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Abstract. By a regular act we mean an act such that all its cyclic subacts are projective.
In this paper we introduce strong (P )-cyclic property of acts over monoids which is an
extension of regularity and give a classification of monoids by this property of their right
(Rees factor) acts.
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1. Introduction

Throughout this paper S will denote a monoid. We refer the reader to [1] and [3]

for basic results, definitions and terminology relating to semigroups and acts over

monoids and to [4], [5] for definitions and results on flatness which are used here.

A monoid S is called right (left) reversible if for every s, s′ ∈ S there exist u, v ∈ S

such that us = vs′(su = s′v). A monoid S is said to be left collapsible if for any

p, q ∈ S there exists r ∈ S such that rp = rq. An element s of a monoid S is callled

left e-cancellable for an idempotent e ∈ S if s = se and kerλs 6 kerλe. By ([3, III,

10.15]), this is equivalent to saying that kerλs = kerλe.

A right ideal K of a monoid S is called left stabilizing if for every k ∈ K, there

exists l ∈ K such that lk = k, and it is called left annihilating if

(∀t ∈ S)(∀x, y ∈ S \ K)(xt, yt ∈ K ⇒ xt = yt).

If for all s, t ∈ S \ K and for all homomorphisms f : S(Ss ∪ St) → SS

f(s), f(t) ∈ K ⇒ f(s) = f(t),

then K is called strongly left annihilating.
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A right S-act A satisfies Condition (P ) if for all a, a′ ∈ A, s, s′ ∈ S, as = a′s′

implies that there exist a′′ ∈ A, u, v ∈ S such that a = a′′u, a′ = a′′v and us = vs′. A

monoids S is called right PCP if all principal right ideals of S satisfy Condition (P ).

A right S-act A is called (strongly) faithful if for s, t ∈ S the equality as = at for

(some) all a ∈ A implies s = t.

A right S-act A is called simple if it contains no subacts other than A itself.

We use the following abbreviations:

weak homoflatness = (WP )

principal weak homoflatness = (PWP )

weak flatness = WF

principal weak flatness = PWF

2. Classification by strong (P )-cyclic property of right acts

In this section we give a classification of monoids when acts with other properties

imply strong (P )-cyclic property and vice versa. We also give a classification of

monoids when all their acts are strongly (P )-cyclic.

We recall that an element a of a right S-act A is called act-regular if there exists

a homomorphism f : aS → S such that af(a) = a, and A is called a regular act if

every a ∈ A is act-regular. It can be seen by ([3, III, 19.3]) that A is a regular act if

and only if for every a ∈ A the cyclic subact aS is projective.

Theorem 2.1. Let S be a monoid and A a right S-act. Then A is regular if

and only if for every a ∈ A there exists z ∈ S such that kerλa = kerλz and zS is

projective.

P r o o f. By ([3, III, 19.2]), ([3, III, 19.3]) and ([3, III, 17.8]), it is obvious. �

Definition 2.1. A right S-act A is called strongly (P )-cyclic if for every a ∈ A

there exists z ∈ S such that kerλa = kerλz and zS satisfies Condition (P ).

It can be seen that if a right S-act A is strongly (P )-cyclic, then for every a ∈

A there exists z ∈ S such that aS ∼= zS. Since zS satisfies Condition (P ), aS

also satisfies Condition (P ). Thus every cyclic subact of A satisfies Condition (P ).

However, note that the converse is not true in general, for if S is a non trivial group

and ΘS = {θ} is the one element act then, since S is right reversible, by ([3, III, 13.7])

ΘS satisfies Condition (P ), but since for every z ∈ S, kerλz = ∆S 6= S×S = kerλθ,

then ΘS is not strongly (P )-cyclic.

It is obvious that every regular right act is strongly (P )-cyclic, but the converse is

not true, for if S = S1 ∪S2, where S1 = {1, e1, e2, . . . , } is an infinite semigroup with
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the multiplication defined by ek · el = emax{k,l}, S2 = {x, x2, x3, . . .} is an infinite

monogenic semigroup and the multiplication in S is defined by s · xn = xn · s = xn

for every s ∈ S1 and every natural number n, then S is a right PCP monoid, but

it is not a right PP monoid, that is, SS is a strongly (P )-cyclic right S-act which is

not regular.

Now we establish some general properties.

Theorem 2.2. Let S be a monoid. Then:

(1) ΘS is strongly (P )-cyclic if and only if S contains a left zero element.

(2) SS is strongly (P )-cyclic if and only if S is right PCP .

(3) If {Ai}i∈I is a family of subacts of AS , then
⋃

i∈I

Ai is strongly (P )-cyclic if and

only if for every i ∈ I, Ai is strongly (P )-cyclic.

(4) Every subact of a strongly (P )-cyclic right S-act is strongly (P )-cyclic.

P r o o f. (1) Suppose ΘS = {θ} is strongly (P )-cyclic. Then by definition there

exists z ∈ S such that kerλθ = kerλz . Since kerλθ = S × S, z is a left zero element.

Conversely, suppose that S contains a left zero element z. Then kerλθ = kerλz =

S × S. Also, S is right reversible, hence by ([3, III, 13.7]), zS = {z} satisfies

Condition (P ).

The proofs of other parts are straightforward. �

Note that freeness does not imply strong (P )-cyclic property, for if S = {0, 1, x}

where x2 = 0, then SS as a right S-act is free, but SS is not strongly (P )-cyclic,

otherwise xS = {0, x} as a cyclic subact of SS would satisfy Condition (P ) and so

x · x = x · 0 would imply that there exist u, v in S such that x = xu = xv and

ux = v0, which is not true.

Now we characterize monoids over which freeness and projectivity of (finitely gen-

erated, cyclic) acts imply strong (P )-cyclic property of acts.

Theorem 2.3. For any monoid S the following statements are equivalent:

(1) All projective right S-acts are strongly (P )-cyclic.

(2) All projective finitely generated right S-acts are strongly (P )-cyclic.

(3) All projective cyclic right S-acts are strongly (P )-cyclic.

(4) All projective generators right S-acts are strongly (P )-cyclic.

(5) All projective generators finitely generated right S-acts are strongly (P )-cyclic.

(6) All projective generators cyclic right S-acts are strongly (P )-cyclic.

(7) All free right S-acts are strongly (P )-cyclic.

(8) All free finitely generated right S-acts are strongly (P )-cyclic.

(9) All free cyclic right S-acts are strongly (P )-cyclic.
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(10) S is right PCP .

(11) (∀s, t, z ∈ S) (zs = zt ⇒ (∃u, v ∈ S) (z = zu = zv ∧ us = vt)).

P r o o f. Implications (1) ⇒ (2) ⇒ (3), (4) ⇒ (5) ⇒ (6), (7) ⇒ (8) ⇒ (9),

(3) ⇒ (6) ⇒ (9) and (1) ⇒ (4) ⇒ (7) are obvious.

(9) ⇒ (10). By ([3, I, 5.13]), SS is a free cyclic right S-act and so by assumption

it is strongly (P )-cyclic, thus by (2) of Theorem 2.2, S is right PCP .

(10) ⇔ (11). By ([3, III, 13.10]), it is obvious.

(10) ⇒ (1). Suppose that A is a projective right S-act. Then by ([3, III, 17.8]),

A =
∐

i∈I Ai, where Ai
∼= eiS for some ei ∈ E(S). Thus for every i ∈ I, Ai is

strongly (P )-cyclic. Since by assumption SS is strongly (P )-cyclic, hence by (4) of

Theorem 2.2, eiS is strongly (P )-cyclic. Thus Ai is strongly (P )-cyclic and so by (3)

of Theorem 2.2, A is strongly (P )-cyclic as required. �

Note that cofreeness does not imply strong (P )-cyclic property, otherwise every

act would be strongly (P )-cyclic, as by ([3, II, 4.3]), every act can be embedded into

a cofree act and also by (4) of Theorem 2.2, every subact of a strongly (P )-cyclic

act is strongly (P )-cyclic. Now if we consider the monoid S = {0, 1, x} with x2 = 0,

then as we saw before Theorem 2.3, SS as a right S-act is not strongly (P )-cyclic

and so we have a contradiction. Now it is obvious that divisibility does not imply

strong (P )-cyclic property, either. Note also that SS is a cyclic faithful act and so

faithfulness of cyclic acts does not imply strong (P )-cyclic property, either.

Theorem 2.4. For any monoid S the following statements are equivalent:

(1) All right S-acts are strongly (P )-cyclic.

(2) All finitely generated right S-acts are strongly (P )-cyclic.

(3) All cyclic right S-acts are strongly (P )-cyclic.

(4) All monocyclic right S-acts are strongly (P )-cyclic.

(5) All divisible right S-acts are strongly (P )-cyclic.

(6) All principally weakly injective right S-acts are strongly (P )-cyclic.

(7) All fg-weakly injective right S-acts are strongly (P )-cyclic.

(8) All weakly injective right S-acts are strongly (P )-cyclic.

(9) All injective right S-acts are strongly (P )-cyclic.

(10) All cofree right S-acts are strongly (P )-cyclic.

(11) All faithful right S-acts are strongly (P )-cyclic.

(12) All faithful finitely generated right S-acts are strongly (P )-cyclic.

(13) All faithful right S-acts generated by at most two elements are strongly (P )-

cyclic.

(14) S = {1} or S = {0, 1}.
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P r o o f. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4), (5) ⇒ (6) ⇒ (7) ⇒ (8) ⇒ (9) ⇒

(10), (11) ⇒ (12) ⇒ (13), (1) ⇒ (5), and (1) ⇒ (11) are obvious.

(4) ⇒ (14). By assumption all monocyclic right S-acts satisfy condition (P ) and

so by ([3, IV, 9.9]), S = G or S = G0, where G is a group. Now we show in both cases

that |G| = 1. If S = G and |G| > 1, then for every s ∈ G \ {1}, S/̺(s, 1) is strongly

(P )-cyclic and so there exists z ∈ G such that kerλ[1]̺(s,1)
= kerλz . Since (s, 1) ∈

̺(s, 1), we have [1]̺(s,1)1 = [1]̺(s,1)s, that is, (1, s) ∈ kerλ[1]̺(s,1)
= kerλz. Thus z =

zs and so s = 1, which is a contradiction. If S = G0 and |G| > 1, then by assumption

for every s ∈ G \ {1}, S/̺(s, 1) is strongly (P )-cyclic and so there exists z ∈ G0 such

that kerλ[1]̺(s,1)
= kerλz . If z ∈ G, then kerλz = kerλ1 = ∆S and so (1, s) ∈ ∆S ,

that is, s = 1, which is a contradiction. If z = 0, then kerλ[1]̺(s,1)
= kerλ0 = G0×G0

and so (0, 1) ∈ kerλ[1]̺(s,1)
, that is, [0]̺(s,1) = [1]̺(s,1). Thus (0, 1) ∈ ̺(s, 1) and so

by ([3, I, 4.37]), there exist s1, s2, . . . , sn, t1, t2, . . . , tn, y1, y2, . . . , yn ∈ S such that

for every i ∈ {1, 2, . . . , n}, {si, ti} = {s, 1},

0 = s1y1, t2y2 = s3y3, . . . , tnyn = 1,

t1y1 = s2y2, t3y3 = s4y4, . . .

From 0 = s1y1 we have y1 = 0 and so 0 = s2y2, which implies that y2 = 0. By

continuing this procedure we obtain contradiction. Thus |G| = 1 and so either

S = {1} or S = {0, 1} as required.

(14) ⇒ (1). If S = {1} or S = {0, 1}, then by ([3, IV, 14.4]), all right S-acts are

regular and so all right S-acts are strongly (P )-cyclic as required.

(10) ⇒ (1). Suppose that A is a right S-act. By ([3, II, 4.3]), A can be embedded

into a cofree right S-act. Since A is a subact of a cofree right S-act, by assumption

A is a subact of a strongly (P )-cyclic right S-act and so by (4) of Theorem 2.2, A is

strongly (P )-cyclic.

(13) ⇒ (3). Suppose that aS is a cyclic right S-act and BS = aS
∐

S. Since S

is faithful, BS is also faithful and so by assumption BS is strongly (P )-cyclic. Since

aS is a subact of BS , by (4) of Theorem 2.2, aS is also strongly (P )-cyclic. Thus

every cyclic right S-act is strongly (P )-cyclic. �

Now from Theorem 2.4 and ([3, IV, 14.4]) it is easy to show that all right S-acts

are regular: it suffices to show that all monocyclic right S-acts are strongly (P )-cyclic

or equivalently, if there exists a right S-act which is not regular, then there exists a

monocyclic right S-act which is not strongly (P )-cyclic.

Lemma 2.1. Let S be a monoid, zS a strongly (P )-cyclic right ideal of S and IS

a right ideal of S such that IS ⊂ zS. Then AS = zS
∐IS zS is strongly (P )-cyclic.
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P r o o f. We know that AS = (z, x)S ∪̇ IS ∪̇ (z, ̺y)S, where BS = (z, x)S ∪̇

IS
∼= zS ∼= (z, y)S ∪̇ IS = CS . Since by assumption zS is strongly (P )-cyclic and

AS = BS ∪ CS , hence by (3) of Theorem 2.2, AS is also strongly (P )-cyclic as

required. �

Now we show that strong (P )-cyclic property does not imply torsion freeness in

general. Let S = (N, ·), where N is the set of natural numbers and AN = N
∐2N

N.

Then by Lemma 2.1, AN is a strongly (P )-cyclic right S-act, since NN is strongly

(P )-cyclic and 2N is an ideal of N such that 2N ⊂ N. But AN is not torsion free,

since 2 = (1, x)2 = (1, y)2, but (1, x) 6= (1, y).

Now it is obvious that strong (P )-cyclic property does not imply other properties

which imply torsion freeness, hence it is natural to ask for monoids S over which

strong (P )-cyclic property of acts imply torsion freeness and other properties which

implies torsion freeness.

Lemma 2.2. Let S be a monoid. If there exists a strongly (P )-cyclic right S-act,

then there exists the greatest strongly (P )-cyclic right ideal T of S.

P r o o f. By assumption there exists a strongly (P )-cyclic right S-act A. Thus

for every a ∈ A there exists z ∈ S such that aS ∼= zS. Since aS as a subact of

A is strongly (P )-cyclic, zS is also strongly (P )-cyclic and so we have at least one

strongly (P )-cyclic right ideal of S. Now the union of all strongly (P )-cyclic right

ideals of S is the greatest right ideal T of S, which by (3) of Theorem 2.2 is strongly

(P )-cyclic. �

In the following theorems we suppose that there exists at least a strongly (P )-cyclic

right S-act and T is the greatest strongly (P )-cyclic right ideal of S.

Theorem 2.5. Let S be a monoid. Then all strongly (P )-cyclic right S-acts are

torsion free if and only if for every z ∈ T and every right cancellable element c of S

there exists an element l ∈ S such that z = zcl.

P r o o f. Suppose that all strongly (P )-cyclic right S-acts are torsion free and

let z ∈ T , c ∈ S, where c is right cancellable. We claim that zS = zcS, otherwise

zcS ⊂ zS and so by Lemma 2.1, AS = zS
∐zcS

zS is strongly (P )-cyclic, since

zS ⊆ T and T is strongly (P )-cyclic. Thus by assumption AS is torsion free. Since

zc = (z, x)c = (z, y)c, we have (z, x) = (z, y), which is a contradiction. Thus

zS = zcS and so there exists l ∈ S such that z = zcl.

Conversely, suppose that A is a strongly (P )-cyclic right S-act, ac = bc for a, b ∈

A and a right cancellable element c of S. Then there exist z1, z2 ∈ S such that

kerλa = kerλz1 and kerλb = kerλz2 and so aS ∼= z1S and bS ∼= z2S. Since A is
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strongly (P )-cyclic, hence by (4) of Theorem 2.2, aS and bS are strongly (P )-cyclic.

Thus z1S and z2S are also strongly (P )-cyclic. Since z1S ∪ z2S ⊆ T , by assumption

there exists l ∈ S such that z1 = z1cl. Thus

z1 = z1cl ⇒ (1, cl) ∈ kerλz1 = kerλa ⇒ a = acl.

Thus

ac = aclc ⇒ bc = bclc ⇒ (c, clc) ∈ kerλb = kerλz2 ⇒ z2c = z2clc

⇒ z2 = z2cl ⇒ (1, cl) ∈ kerλz2 = kerλb ⇒ b = bcl = acl = a.

Thus A is torsion free as required. �

Lemma 2.3. Let S be a monoid and A a right S-act. If all cyclic subacts of A

are simple, then for every a, a′ ∈ A, either aS ∩ a′S = ∅ or aS = a′S.

P r o o f. Suppose a, a′ ∈ A and let x ∈ aS ∩ a′S. Then xS ⊆ aS and xS ⊆ a′S.

Since aS and a′S are simple, we have aS = xS = a′S. �

Theorem 2.6. For any monoid S the following statements are equivalent:

(1) All strongly (P )-cyclic right S-acts satisfy Condition (P ).

(2) All strongly (P )-cyclic right S-acts satisfy Condition (WP ).

(3) All strongly (P )-cyclic right S-acts satisfy Condition (PWP ).

(4) For every z ∈ T , zS is a minimal right ideal of S.

P r o o f. Implications (1) ⇒ (2) ⇒ (3) are obvious.

(3) ⇒ (4). Let z ∈ T . We claim that zS is a minimal right ideal of S, otherwise

there exists a right ideal I of S such that I ⊂ zS. Then by Lemma 2.1, AS =

zS
∐IS zS is strongly (P )-cyclic and so AS satisfies Condition (PWP ). Now let

zu ∈ I. Then by the definition of AS , zu = (z, x)u = (z, y)u and so there exist

a ∈ AS , w1, w2 ∈ S such that (z, x) = aw1, (z, y) = aw2 and w1u = w2u. Now

(z, x) = aw1 implies that a = (t, x) for some t ∈ zS \ I, similarly a = (t′, y) for some

t′ ∈ zS \ I and so we have a contradiction.

(4) ⇒ (1). Suppose that A is a strongly (P )-cyclic right S-act and let a ∈ A. Then

by definition there exists z ∈ S such that aS ∼= zS. Since by (4) of Theorem 2.2,

aS is strongly (P )-cyclic, zS is strongly (P )-cyclic. Since T is the greatest strongly

(P )-cyclic right ideal of S, we have zS ⊆ T and so z ∈ T . Thus by assumption zS

is a minimal right ideal of S and so aS is simple. Now suppose that as = a′t, for

a, a′ ∈ A and s, t ∈ S. Since as = a′t, hence aS ∩ a′S 6= ∅ and so by Lemma 2.3,

aS = a′S. Thus a′ = as1 for some s1 ∈ S and so as = as1t. Since A is strongly (P )-

cyclic, aS satisfies Condition (P ) and so there exist s2, u, v ∈ S such that a = as2u,

as1 = as2v and us = vt. Now if a′′ = as2, then a = a′′u, a′ = as1 = as2v = a′′v and

us = vt. Thus A satisfies condition (P ) as required. �
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Theorem 2.7. Let S be a monoid. Then all strongly (P )-cyclic right S-acts are

strongly flat if and only if for every z ∈ T , zS is a strongly flat minimal right ideal

of S.

P r o o f. Suppose all strongly (P )-cyclic right S-acts are strongly flat and let

z ∈ T . Then by Theorem 2.6, zS is a minimal right ideal of S. Since T is strongly

(P )-cyclic and zS is a subact of T, by (4) of Theorem 2.2, zS is also strongly (P )-

cyclic and so by assumption it is strongly flat.

Conversely, suppose that A is a strongly (P )-cyclic right S-act. Since zS is a

minimal right ideal of S for z ∈ T, zS is simple and so for every a ∈ A, aS is

simple, as by definition aS ∼= zS, for some z ∈ T . Thus by Lemma 2.3 for every

a, a′ ∈ A either aS ∩ a′S = ∅ or aS = a′S. Hence there exists A′ ⊆ A such that

A =
.
⋃

a∈A′

aS. On the other hand, aS is strongly flat for every a ∈ A′, as aS ∼= zS

and by assumption zS is strongly flat. Thus by ([3, III, 9.3]), A is strongly flat as

required. �

Theorem 2.8. Let S be a monoid. Then all strongly (P )-cyclic right S-acts are

projective if and only if for every z ∈ T , zS is a projective minimal right ideal of S.

P r o o f. Suppose that all strongly (P )-cyclic right S-acts are projective and let

z ∈ T . Then by Theorem 2.6, zS is a minimal right ideal of S. Since T is strongly

(P )-cyclic and zS is a subact of T , by (4) of Theorem 2.2, zS is also strongly (P )-

cyclic and so by assumption it is projective.

Conversely, suppose that A is a strongly (P )-cyclic right S-act. Then by definition

for every a ∈ A there exists z ∈ S such that aS ∼= zS. Since by assumption zS is

projective, by ([3, III, 17.16]), there exists e ∈ E(S) such that kerλz = kerλe and so

zS ∼= eS. Thus for every a ∈ A there exists e ∈ E(S) such that aS ∼= eS. As we saw

in the proof of Theorem 2.7, there exists a subset A′ of A such that A =
.
⋃

a∈A′

aS.

Thus by ([3, III, 17.8]), A is projective. �

Theorem 2.9. Let S be a monoid. Then all cyclic strongly (P )-cyclic right S-

acts are projective generators if and only if for every z ∈ T there exists e ∈ E(T )

such that kerλz = kerλe and eJ 1.

P r o o f. Suppose that all cyclic strongly (P )-cyclic right S-acts are projective

generators and let z ∈ T . Then zS as a subact of T is strongly (P )-cyclic and so by

assumption it is a projective generator. Thus by ([3, III, 18.8]) there exists e ∈ E(S)

such that kerλz = kerλe and eJ 1. Since zS is strongly (P )-cyclic and zS ∼= eS, eS

is strongly (P )-cyclic and so e ∈ E(T ).

602



Conversely, suppose that aS is a strongly (P )-cyclic right S-act. By definition

there exists z ∈ S such that kerλa = kerλz and so aS ∼= zS. Thus zS is strongly

(P )-cyclic and so z ∈ T . Hence by assumption there exists e ∈ E(T ) such that

kerλz = kerλe and eJ 1. Thus by ([3, III, 18.8]), zS and hence aS are projective

generators. �

Theorem 2.10. For any monoid S the following statements are equivalent:

(1) All strongly (P )-cyclic right S-acts are free.

(2) All strongly (P )-cyclic finitely generated right S-acts are free.

(3) All strongly (P )-cyclic right S-acts are projective generators.

(4) S is a group.

P r o o f. Implications (1) ⇒ (2) and (1) ⇒ (3) are obvious.

(2) ⇒ (4). Suppose that A is a strongly (P )-cyclic finitely generated right S-

act. Then for every a ∈ A, aS is strongly (P )-cyclic and so by assumption aS is

free. Thus aS ∼= S and so for every t ∈ S there exists u ∈ S such that tS ∼= auS.

Since aS is strongly (P )-cyclic, auS is strongly (P )-cyclic and so tS is strongly (P )-

cyclic. Thus by assumption tS is free and so tS satisfies Condition (P ), that is, S is

strongly (P )-cyclic. Now if there exists t ∈ S such that tS 6= S, then by Lemma 2.1,

BS = S
∐tS

S is strongly (P )-cyclic. Since also BS = (1, x)S ∪̇ tS ∪̇ (1, y)S is

generated by (1, x) and (1, y), by assumption BS is free and so BS satisfies Condition

(P ). Since t = (1, x)t = (1, y)t, there exist b ∈ BS and u, v ∈ S such that (1, x) = bu,

(1, y) = bv and ut = vt. Now (1, x) = bu implies that there exists s ∈ S \ tS such

that b = (s, x), similarly, there exists s′ ∈ S \ tS such that b = (s′, y), which is a

contradiction. Hence for every t ∈ S, tS = S and so S is a group.

(3) ⇒ (4). By assumption all strongly (P )-cyclic right S-acts satisfy Condition

(P ) and so by Theorem 2.6, for every z ∈ T , zS is a minimal right ideal of S. Also

zS as a subact of T is strongly (P )-cyclic and so by assumption zS is a projective

generator. Thus by ([3, II, 3.16]), there exists an epimorphism f : zS → SS and so

there exists x ∈ S such that f(zx) = 1. Now we show that f is a monomorphism.

To this end we suppose that f(zl) = f(zk), where l, k ∈ S. Since zS is simple,

we have zxS = zS and so zl = zxl′ and zk = zxk′ for some l′, k′ ∈ S. Thus

f(zl) = f(zxl′) = f(zk) = f(zxk′) and hence f(zx)l′ = f(zx)k′. But f(zx) = 1 and

so l′ = k′. Consequently, zl = zk, that is, f is one to one and so it is an isomorphism.

Thus zS ∼= S and so S is simple, as zS is simple. Thus S is a group.

(4) ⇒ (1). Suppose that A is a strongly (P )-cyclic right S-act. Then by assump-

tion for every a ∈ A there exists g ∈ S such that kerλa = kerλg. On the other

hand kerλg = kerλ1, since S is a group. Thus kerλa = kerλ1 and so aS ∼= S, that

is, every cyclic subact of A is free. Now we suppose a, a′ ∈ A and aS ∩ a′S 6= ∅.
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Then there exist t, t′ ∈ S such that at = a′t′. Since S is a group, a = a′t′t−1 and

so aS ⊆ a′S. Similarly, a′S ⊆ aS and so aS = a′S. Thus there exists A′ ⊆ A such

that A =
.
⋃

a∈A′

aS and aS ∼= S for every a ∈ A′. Hence by ([3, I, 5.13]), A is free as

required. �

Theorem 2.11. For any monoid S the following statements are equivalent:

(1) There exists a cyclic strongly (P )-cyclic right S-act and all cyclic strongly (P )-

cyclic right S-acts are free.

(2) All principal right ideals of S are free.

(3) For every z ∈ S there exists e ∈ E(S) such that kerλz = kerλe and eD1.

P r o o f. (1) ⇒ (2). Suppose that aS is a cyclic strongly (P )-cyclic right S-act.

By assumption aS is free and so aS ∼= S. Thus for every t ∈ S there exists u ∈ S

such that tS ∼= auS, since every cyclic subact of aS is isomorphic to a cyclic subact

of S. Since aS is strongly (P )-cyclic, auS is strongly (P )-cyclic. Thus by assumption

auS is free and since tS ∼= auS, we conclude that tS is also free.

(2) ⇒ (3). By ([3, I, 5.20]), it is obvious.

(3) ⇒ (1). By assumption and ([3, I, 5.20]), all principal right ideals of S are free

and so all principal right ideals satisfy Condition (P ). Thus SS is a cyclic strongly

(P )-cyclic right S-act and so there exists a cyclic strongly (P )-cyclic right S-act.

Now we suppose aS is strongly (P )-cyclic. Then by definition there exists z ∈ S

such that kerλa = kerλz and so aS ∼= zS. On the other hand, by assumption there

exists e ∈ E(S) such that eD1 and kerλz = kerλe. Thus zS ∼= eS and also by ([3,

III, 17.17]), eS is free. Since aS ∼= zS, then aS is free as required. �

Theorem 2.12. For any monoid S the following statements are equivalent:

(1) All strongly (P )-cyclic right S-acts are divisible.

(2) All strongly (P )-cyclic finitely generated right S-acts are divisible.

(3) All cyclic strongly (P )-cyclic right S-acts are divisible.

(4) For every z ∈ T , zS is a divisible right ideal of S.

P r o o f. Implications (1) ⇒ (2) ⇒ (3) are obvious.

(3) ⇒ (4). Let z ∈ T . Then zS as a subact of T is strongly (P )-cyclic and so by

assumption it is divisible.

(4) ⇒ (1). Suppose that A is a strongly (P )-cyclic right S-act. Then by definition,

for every a ∈ A there exists z ∈ S such that kerλa = kerλz and so aS ∼= zS. Since

aS as a subact of A is strongly (P )-cyclic, zS is strongly (P )-cyclic and so z ∈ T .

Thus by assumption zS is divisible and so aS is divisible, that is, for every left
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cancellable element c ∈ S, aSc = aS. But

Ac =

(

⋃

a∈A

aS

)

c =
⋃

a∈A

aSc =
⋃

a∈A

aS = A

and so A is divisible as required. �

Theorem 2.13. For any monoid S the following statements are equivalent:

(1) All strongly (P )-cyclic right S-acts are principally weakly injective.

(2) All strongly (P )-cyclic finitely generated right S-acts are principally weakly

injective.

(3) All cyclic strongly (P )-cyclic right S-acts are principally weakly injective.

(4) For every z ∈ T , zS is a principally weakly injective right ideal of S.

P r o o f. Implications (1) ⇒ (2) ⇒ (3) are obvious.

(3) ⇒ (4). Suppose z ∈ T . Then zS as a subact of T is strongly (P )-cyclic and so

by assumption it is principally weakly injective.

(4) ⇒ (1). Suppose that A is a strongly (P )-cyclic right S-act. Then by definition,

for every a ∈ A there exists z ∈ S such that kerλa = kerλz and so aS ∼= zS.

Since aS as a subact of A is strongly (P )-cyclic, zS is strongly (P )-cyclic and so

z ∈ T . Thus by assumption zS is principally weakly injective and so aS is principally

weakly injective, hence by ([3, III, 3.4]), A =
⋃

a∈A

aS is principally weakly injective

as required. �

Theorem 2.14. Let S be a monoid. Then all strongly (P )-cyclic right S-acts are

strongly faithful if and only if S is left cancellative.

P r o o f. Suppose that A is a strongly (P )-cyclic right S-act and that for every

s, t, z ∈ S, zs = zt. Let a ∈ A. Then (az)s = (az)t. Since A is strongly faithful,

s = t and so S is left cancellable.

Conversely, suppose that A is a strongly (P )-cyclic right S-act and that for a ∈ A,

s, t ∈ S, as = at. By definition there exists z ∈ S such that kerλa = kerλz .

Then as = at implies that (s, t) ∈ kerλa = kerλz and so zs = zt. Since S is left

cancellative, hence s = t and so A is strongly faithful as required. �

Theorem 2.15. Let S be a monoid. Then all strongly (P )-cyclic right S-acts are

faithful if and only if for every z ∈ T , zS is a faithful right ideal of S.

P r o o f. Let z ∈ T . Then zS as a subact of T is strongly (P )-cyclic and so by

assumption it is faithful.

Conversely, suppose that A is a strongly (P )-cyclic right S-act and let s, t ∈ S,

s 6= t, a ∈ A. Then there exists z ∈ S such that kerλa = kerλz and so aS ∼= zS.
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Since A is strongly (P )-cyclic, by (4) of Theorem 2.2, aS is also strongly (P )-cyclic.

Thus zS is strongly (P )-cyclic and hence z ∈ T . But by assumption zS is faithful and

so there exists u ∈ S such that zus 6= zut. Since kerλa = kerλz , hence (au)s 6= (au)t

and so A is faithful as required. �

As we mentioned after Definition 2.1, every regular right act is strongly (P )-cyclic,

but the converse is not true. Now it is natural to look for monoids over which strong

(P )-cyclic property of acts implies regularity.

Theorem 2.16. Let S be a monoid. Then all strongly (P )-cyclic right S-acts are

regular if and only if for all z ∈ T there exists e ∈ E(T ) such that kerλz = kerλe.

P r o o f. Suppose that all strongly (P )-cyclic right S-acts are regular and let

z ∈ T . Since T is strongly (P )-cyclic and zS is a subact of T , by (4) of Theorem 2.2,

zS is also strongly (P )-cyclic and so by assumption zS is regular. Thus by ([3, III,

19.3]), zS is projective and so by ([3, III, 17.16]), z is left e-cancellable for some

idempotent e ∈ S, that is, there exists e ∈ E(S) such that kerλz = kerλe. Thus

zS ∼= eS and so eS is strongly (P )-cyclic. Hence eS ⊆ T and so e ∈ E(T ).

Conversely, suppose that A is a strongly (P )-cyclic right S-act and let a ∈ A.

Then there exists z ∈ S such that kerλz = kerλa and so aS ∼= zS. But by (4) of

Theorem 2.2, aS is strongly (P )-cyclic and so zS is also strongly (P )-cyclic. Thus

zS ⊆ T . Since z ∈ T , by assumption there exists e ∈ E(T ) such that kerλz = kerλe.

But by ([3, III, 17.16]), zS is projective and so aS is also projective. Thus by ([3, III,

19.3]), A is regular. �

3. Classification by strong (P )-cyclic property of

right Rees factor acts

In this section we give a classification of monoids such that flatness properties of

Rees factor acts imply strong (P )-cyclic property and vice versa.

Theorem 3.1. Let S be a monoid and KS a right ideal of S. Then S/KS is

strongly (P )-cyclic if and only if |KS | = 1 and S is right PCP, or KS = S and S

contains a left zero.

P r o o f. Suppose that S/KS is strongly (P )-cyclic for the right ideal KS of S.

Then there are two cases as follows:

C a s e 1. KS = S. Then S/KS
∼= ΘS is strongly (P )-cyclic and so by (1) of

Theorem 2.2, S contains a left zero element.

606



C a s e 2. KS is a proper right ideal of S. Since by assumption S/KS is strongly

(P )-cyclic, S/KS satisfies Condition (P ). Thus by ([3, III, 13.9]), |KS | = 1 and so

S/KS
∼= SS . Since S/KS is strongly (P )-cyclic, SS is strongly (P )-cyclic and so

by (2) of Theorem 2.2, S is right PCP as required.

Conversely, suppose |KS | = 1 and S is right PCP . Then S/KS
∼= SS and so

by (2) of Theorem 2.2, S/KS is strongly (P )-cyclic.

If KS = S and S contains a left zero, then S/KS
∼= ΘS and so by (1) of Theo-

rem 2.2, S/KS is strongly (P )-cyclic. �

Theorem 3.2. Let S be a monoid and let U be a property of S-acts implied by

freeness. Then the following statements are equivalent:

(1) All right Rees factor S-acts having property U are strongly (P )-cyclic.

(2) All right Rees factor S-acts having property U satisfy Condition (P ) and if S

contains a left zero, then S is right PCP , and if ΘS has property U , then S

contains a left zero.

P r o o f. (1) ⇒ (2). If all right Rees factor S-acts having property U are strongly

(P )-cyclic, then all right Rees factor S-acts having property U satisfy Condition (P ).

Now suppose that S contains a left zero element z. If KS = zS = {z}, then

S/KS
∼= SS and so S/KS is free, since SS is free. Thus S/KS has property U and

so by assumption S/KS is strongly (P )-cyclic. Thus SS is strongly (P )-cyclic and

so by (2) of Theorem 2.2, S is right PCP .

If ΘS
∼= S/SS has property U , then by assumption ΘS is strongly (P )-cyclic and

so by (1) of Theorem 2.2, S contains a left zero element.

(2) ⇒ (1). Suppose that S/KS has property U for the right ideal KS of S. Then

there are two cases as follows:

C a s e 1. KS = S. Then S/KS
∼= ΘS and so by assumption S contains a left

zero. Thus by (1) of Theorem 2.2, S/KS is strongly (P )-cyclic.

C a s e 2. KS is a proper right ideal of S. Since by assumption S/KS satisfies

Condition (P ), by ([3, III, 13.9]), |KS | = 1 and so KS = zS = {z} for some z ∈

S. Thus z is a left zero and so by assumption S is right PCP . Hence by (2) of

Theorem 2.2, S/KS
∼= SS is strongly (P )-cyclic. �

Corollary 3.1. For any monoid S the following statements are equivalent:

(1) All projective right Rees factor S-acts are strongly (P )-cyclic.

(2) All projective generators right Rees factor S-acts are strongly (P )-cyclic.

(3) All free right Rees factor S-acts are strongly (P )-cyclic.

(4) S has no left zero, or S is right PCP .

P r o o f. Implications (1) ⇒ (2) ⇒ (3) are obvious.
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(3) ⇒ (4). Suppose that S contains a left zero element. Then by Theorem 3.2, S

is right PCP .

(4) ⇒ (1). By Theorem 3.2, it suffices to show that if ΘS is projective, then S

contains a left zero and this is true by ([3, III, 17.2]). �

Corollary 3.2. For any monoid S the following statements are equivalent:

(1) All strongly flat right Rees factor S-acts are strongly (P )-cyclic.

(2) S is not left collapsible or S contains a left zero and S is right PCP .

P r o o f. (1) ⇒ (2). If S is left collapsible, then by ([3, III, 14.3]), ΘS satisfies

Condition (E) and so it is strongly flat. Thus by (2) of Theorem 3.2, S contains a

left zero and also S is right PCP .

The converse is true by Theorem 3.2 and ([3, III, 14.3]). �

Corollary 3.3. For any monoid S the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (P ) are strongly (P )-cyclic.

(2) S is not right reversible or S is right PCP and contains a left zero.

P r o o f. (1) ⇒ (2). If S is right reversible, then by ([3, III, 13.7]), ΘS satisfies

Condition (P ) and so by (2) of Theorem 3.2, S is right PCP and contains a left

zero.

The converse is true by Theorem 3.2 and ([3, III, 13.7]). �

Corollary 3.4. For any monoid S the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (WP ) are strongly (P )-cyclic.

(2) S is not right reversible or S is right PCP , contains a left zero and no nontrivial

right ideal of S is left stabilizing and strongly left annihilating.

P r o o f. (1) ⇒ (2). If S is right reversible, then by ([4, Theorem 2.14]), ΘS

satisfies Condition (WP ) and so by Theorem 3.2, S contains a left zero. Again by

Theorem 3.2, S is right PCP . On the other hand, by Theorem 3.2, all right Rees

factor S-acts satisfying Condition (WP ) satisfy Condition (P ) and so by ([4, Propo-

sition 3.26]), no nontrivial right ideal of S is left stabilizing and strongly left annihi-

lating.

The converse is true by Theorem 3.2 and ([4, Proposition 3.26]). �
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Corollary 3.5. For any monoid S the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (PWP ) are strongly (P )-cyclic.

(2) S is right PCP , contains a left zero and no nontrivial right ideal of S is left

stabilizing and left annihilating.

P r o o f. (1) ⇒ (2). Since ΘS satisfies Condition (PWP ), then by Theorem 3.2,

S contains a left zero. Again by Theorem 3.2, all principal right ideals of S satisfy

Condition (P ). On the other hand, by Theorem 3.2, all right Rees factor S-acts

satisfying Condition (PWP ) satisfy Condition (P ) and so by ([4, Corollary 3.27]),

no nontrivial right ideal of S is left stabilizing and left annihilating.

The converse is true by Theorem 3.2 and ([4, Corollary 3.27]). �

Corollary 3.6. For any monoid S the following statements are equivalent:

(1) All flat right Rees factor S-acts are strongly (P )-cyclic.

(2) S is not right reversible or S is right PCP , contains a left zero and no proper

right ideal KS of S with |KS | > 2 is left stabilizing.

P r o o f. (1) ⇒ (2). If S is right reversible, then by ([3, III, 12.2]), ΘS is flat

and so by Theorem 3.2, S contains a left zero. Again by Theorem 3.2, S is right

PCP . On the other hand, by Theorem 3.2, all flat right Rees factor S-acts satisfy

Condition (P ) and so by ([3, IV, 9.2]), no proper right ideal KS of S with |KS | > 2

is left stabilizing.

The converse is true by Theorem 3.2 and ([3, IV, 9.2]). �

Note that Corollary 3.6 is also true if we substitute WF for flat, since by ([3, III,

12.17]), for Rees factor acts flatness and weak flatness coincide.

Corollary 3.7. For any monoid S the following statements are equivalent:

(1) All PWF right Rees factor S-acts are strongly (P )-cyclic.

(2) S is right PCP , contains a left zero, and no proper right ideal KS of S with

|KS| > 2 is left stabilizing.

P r o o f. (1) ⇒ (2). Since ΘS is principally weakly flat, by Theorem 3.2, S

contains a left zero. Again by Theorem 3.2, S is right PCP . On the other hand, by

Theorem 3.2, all PWF right Rees factor S-acts satisfy Condition (P ) and so by ([3,

IV, 9.7]), no proper right ideal KS of S with |KS | > 2 is left stabilizing.

The converse is true by Theorem 3.2 and ([3, IV, 9.7]). �

609



Corollary 3.8. For any monoid S the following statements are equivalent:

(1) All torsion free right Rees factor S-acts are strongly (P )-cyclic.

(2) S is right PCP , contains a left zero and S is either right cancellative, or right

cancellative with a zero adjoined.

P r o o f. (1) ⇒ (2). Since ΘS is torsion free, hence by Theorem 3.2, S is right

PCP and contains a left zero. Also by Theorem 3.2, all torsion free right Rees factor

S-acts satisfy Condition (P ). Since S contains a left zero, S is right reversible and

so by ([3, IV, 9.8]), S is right cancellative or right cancellative with a zero adjoined.

The converse is true by Theorem 3.2 and ([3, IV, 9.8]). �

Theorem 3.3. Let S be a monoid and let U be a property of S-acts implied by

freeness. Then all strongly (P )-cyclic right Rees factor S-acts have property U if

and only if S has no left zero or ΘS has property U .

P r o o f. Suppose that S contains a left zero. Then by (1) of Theorem 2.2,

ΘS
∼= S/SS is strongly (P )-cyclic and so by assumption ΘS has property U .

Conversely, Suppose that S/KS is strongly (P )-cyclic for the right ideal KS of S.

Then there are two cases as follows:

C a s e 1. KS = S. Then S/KS
∼= ΘS and so by (1) of Theorem 2.2, S contains a

left zero. Hence by assumption S/KS
∼= ΘS has property U .

C a s e 2. KS is a proper right ideal of S. Since by assumption S/KS satisfies

Condition (P ), by ([3, III, 13.9]) we have |KS | = 1. Thus S/KS
∼= SS has property

U , since SS is free. �

Corollary 3.9. Let S be a monoid. Then all strongly (P )-cyclic right Rees factor

S-acts are free if and only if S has no left zero or S = {1}.

P r o o f. It follows from Theorem 3.3 and ([3, I, 5.23]). �

Corollary 3.10. Let S be a monoid. Then all strongly (P )-cyclic right Rees

factor S-acts are projective.

P r o o f. It follows from Theorem 3.3 and ([3, III, 17.2]). �
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