ contains the endpoints of Y

cannot be removed. For example, let X = Y = [0, 1], X ′ = X and Y ′ = [1
3
, 2

3
]. Then

GOTP(X∗Y ) = LOTP(X∗Y ) and GOTP(X ′∗Y ′) = LOTP(X ′∗Y ′). In X ′∗Y ′ as a

subspace of GOTP(X ∗Y ), { 1

2
}∗Y ′ is open since { 1

2
}∗Y ′ = (〈1

2
, 0〉, 〈1

2
, 1〉)∩(X ′∗Y ′).
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But { 1

2
} ∗ Y ′ is not open in GOTP(X ′ ∗ Y ′) since 〈1

2
, 0〉 is not an interior point of

{ 1

2
} ∗ Y ′ with respect to the topology on GOTP(X ′ ∗ Y ′).

It is well known that a GO-space X can be embedded as a dense subspace into

the compact LOTS l(X) that is called the minimal linearly ordered compactification

of X (see [5]). Let X , Y be GO-spaces. By Lemma 2.3, we have the following

conclusion.

Theorem 2.4. Suppose that Y has two endpoints. Then GOTP(X ∗ Y ) is a

subspace of LOTP(l(X) ∗ l(Y )).

Lemma 2.5. Let X , Y be GO-spaces. Suppose that Y has both the left end-

point y0 and the right endpoint y1. For every convex open subset U of GOTP(X ∗

{0, 1}), the set

U▽ =
⋃

{{x} ∗ Y : there exist x′, x′′ ∈ p(U) such that x′ < x < x′′}

is an open convex set in GOTP(X ∗Y ), and if V is also a convex subset of GOTP(X ∗

{0, 1}) with V ⊆ U , then V ▽ ⊆ U▽.

P r o o f. We only need to prove that U▽ is convex and open in GOTP(X ∗ Y ).

Assume that z′, z′′ ∈ U▽ with z′ < z′′, z′ = 〈x′, y′〉 and z′′ = 〈x′′, y′′〉. Let z′ < z <

z′′ with z = 〈x, y〉. If x′ = x′′, then z ∈ {x′} ∗ Y ⊆ U▽. If x′ 6= x′′, then x′ 6 x′′ and

for all x′ 6 x 6 x′′, {x} ∗ Y ⊆ U▽. Hence z ∈ {x} ∗ Y ⊆ U▽.

Next we prove that U▽ is open in GOTP(X ∗ Y ). Let z ∈ U▽ with z = 〈x, y〉. If

y is not an endpoint of Y , then z ∈ (〈x, y0〉, 〈x, y1〉) ⊆ U▽. If y = y0, there are three

cases: (i) x is neither the minimum nor the maximum point of p(U▽). Then there

exist x′, x′′ ∈ p(U▽) such that x′ < x < x′′. Hence z is an interior point of U▽ since

z ∈ (〈x′, y0〉, 〈x′′, y1〉) ⊆ U▽. (ii) x is the minimum point of p(U▽). By the definition

of U▽, there exists x′ ∈ p(U) with x′ < x. Moreover, x′ is the immediate predecessor

of x. Otherwise, we would have a contradiction with the minimality of x. Hence

[〈x, y0〉,→) is open in GOTP(X ∗ Y ) by Definition 2.2. Therefore z = 〈x, y〉 is an

interior point of U▽ because z ∈ [〈x, y0〉, 〈x, y1〉) ⊆ U▽. (iii) x is the maximum point

of π1(U
▽). The proof is similar to (ii). Analogously, if y = y1, then we can prove

that z = 〈x, y〉 is an interior point of U▽. �

Definition 2.6. Let L be a compact LOTS. For x ∈ L, put

0-cf(x) = min{|C| : C is a cofinal subset of (←, x)}

and

1-cf(x) = min{|C| : C is a coinitial subset of (x,→)}.

We call 0-cf(x) (1-cf(x)) the left (right) cofinality of x.
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Observe that 0-cf(x) = 0 (1-cf(x) = 0) if x is the left (right) endpoint of L;

0-cf(x) = 1 (1-cf(x) = 1) if x has an immediate predecessor (successor); 0-cf(x)

(1-cf(x)) is a regular cardinal if x is not the left (right) endpoint of L and has no

immediate predecessor (successor). For a GO-space X and x ∈ X , the left (right)

cofinality 0-cf(x) (1-cf(x)) means the cofinality defined in its minimal linearly ordered

compactification l(X). By [5, Lemma 3.5], if 0-cf(x) > ω (1-cf(x) > ω), then there

exists a cofinal increasing sequence {x0(α) ∈ X : α < 0-cf(x)} (a coinitial decreasing

sequence {x1(α) ∈ X : α < 1-cf(x)}).

The next definition was introduced by M. Matveev.

Definition 2.7. Let X be a space and x a point of X . X is said to be monoton-

ically Lindelöf at x, if there exists an operator rx that assigns to every non-empty

familyF of neighborhoods of x a non-empty countable family rxF of neighborhoods

of x so that rxF refines F and rxF refines rxG provided F refines G .

To verify Theorem 2.11, we need the following lemmas.

Lemma 2.8 ([8]). For a GO-space X , the following conditions are equivalent.

(1) X is monotonically Lindelöf.

(2) For any coverU ofX consisting of open convex subsets, there exists a countable

open cover rU refining U such that if V is also such an open convex cover of X

that refines U , then rV refines rU .

(3) For any coverU ofX consisting of open convex subsets, there exists a countable

open cover rU which also consists of convex subsets refining U such that if V is

also such an open convex cover of X that refines U , then rV refines rU .

Lemma 2.9 ([8]). Let X be a GO-space. If X is monotonically Lindelöf, then

both the left and right cofinalities at each point of X are not larger than ω1.

Lemma 2.10 ([8]). Suppose that X is a GO-space and x ∈ X . If both the left

and right cofinalities of x are not larger than ω1, then X is monotonically Lindelöf

at x.

Theorem 2.11. Let X , Y be GO-spaces. Suppose that |Y | > 1 and Y has

both the left endpoint and the right endpoint. Then GOTP(X ∗Y ) is monotonically

Lindelöf if and only if GOTP(X ∗ {0, 1}) and Y are monotonically Lindelöf.

P r o o f. Necessity. Assume GOTP(X ∗ Y ) is monotonically Lindelöf. Let y0 be

the left endpoint of Y , y1 the right endpoint. Obviously, GOTP(X ∗ {y0, y1}) is

monotonically Lindelöf since GOTP(X ∗ {y0, y1}) is a closed subset of GOTP(X ∗

Y ). Thus GOTP(X ∗ {0, 1}) is monotonically Lindelöf since GOTP(X ∗ {0, 1})
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is homeomorphic to GOTP(X ∗ {y0, y1}). Y is also monotonically Lindelöf since

{x} ∗ Y is a closed subspace of GOTP(X ∗ Y ) and homeomorphic to Y for every

x ∈ X .

Sufficiency. Assume GOTP(X ∗ {0, 1}) and Y are monotonically Lindelöf. Then

GOTP(X ∗ {y0, y1}) is monotonically Lindelöf. Suppose that U is an open cover of

GOTP(X ∗Y ) consisting of convex open subsets. Set WU = {W = U∩(X ∗{y0, y1}) :

U ∈ U }. Then WU is an open cover of GOTP(X ∗ {y0, y1}). Let rX∗{y0,y1} be a

monotone Lindelöf operator for GOTP(X ∗ {y0, y1}). Define

r1(U ) = {U = V ▽ : V ∈ rX∗{y0,y1}(WU ) and |V | > 1}.

By Lemma 2.8, we may assume that every member of rX∗{y0,y1}(WU ) is convex in

GOTP(X ∗ {y0, y1}). Therefore, r1(U ) is a countable collection of open subsets of

GOTP(X ∗Y ) by Lemma 2.5. Put E(U ) = {x ∈ X : 〈x, y0〉 or 〈x, y1〉 is an endpoint

of some member of rX∗{y0,y1}(WU )}. Clearly, E(U ) is a countable subset of X .

Take x ∈ E(U ).

(a) Consider the point 〈x, y0〉. It is easy to check that 0-cf(〈x, y0〉) = 0-cf(x) =

0-cf△(〈x, y0〉) and 1-cf(〈x, y0〉) = 1-cf(y0), where i-cf(〈x, y0〉), i = 0, 1 are the left

and right cofinalities of 〈x, y0〉 in GOTP(X ∗Y ), 0-cf△(〈x, y0〉) is the left cofinality of

〈x, y0〉 in GOTP(X∗{y0, y1}), 0-cf(x) is the left cofinality of x in X and 1-cf(y0) is the

right cofinality of y0 in Y . By Lemma 2.9, both the left and right cofinalities of 〈x, y0〉

are not larger than ω1 since GOTP(X ∗ {y0, y1}) and Y are monotonically Lindelöf.

Therefore GOTP(X ∗ Y ) is monotonically Lindelöf at 〈x, y0〉 by Lemma 2.10. Let

r〈x,y0〉 be a monotone Lindelöf operator at 〈x, y0〉. Put

O(x, y0, U ) = {O ∩ (V ▽ ∪ [〈x, y0〉, 〈x, y1〉)) : 〈x, y0〉 ∈ O ∈ U

and 〈x, y0〉 ∈ V ∈ rX∗{y0,y1}(WU )}.

Claim 1. For every V ∈ rX∗{y0,y1}(WU ) with 〈x, y0〉 ∈ V , the set V ▽ ∪

[〈x, y0〉, 〈x, y1〉) is open in GOTP(X ∗ Y ). Consider three cases:

(a-1) 〈x, y0〉 is the left endpoint of V . By Definition 2.2, [x,→) is open in X since

V is open in GOTP(X ∗ {y0, y1}). So [〈x, y0〉, 〈x, y1〉) is open in GOTP(X ∗ Y ) by

Definition 2.2. Therefore V ▽∪[〈x, y0〉, 〈x, y1〉) is open inGOTP(X∗Y ) by Lemma 2.5.

(a-2) 〈x, y0〉 is the right endpoint of V . If |V | = 1, then V ▽ = ∅ and x ∈ RX . So

V ▽ ∪ [〈x, y0〉, 〈x, y1〉) = [〈x, y0〉, 〈x, y1〉) is open in GOTP(X ∗ Y ). If |V | > 1, then

there is a z ∈ X ∗ Y such that (z, 〈x, y0〉) ⊂ V ▽ since V is open and convex. So

V ▽ ∪ [〈x, y0〉, 〈x, y1〉) = [〈x, y0〉, 〈x, y1〉) is open in GOTP(X ∗ Y ).

(a-3) 〈x, y0〉 is neither the right nor the left endpoint of V . In this case,

[〈x, y0〉, 〈x, y1〉) ⊆ V ▽. Hence V ▽ ∪ [〈x, y0〉, 〈x, y1〉) = V ▽. The proof of Claim 1 is

complete.
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By Claim 1, r〈x,y0〉(O(x, y0, U )) is a countable open family of neighborhoods of

〈x, y0〉 in GOTP(X ∗ Y ). Define

r2(U ) =
⋃

{r〈x,y0〉(O(x, y0, U )) : x ∈ E(U )}.

(b) Consider the point 〈x, y1〉. Similarly to (a), GOTP(X ∗ Y ) is monotonically

Lindelöf at 〈x, y1〉. Define

O(x, y1, U ) = {O ∩ (V ▽ ∪ (〈x, y0〉, 〈x, y1〉]) : 〈x, y1〉 ∈ O ∈ U

and 〈x, y1〉 ∈ V ∈ rX∗{y0,y1}(WU )},

and

r3(U ) =
⋃

{r〈x,y1〉(O(x, y1, U )) : x ∈ E(U )},

where r〈x,y1〉 is a monotone operator at 〈x, y1〉 for GOTP(X ∗ Y ).

For every x ∈ X , {x} ∗ Y is monotonically Lindelöf because {x} ∗ Y is homeomor-

phic to Y . Let r{x}∗Y be a monotone Lindelöf operator for {x} ∗ Y . Define

r4(U ) = {V ∩ (〈x, y0〉, 〈x, y1〉) : V ∈ r{x}∗Y (Ux) and x ∈ E(U )},

where Ux = {U ∩ ({x} ∗ Y ) : U ∈ U }.

Put

r(U ) = r1(U ) ∪ r2(U ) ∪ r3(U ) ∪ r4(U ).

Then r(U ) is a countable family of open subsets of GOTP(X ∗ Y ) and refines U .

Claim 2. r(U ) is a cover of GOTP(X ∗Y ). Let z = 〈x, y〉 ∈ X ∗Y . If x /∈ E(U ),

then there exist 〈x′, y′′〉, 〈x′′, y′′〉 ∈ V and V ∈ rX∗{y0,y1}(WU ) such that x′ < x < x′′.

By Lemma 2.5, z ∈ {x} ∗ Y ⊆ V ▽ ∈ r1(U ). If x ∈ E(U ), then there are two cases:

(i) y 6= y0 and y 6= y1. Then z is covered by r4(U ). (ii) y = y0 or y = y1. By

Claim 1, z is covered by r2(U ) or r3(U ), respectively.

Claim 3. r is a monotone operator for GOTP(X ∗Y ). Suppose that V and U are

open covers of GOTP(X ∗ Y ) and V refines U . Let A ∈ r(V ). Then there are four

cases as follows.

(I) A ∈ r1(V ).

There exists an O ∈ rX∗{y0,y1}(WV ) with |O| > 1 such that A = O▽ by the

definition of r1(V ). Moreover, there exists an H ∈ rX∗{y0,y1}(WU ) such that O ⊆ H

since V refines U and rX∗{y0,y1}(WV ) refines rX∗{y0,y1}(WV ). Hence |H | > 1; let

B = H▽. Then A ⊆ B ∈ r1(U ).
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(II) A ∈ r2(V ).

Then there exists an x ∈ E(V ) such that A ∈ r〈x,y0〉(O(x, y0, V )). By the defi-

nition of O(x, y0, V ), there exists a W ∈ rX∗{y0,y1}(WV ) with 〈x, y0〉 ∈ W and an

O ∈ V with 〈x, y0〉 ∈ O such that A ⊆ O ∩ (W▽ ∪ [〈x, y0〉, 〈x, y1〉)). Moreover,

E(U ) ⊆ E(V ) since V refines U . Then there are two possibilities to consider:

(II-1) x ∈ E(U ).

Then O(x, y0, V ) refines O(x, y0, U ) since V refines U and rX∗{y0,y1}(WV ) refines

rX∗{y0,y1}(WU ). Hence, A ≺ r〈x,y0〉(O(x, y0, U )) ⊆ r2(U ).

(II-2) x /∈ E(U ).

In this case, neither 〈x, y0〉 nor 〈x, y1〉 is an endpoint of any member of rX∗{y0,y1}

(WU ). Hence, for every memberD ∈ rX∗{y0,y1}(WU ) with 〈x, y0〉 ∈ D, {x}∗Y ⊆ D▽.

In addition, there exists anH ∈ rX∗{y0,y1}(WU ) with |H | > 1 such thatW ⊆ H since

rX∗{y0,y1}(WV ) refines rX∗{y0,y1}(WU ). Consequently, A ⊆ W▽ ∪ [〈x, y0〉, 〈x, y1〉) ⊆

H▽ ∈ r1(U ).

(III) A ∈ r3(V ).

The proof for this case is similar to (II).

(IV) A ∈ r4(V ).

In this case, there exist an x ∈ E(V ) and W ∈ r{x}∗Y (Vx) such that A = W ∩

(〈x, y0〉, 〈x, y1〉).

(IV-1) x ∈ E(U ).

Because r{x}∗Y (Vx) refines r{x}∗Y (Ux), there exists an H ∈ r{x}∗Y (Ux) such that

W ⊆ H . So A ⊆ H ∩ (〈x, y0〉, 〈x, y1〉) ∈ r4(U ).

(IV-2) x /∈ E(U ).

Similarly to (II-2), there exists H ∈ rX∗{y0,y1}(WU ) with |H | > 1 and 〈x, y0〉 ∈ H

such that A ⊆ (〈x, y0〉, 〈x, y1〉) ⊆ H▽ ∈ r1(U ). �

In Theorem 2.11, we do not know whether “GOTP(X ∗ {0, 1}) is monotonically

Lindelöf” can be replaced by “X is monotonically Lindelöf”. So the following ques-

tions are raised.

Question 1. Let X be a monotonically Lindelöf GO-space. Is GOTP(X ∗ {0, 1})

monotonically Lindelöf?

Notice that if X is a separable GO-space, then GOTP(X ∗ {0, 1}) is separable

(see [2, Proposition 3.1]), so by [2, Proposition 3.1], GOTP(X ∗ {0, 1}) is mono-

tonically Lindelöf. Therefore to find a counterexample for Question 1, a candidate

GO-space should not be separable.

Question 2. Is there a non-separable monotonically Lindelöf GO-space X such

that GOTP(X ∗ {0, 1}) is monotonically Lindelöf?
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In [2], a branch space is constructed from the Aronszajn tree which is non-separable

and monotonically Lindelöf. We also do not know whether the double arrow of the

branch space described in [2, Example 2.6] is monotonically Lindelöf.

Finally, we consider the cases that Y in GOTP(X ∗Y ) does not have the maximal

point or the minimal point. Obviously if Y has neither the maximal point nor the

minimal point, then GOTP(X ∗ Y ) is the topological sum of |X | many copies of Y ’s

so that GOTP(X ∗ Y ) even is not Lindelöf when |X | > ω, which is irrelative to the

topology on X .

Theorem 2.12. Suppose that X = (X, τ, <) is a GO-space, Y is a monotonically

Lindelöf GO-space and Y has the maximal (minimal) point but not the other one.

Then GOTP(X ∗ Y ) is monotonically Lindelöf if and only if the GO-space X ′ =

(X, τ ′, <) is monotonically Lindelöf, where τ ′ is the topology on X with the subbase

τ ∪ {[x,→) : x ∈ X} (τ ∪ {(←, x] : x ∈ X}).

P r o o f. The necessity is obvious since X ′ is a closed subspace of GOTP(X ∗Y ).

Now let U be an open cover of GOTP(X ∗Y ) and assume that Y has the maximal

point y1. Without loss of generality we may assume that every element of U is

convex. For each convex open subset U of GOTP(X ∗ Y ) with |p(U)| > 1, let

U ′ = {x ∈ X : there are 〈x′, y′〉, 〈x′′, y′′〉 ∈ U such that x′
6 x < x′′}.

Then U ′ = {U ′ : U ∈ U with |p(U)| > 1} ∪ {{x} : x is isolated in X ′} is an open

convex cover of X ′ and satisfies that if U refines V then U ′ refines V ′. Let rX′ be

the monotonically Lindelöf operator on X ′. For each convex open subset W of X ′,

put

W▽ =











































⋃

{{x} ∗ Y : there exist x′, x′′ ∈W such that x′ < x 6 x′′}

if W has no maximal point, or the maximal

point x1 ∈ LX , or the maximal point of W

is just the maximal point of X ;
⋃

{{x} ∗ Y : there exist x′, x′′ ∈W such that x′ < x 6 x′′} \ {〈x1, y1〉}

if W has the maximal point x1 /∈ LX .

Then it is easy to see that for convex open subsets W1 of X ′ with W ⊂ W1, we

have W▽ ⊂ W▽

1 and if W ⊂ U ′ for a convex open subset U of GOTP(X ∗ Y ),

then W▽ ⊂ U . Put r1U = {W▽ : W ∈ rX′U ′}. Notice that r1U possibly does

not cover GOTP(X ∗ Y ) since if, for example, W ∈ rX′U ′ is a singleton then

W▽ = ∅. It is easy to see that for an x ∈ X ′, if {x} ∗ Y is not covered by r1U ,
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then either ({x} ∗ Y ) ∩
⋃

r1U = ∅ or {〈x, y1〉} = ({x} ∗ Y ) \
⋃

r1U , and that

S = {x ∈ X : {x} ∗ Y is not covered by r1U } is at most countable. The set S can

be divided to three parts as follows:

(1) S1 = {x ∈ S : x ∈ LX or x is the maximal point of X};

(2) S2 = {x ∈ S : {〈x, y1〉} = ({x} ∗ Y ) \
⋃

r1U };

(3) S3 = S \ (S1 ∪ S2).

For x ∈ S1, the subset {x} ∗ Y is open in GOTP(X ∗ Y ). Let r{x}∗Y be the

monotonically Lindelöf operator on {x}∗Y . Put r2U =
⋃

{r{x}∗Y U |{x}∗Y : x ∈ S1},

where U |{x}∗Y = {U ∩ ({x} ∗ Y ) : U ∈ U }. Then r2U is a countable open family

refining U .

For x ∈ S2 ∪ S3, the subset {x} ∗ Y is not open since the maximal point 〈x, y1〉

of {x} ∗ Y has no immediate successor in X ∗ Y and x /∈ LX . Notice that the left

and right cofinalities at 〈x, y1〉 in GOTP(X ∗Y ) are not larger than ω1 since {x} ∗Y

and X ′ are monotonically Lindelöf. By Lemma 2.10, GOTP(X ∗Y ) is monotonically

Lindelöf at 〈x, y1〉. Let r〈x,y1〉 be the monotonically Lindelöf operator at 〈x, y1〉 and

let U〈x,y1〉 = {U ∈ U : 〈x, y1〉 ∈ U}. Put

r3U =
⋃

{r〈x,y1〉U〈x,y1〉 : x ∈ S2 ∪ S3}.

For x ∈ S3, put Vx = {U ∩ ({x} ∗ Y ) \ {〈x, y1〉} : U ∈ U }. Then V ′
x = Vx ∪

r〈x,y1〉U〈x,y1〉|{x}∗Y is an open cover of {x} ∗ Y . Put rxV ′
x = {V \ {〈x, y1〉} : V ∈

r{x}∗Y V ′
x}. Define

r4U =
⋃

{rxV
′

x : x ∈ S3}.

Put rU = r1U ∪ r2U ∪ r3U ∪ r4U . It is easy to check that r is a monotonically

Lindelöf operator on GOTP(X ∗ Y ).

For the case that Y has the minimal point but not the maximal one, the proof is

similar. �

Remark. In Theorem 2.12, the assumption that X ′ is monotonically Lindelöf

cannot be replaced by X is monotonically Lindelöf since, in general, the monotone

Lindelöfness of X is not equivalent to the monotone Lindelöfness of X ′. For exam-

ple, let X be the GO-space constructed by deleting all limit ordinals less than ω1

from the LOTS [0, ω1]. Then X is homeomorphic to the space constructed in [2,

Example 2.2] so that X is a monotonically Lindelöf GO-space. Let Y = (0, 1]. Then

Y is monotonically Lindelöf which has the maximal point but not the minimal one.

Then X ′ is an uncountable discrete space, thus X ′ is even not Lindelöf.
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