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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , NU MB ER 2 , P AG E S 3 3 1 – 3 4 4

STABILITY ESTIMATING
IN OPTIMAL SEQUENTIAL HYPOTHESES TESTING

Evgueni Gordienko, Andrey Novikov and Elena Zaitseva

We study the stability of the classical optimal sequential probability ratio test based
on independent identically distributed observations X1, X2, . . . when testing two simple
hypotheses about their common density f : f = f0 versus f = f1. As a functional to
be minimized, it is used a weighted sum of the average (under f0) sample number and
the two types error probabilities. We prove that the problem is reduced to stopping time
optimization for a ratio process generated by X1, X2, . . . with the density f0. For τ∗ being
the corresponding optimal stopping time we consider a situation when this rule is applied
for testing between f0 and an alternative f̃1, where f̃1 is some approximation to f1. An
inequality is obtained which gives an upper bound for the expected cost excess, when τ∗ is
used instead of the rule τ̃∗ optimal for the pair (f0, f̃1). The inequality found also estimates
the difference between the minimal expected costs for optimal tests corresponding to the
pairs (f0, f1) and (f0, f̃1).

Keywords: sequential hypotheses test, simple hypothesis, optimal stopping, sequential
probability ratio test, likelihood ratio statistic, stability inequality

AMS Subject Classification: 62L10, 62L15

1. MOTIVATION AND PROBLEM SETTING

In this paper we will find a quantitative estimate of stability of optimal sequential
testing a simple hypothesis against a simple alternative. To set the problem, we
consider a measurable space (Ω, F) with given three different probability measures
P0, P1 and P̃1. Let X1, X2, . . . be a sequence of random variables on (Ω,F) indepen-
dent and identically distributed with respect of each one of the above probabilities.
We assume that under P0, P1 and P̃1, the common distributions of Xn, n ≥ 1, have
densities f0, f1 and f̃1 with respect to some σ-finite measure µ on (R, BR), and that

µ({x : f0(x) 6= f1(x)}) > 0 and µ({x : f0(x) 6= f̃1(x)}) > 0.

Denote by Supp0, Supp1 and S̃upp1 the supports of the distributions of X1 under
P0, P1, P̃1, respectively. In what follows we assume that the densities f0, f1 and f̃1

are positive on the corresponding supports and that

Supp0 ⊂ Supp1 ∩ S̃upp1. (1)
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We consider sequential testing problems for two following pairs of simple hypothe-
ses about the density f of distribution of the observed sequence X:

(I) H0 : f = f0 against H1 : f = f1, and (II) H0 : f = f0 against H1 : f = f̃1

A sequential test is, by definition, a pair (τ, δ), where τ is a stopping time with
respect to the filtration {Fn}n≥0 with Fn = σ{X1, X2, . . . , Xn}, for n = 1, 2, . . . ,
and F0 = {∅,Ω}, and δ is a terminal decision function, i. e. Fτ -measurable function
taking values in {0, 1}. The corresponding error probabilities are defined in Problem
I as follows:

• the type I error probability is

α(τ, δ) = P0(δ = 1),

• the type II error probability is

β(τ, δ) = P1(δ = 0).

Similarly (replacing P1 by P̃1), the error probabilities α̃(τ, δ), β̃(τ, δ) are defined
in Problem II.

Let c0 > 0 be a given cost of an observation, and c1, c2 > 0 be penalties to be
paid for corresponding erroneous decisions. We define the expected cost functionals
to be minimized over (τ, δ) as

W (τ, δ) = c0E0τ + c1α(τ, δ) + c2β(τ, δ), (2)

W̃ (τ, δ) = c0E0τ + c1α̃(τ, δ) + c2β̃(τ, δ), (3)

where E0 stands for the expectation with respect to the probability P0, τ ∈ T ,
δ ∈ Dτ , being T the class of all stopping times τ such that P0(τ < ∞) = 1, and Dτ

the class of all Fτ -measurable decision functions.

Remark 1. A more traditional, Bayesian, setting uses yet another term, a multiple
of E1τ , in (2), and has been widely used in sequential hypothesis testing since the
seminal paper of Wald and Wolfowitz [15]. The results by Lorden [7] show that
minimizing (2) and minimizing the Bayesian risk are equivalent in the sense that
the solution of both problems is given by the (respective) sequential probability
ratio tests (SPRT). But using criteria (2) and (3) is more convenient in the present
stability estimation context, because it makes possible to use only one probability
measure, P0, for the analysis of the related functionals (see details below). On the
other hand, the use of only one average sample size functional may sometimes be
justified by practical reasons.

To obtain an equivalent setting to optimization problems (2) and (3), which is
more convenient for our purposes, we first introduce the standard log-likelihood ratio
statistics:

Sn =
n∑

k=1

ln

[
f1(Xk)

f0(Xk)

]
, (4)
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S̃n =
n∑

k=1

ln

[
f̃1(Xk)

f0(Xk)

]
, (5)

for n = 1, 2, 3, . . . , and S0 ≡ 0 and S̃0 ≡ 0, where, conventionally, 0/0 = 1 and
ln(x/0) = ∞ for x > 0.

Second, we define the following functionals on T :

V (τ) = c0E0τ + E0 min{c1, c2e
Sτ }, τ ∈ T , (6)

Ṽ (τ) = c0E0τ + E0 min{c1, c2e
S̃τ }, τ ∈ T . (7)

It follows from Theorem 1 in Section 2 that for any stopping time τ ∈ T there
exists a decision rule δ∗(τ) ∈ Dτ such that

inf
δ∈Dτ

W (τ, δ) = W (τ, δ∗(τ)) = V (τ). (8)

On the other hand, it is known (see, e. g., [7]), that the infimum over τ ∈ T of
the right-hand side of (8) is in fact attained at some τ∗ ∈ T :

V (τ∗) = inf
τ∈T

V (τ). (9)

Therefore, inf
τ∈T ,δ∈Dτ

W (τ, δ) = W (τ∗, δ∗) = V (τ∗) = inf
τ∈T

V (τ). (10)

According to [7], the structure of the solution (τ∗, δ∗) of the optimization problem
in (10) is as follows: there exist constants A, B, −∞ < A ≤ B < ∞, such that

τ∗ = min{n ≥ 0 : Sn 6∈ (A,B)}, (11)

δ∗ =

{
1 if Sτ∗ ≥ B

0 if Sτ∗ ≤ A
(12)

(A. Wald’s SPRT [15]).

In a similar manner, for the problem of testing f = f0 versus f = f̃1 there exist
an optimal sequential test τ̃∗

τ̃∗ = min{n ≥ 0 : S̃n 6∈ (Ã, B̃)}, (13)

δ̃∗ =

{
1 if S̃τ∗ ≥ B̃

0 if S̃τ∗ ≤ Ã,
(14)

with −∞ < Ã ≤ B̃ < ∞, such that

Ṽ (τ̃∗) = inf
τ∈T

Ṽ (τ). (15)
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Remark 2.

(a) In contrast to (2), (3), the functionals V , Ṽ in (6), (7) are evaluated using only
the null-hypothesis H0. This gives certain advantages in setting and solving
the stability problem formulated below. In particular, we will make use of
the fact that the minimization of V and Ṽ in (6), (7) is a standard optimal
stopping problem with bounded one-stage and terminal costs.

(b) By virtue of (1) the random variables

ln
f1(Xk)

f0(Xk)
and ln

f̃1(Xk)

f0(Xk)

are finite with P0-probability one. In fact, we have used this to define V and
Ṽ in (6) and (7), and will exploit it later.

Remark 3.

(a) Because F0 = {Ω, ∅}, it is obvious that T = {τ0} ∪ T1, where T1 is the class
of stopping times τ(with respect to {Fn}), such that τ ≥ 1, and τ0 ≡ 0.

(b) If S0 = 0 6∈ (A,B) in (11) and (12), or if A = B, then τ∗ = τ0, and the optimal
value V (τ∗) = min{c1, c2} with

δ∗(τ∗) =

{
1 if c1 ≤ c2

0 if c1 > c2.
(16)

On the other hand, if A < 0 < B then the optimal stopping time τ∗ can not
take the value 0. The same is true for the optimal stopping time τ̃∗.

Only the latter case is of practical interest, because in the former case, due to
(16), one of the error probabilities is always equal to 1.

Because of this, we will assume in what follows that τ∗ in (9) is of type (11)
with A < 0 < B, and τ̃∗ in (15) is of type (13) with Ã < 0 < B̃.

(c) If c0 ≥ c2 then τ∗ = τ̃∗ = τ0 as well. Indeed, in this case,

V (τ0) = min{c1, c2} ≤ c0 ≤ c0E0τ + E0 min{c1, c2e
Sτ } = V (τ)

for any τ ∈ T1. Because, again, this case is not of practical interest, we will
be supposing throughout the paper that c0 < c2.

The stability estimation problem may appear in the following situation. Assume
that a statistician has the optimal stopping rule τ∗ corresponding to the (f0, f1)
pair, but he is not quite sure about the density f1. If, in fact, the true alternative
density is f̃1, then how big is the additional expected cost

∆ = Ṽ (τ∗) − Ṽ (τ̃∗) ≥ 0 (17)
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he pays because of applying the non-optimal stopping time τ∗ instead of the optimal
one, τ̃∗? Here, Ṽ (τ̃∗) is the optimal expected cost which is attained using the optimal
test (τ̃∗, δ̃∗), and Ṽ (τ∗) is the expected cost corresponding to the test (τ∗, δ∗) (optimal
for (f0, f1)), when the type II error probability is calculated according to the true
alternative density f̃1 (see (3)).

For instance, f̃1 of the form
f̃1 = (1 − ε)f1 + εf ′, (18)

where f ′ is an unknown “contaminating” density, naturally appears in robust statis-
tics. It is used for judging about the robustness of statistical procedures letting
ε → 0 (see, e. g., [4, 5, 6, 13, 16]).

Our purpose is to estimate the expected cost excess (17) in terms of a suitable
measure of discrepancy between f1 and f̃1. More precisely, we are interested in an
upper bound for ∆ defined by (17), which we call “stability index”. (Compare with
similar definitions of the stability index in [2, 3, 9].) Theorem 2 in Section 2 gives
such a bound. Namely, under the conditions of Section 2, we obtain that

∆ ≤ Kd(f1, f̃1), (19)

where
d(f1, f̃1) =

∫ ∣∣∣∣ln
f1(x)

f̃1(x)

∣∣∣∣ f0(x) dµ(x), (20)

and K is a constant explicitly calculated using c0, c1, c2 along with means and vari-
ances of corresponding likelihood ratios.

Also Theorem 2 gives the following bound for the difference between the respective
expected costs for the corresponding optimal tests (τ∗, δ∗(τ∗)) and (τ̃∗, δ̃∗(τ̃∗)):

∣∣∣V (τ∗) − Ṽ (τ̃∗)
∣∣∣ ≤ K

2
d(f1, f̃1). (21)

For example, if f0, f1 and f̃1 are densities of exponential distributions with re-
spective parameters λ, µ and µ + ε, ε > 0, then from (19) and (20) we find that

∆ ≤ K
λ + µ

λµ
ε

(see Example 1 for details).

Remark 4.

(a) In Example 2 of Section 2 we will see that if the distortion of f1 is given by (18)
and f1(x) and f ′(x) have significantly different rates of vanishing, as x → ±∞,
then d(f1, f̃1) can be infinite. Moreover, by reasons given in Remark 6 it could
be conjectured that ∆ in (17) does not approach zero as ε → 0. Such examples
explain the necessity of robust modifications of the sequential probability ratio
test (see, e. g., [4, 5, 6]).

(b) Essentially, (21) is a quantitative estimation of the sensitivity of the optimal
value in the optimal stopping problem (9). A rather general qualitative re-
sult on the convergence of optimal value in optimal stopping problems, for
continuous-time Markov processes, can be found in [8].
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2. ASSUMPTIONS, RESULTS AND EXAMPLES

Recall that the functionals W , W̃ , V and Ṽ were defined, respectively, in (2), (3),
(6) and (7). The following theorem is implicit in [7]. It is proved in [10] in a much
more general situation.

Theorem 1. For each stopping time τ ∈ T1 there exist decision rules δ∗(τ), δ̃∗(τ) ∈
Dτ such that

inf
δ∈Dτ

W (τ, δ) = W (τ, δ∗(τ)) = V (τ), (22)

inf
δ∈Dτ

W̃ (τ, δ) = W̃ (τ, δ̃∗(τ)) = Ṽ (τ). (23)

As was explained in the preceding Section, Theorem 1 allows to apply the general
theory of optimal stopping ([1, 14], see also [7]) to get the following

Corollary 1.

(a) There exist stopping times τ∗ of type (11) and τ̃∗ of type (13) such that

V (τ∗) = inf
τ∈T

V (τ), (24)

Ṽ (τ̃∗) = inf
τ∈T

Ṽ (τ). (25)

(b) The optimal decision functions δ∗ = δ∗(τ∗), δ̃∗ = δ̃∗(τ̃∗) are defined by (12)
and (14), respectively.

Because of Corollary 1, we will deal in what follows with the optimization problem
given in (24) – (25). To estimate the stability in this problem, we will use the follow-
ing additional condition. Let X be a generic random variable with the distribution
identical to that of X1, X2, . . . , under P0.

Assumption 1. There exists a constant γ > 0 such that

E0 exp

{
γ

∣∣∣∣ln
f1(X)

f0(X)

∣∣∣∣
}

< ∞, (26)

E0 exp

{
γ

∣∣∣∣∣ln
f̃1(X)

f0(X)

∣∣∣∣∣

}
< ∞. (27)

Inequalities (26) and (27) imply that the following means and variances are finite:

a = E0

[
ln

f1(X)

f0(X)

]
< 0, ã = E0

[
ln

f̃1(X)

f0(X)

]
< 0
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(−a and −ã being the corresponding Kullback–Leibler information numbers), and

σ2 = E0

[
ln

f1(X)

f0(X)

]2

− a2 > 0, σ̃2 = E0

[
ln

f̃1(X)

f0(X)

]2

− ã2 > 0.

Let us introduce the random variables

Y = ln
f1(X)

f0(X)
− a, Ỹ = ln

f̃1(X)

f0(X)
− ã.

From Assumption 1 it follows that there exists a number T > 0 such that

E0e
tY ≤ emax{σ2,σ̃2}t2 , E0e

tỸ ≤ emax{σ2,σ̃2}t2 (28)

for all 0 ≤ t ≤ T (see the proof of Lemma 5, Chapt. III in [12]). Let us define:

g = max

{
− a

T
, − ã

T
, 2σ2, 2σ̃2

}
(29)

(the terms of − a
T and − ã

T will be needed for Theorem 2 below). Then for all t,
0 ≤ t ≤ T , we get that

max
{

E0e
tY , E0e

tỸ
}

≤ exp
{g

2
t2

}
. (30)

We have done all needed preparations to formulate our stability estimation result.

Theorem 2. Suppose that Assumption 1 holds. Then for any f̃1

∆ ≤ 2c1, (31)

and if

d(f1, f̃1) ≤
(

c0

c2

)− max{a,ã}
2g

(32)

then
∆ ≤ Kd(f1, f̃1)max{1, ln2 d(f1, f̃1)}, (33)

where

K = 2c1




(
c0

c2

)min{a,ã}
g

+
3g

(max{a, ã})2
+

2g2

(max{a, ã})4
+ 1


 . (34)

Corollary 2. Under Assumption 1 and (32) we get that

|V (τ∗) − Ṽ (τ̃∗)| ≤ K

2
d(f1, f̃1) max{1, ln2 d(f1, f̃1)} (35)
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Remark 5. Under Assumption 1, “the deviation measure” d(f1, f̃1) is finite.

Remark 6. By virtue of definition (20) and condition (1), the measure of discrep-
ancy between f1 and f̃1, d(f1, f̃1), is small if f̃1 does not deviate considerably from
f1 on the support of f0, Supp0. In this case the stability index ∆ is relatively small
due to (33). At the same time it does not matter the behaviour of f1 and f̃1 outside
of Supp0. For example, let

f0(x) = λe−λx, x ≥ 0, f1(x) =
1

2
µe−µ|x|, x ∈ R, and

f̃1(x) =





1
2µe−µx, x > 0,
1
2 , −1 ≤ x ≤ 0,

0, x < −1.

In this case d(f1, f̃1) = 0 and ∆ = 0, which means that there is no difference between
the stopping rules τ∗ and τ̃∗ from the point of view of minimization of (2), (3) (see
also (3.17) in [11]).

Example 1. (Exponential densities) Let f0, f1 and f̃1 be the exponential densities
with the respective parameters λ, µ, µ + ε (inverse to the means), λ < µ, 0 < ε < 1.
Then

ln
f1(x)

f0(x)
= ln

µ

λ
+ (λ − µ)x,

ln
f̃1(x)

f0(x)
= ln

µ + ε

λ
+ (λ − µ − ε)x (x ≥ 0),

and therefore Assumption 1 is satisfied for any γ < λ/(µ + 1 − λ). Some constants
involved in (34) can be calculated explicitly. For instance,

a = ln
µ

λ
− µ − λ

λ
, ã = ln

µ + ε

λ
− µ + ε − λ

λ
.

In this example, inequality (33) holds for all sufficiently small ε with

d(f1, f̃1) ≤ λ + µ

λµ
ε.

Example 2. (“Contamination” with a “long tail” distribution) Let f1 be the
exponential density with parameter 1,

f0(x) =

{
2

π(1+x2) , x ≥ 0,

0, x < 0,

and
f̃1 = (1 − ε)f1 + εf0. (36)
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Since for x ≥ 0∣∣∣∣ln
f1(x)

f̃1(x)

∣∣∣∣ =

∣∣∣∣ln
(

(1 − ε) +
2ε

π

ex

1 + x2

)∣∣∣∣ ∼ x, x → ∞,

we obtain that d(f1, f̃1) = ∞.

Remark 7.

(a) We make a conjecture that the problem of optimal testing in this example is
unstable. This means that it could be expected that the stability index ∆ does
not approach zero as ε → 0. A reason supporting this could be the fact that
in this case, as easily seen, a = −∞, E0 [ln (f1(X)/f0(X))]

2
= ∞, while ã and

σ̃2 are finite.

(b) By a plain verification one can see that Assumption 1 is satisfied when the
“tails” of all of the densities f0, f1 and f̃1 have power orders (possibly different)
of vanishing.

(c) The simplest example of an unstable testing problem can be given admitting
that the error costs c1, c2 may depend on a “small parameter” ε > 0. Let µ
be the counting measure on {0, 1}, f0 and f1 be the unit masses concentrated,
respectively, at 0 and 1, and let f̃1(0) = ε, f̃1(1) = 1 − ε. Assume that c0 = 1
and let c1 = c1(ε) = c2 = c2(ε) be defined as specified below. Let Ã and B̃,
Ã < 0 < B̃, be any two constants. In [7] it is proved (see the proof of Theorem
2 [7]) that there exist c1 and c2 such that the sequential probability ratio
test (13) – (14) with the constants Ã and B̃ is a solution of the optimization
problem (15). But in this case it is easy to see that, under the null-hypothesis,

τ̃∗ =
]
Ã/ ln ε

[
, where ]a[ stands for the minimum integer greater or equal than

a. If we choose now Ã = − ln2 ε, and its corresponding c1 and c2 as above,
then E0τ̃∗ → ∞, as ε → 0, and thus Ṽ (τ̃∗) ≥ E0τ̃∗ tends to infinity, as ε → 0.

At the same time, it is obvious that τ∗ ≡ 1 and hence V (τ∗) = 1.

Example 3. (Normal densities) Let f0, f1 and f̃1 be the normal densities with
zero means and standard deviations σ0, σ1 and σ1 + ε, respectively. It is easy to see
that Assumption 1 is satisfied. Consequently, the inequalities of Theorem 2 apply.
In addition, one can calculate that

d(f1, f̃1) ≤ 1

σ1

(
1 + σ2

0/σ2
1

)
ε.

Indeed, by (20),

d(f1, f̃1) = E

∣∣∣∣
X2

2

(
1

(σ1 + ε)2
− 1

σ2
1

)
+ ln

(
1 +

ε

σ1

)∣∣∣∣ ,

where X is an N (0, σ2
0)-random variable. Thus,

d(f1, f̃1) ≤ σ2
0

2

(
1

σ2
1

− 1

(σ1 + ε)2

)
+ ln

(
1 +

ε

σ1

)
≤ σ2

0

ε

σ3
1

+
ε

σ1
.
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3. THE PROOFS

To prove Theorem 1 we need the following almost obvious lemma (see also [10]).

Lemma 1. Let F1 : X → R, F2 : X → R be some measurable non-negative
functions on a measurable space X with a measure µ, and let A be a measurable
subset of X .

Then for any measurable function φ : X → [0, 1]

∫

A

(φ(x)F1(x) + (1 − φ(x))F2(x)) dµ(x)

≥
∫

A

min{F1(x), F2(x)}dµ(x), (37)

with an equality if

I{F1(x)<F2(x)} ≤ φ(x) ≤ I{F1(x)≤F2(x)} (38)

for x ∈ A.

T h e p r o o f o f T h e o r em 1. Let us only prove (22): the proof of (23) is the
same.

Let τ ∈ T1 be any stopping time. For any n = 1, 2, . . . let us denote:

xn = (x1, . . . , xn) ∈ Rn, fn
j (xn) =

n∏

i=1

fj(xi), j = 0, 1,

L(τ, δ) = c1P0(δ = 1) + c2P1(δ = 0).

Then

L(τ, δ) =

∞∑

n=1

∫

{τ=n}

[
c1f

n
0 (xn)I{δ=1} + c2f

n
1 (xn)I{δ=0}

]
dµn(xn). (39)

Applying Lemma 1 to each summand in (39) (with φ = I{δ=1}), we have that

L(τ, δ) ≥
∞∑

n=1

∫

{τ=n}
min{c1f

n
0 (xn), c2f

n
1 (xn)}dµn(xn), (40)

with an equality if

δ = δ∗(τ) =
∞∑

n=1

I{c1fn
0 (xn)≤c2fn

1 (xn)}I{τ=n}. (41)

It is easy to see that

∫

{τ=n}
min{c1f

n
0 (xn), c2f

n
1 (xn)}dµn(xn) = E0 min{c1, c2Zn}I{τ=n},
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where

Zn =

n∏

k=1

f1(Xk)

f0(Xk)
, n = 1, 2, . . . ,

so it follows from (40) that

L(τ, δ) ≥ E0 min{c1, c2Zτ},

or, because of (2) and (6),

W (τ, δ) ≥ V (τ). (42)

There is an equality in (42) if (41) is fulfilled. Thus, (22) follows. ¤

Remark 8. Because the optimal stopping rule τ∗ in (10) has form (11) with A <
ln(c1/c2) < B (see Section 3 in [11]), it follows that the optimal decision function δ
defined in (41) is equivalent to (12) if τ = τ∗.

T h e p r o o f o f T h e o r em 2. According to (17) and (6) we have:

∆ = Ṽ (τ∗) − Ṽ (τ̃∗) =
(
Ṽ (τ∗) − V (τ∗)

)
+

(
V (τ∗) − Ṽ (τ̃∗)

)

≤
∣∣∣Ṽ (τ∗) − V (τ∗)

∣∣∣ +

∣∣∣∣ min
τ∈{τ∗,τ̃∗}

V (τ) − min
τ∈{τ∗,τ̃∗}

Ṽ (τ)

∣∣∣∣

≤ 2 max
τ∈{τ∗,τ̃∗}

∣∣∣V (τ) − Ṽ (τ)
∣∣∣

= 2 max
τ∈{τ∗,τ̃∗}

∣∣∣E0 min{c1, c2e
Sτ } − E0 min{c1, c2e

S̃τ }
∣∣∣ . (43)

Let τ = τ∗ or τ = τ̃∗ and r(x) = min{c1, c2e
x}, x ∈ R, I = E0|r(Sτ ) − r(S̃τ )|.

For any n ≥ 1 we have: I = I1 + I2, where

I1 =

n∑

k=1

E0{|r(Sτ ) − r(S̃τ )|; τ = k}, I2 = E0{|r(Sτ ) − r(S̃τ )|; τ > n}. (44)

It is easy to see that the function r satisfies the Lipschitz condition with the
constant c1. Thus, for n ≥ 1

I1 ≤ c1

n∑

k=1

E0|
k∑

i=1

ξi −
k∑

i=1

ξ̃i|,

where

ξi = ln
f1(Xi)

f0(Xi)
, ξ̃i = ln

f̃1(Xi)

f0(Xi)
,

so

I1 ≤ c1

n∑

k=1

kE0|ξ1 − ξ̃1| = c1
n(n + 1)

2
E0|ξ1 − ξ̃1|. (45)
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Thus, by (44), (45) and (20),

I ≤ c1

[
n(n + 1)

2
d(f1, f̃1) + P (τ > n)

]
. (46)

Therefore, (43), (46) give that

∆ ≤ c1

[
n(n + 1)d(f1, f̃1) + 2 max

τ∈{τ∗,τ̃∗}
P (τ > n)

]
. (47)

To bound P (τ > n) in (47) we need first the following simple

Lemma 2. If τ∗ of type (11) is a solution of the optimization problem (10), then

A ≥ ln(c0/c2). (48)

P r o o f . From Theorem 5 [11] it follows that z = eA is a solution of the equation

c0 + E0ρ

(
z
f1(X)

f0(X)

)
= c2z,

where ρ(z) is some non-negative function. Thus,

c2z ≥ c0,

or
eA ≥ c0/c2,

so (48) follows.

Remark 9. It is obvious that if τ̃∗ of type (13) is a solution of the optimization
problem (9) then Ã ≥ ln(c0/c2) as well.

Let us introduce further

Yk = ln
f1(Xk)

f0(Xk)
− a, Ỹk = ln

f̃1(Xk)

f0(Xk)
− ã, k = 1, 2, . . .

Let A0 = ln(c0/c2) (which is negative, see Remark 3 (c)). Let us define:

τA0 = min{n ≥ 1 : Sn ≤ A0}, τ̃A0 = min{n ≥ 1 : S̃n ≤ A0},

and

n0 =

]
A0

a

[
.

For τ = τ∗ we obtain:

P0(τ > n) ≤ P0(τA0 > n) = P0

(
min

1≤k≤n
Sk > A0

)
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≤ P0(Sn > A0) = P0

(
n∑

k=1

Yk > A0 − na

)
. (49)

To find an upper bound for the right-hand side of (49), we use the following
inequality:

P0

(
n∑

k=1

Yk ≥ x

)
≤ exp

{
− x2

2gn

}
, (50)

which is valid under conditions (30) for 0 ≤ x ≤ ngT , (see Theorem 15, Chapt. III
in [12]). Using the choice of the constant g as in (29) we see that for any n ≥ n0

0 ≤ A0 − na ≤ −na = n
−a

T
T ≤ ngT.

Thus, applying (50) with x = A0 − na to (49) we obtain for n ≥ n0:

P0

(
n∑

k=1

Yk > A0 − na

)
≤ eaA0/ge−a2n/(2g). (51)

Analogously,

P0

(
n∑

k=1

Ỹk > A0 − nã

)
≤ eãA0/ge−ã2n/(2g) (52)

for all n ≥
]

A0

ã

[
.

Let λ = min{a, ã}, µ = max{a, ã}, n∗ =
]

A0

µ

[
, K0 = 2 exp{λA0

g }, κ = µ2

2g (recall

that A0, λ, µ are negative numbers).

Then, combining (47) – (50) together we conclude that for all n ≥ n∗

∆ ≤ c1

[
n(n + 1)d + K0e

−κn
]
, (53)

where d = d(f1, f̃1).

The first affirmation of Theorem 2 immediately follows from (43).
Let now d ≤ exp

{
−A0κ

µ

}
. (54)

Then choosing
n =

]
1

κ
ln

1

d

[
, (55)

it is easy to see that n ≥ n∗. Making use of (55) in (53), we get:

∆ ≤ c1

[
(
1

κ
ln

1

d
+ 1)(

1

κ
ln

1

d
+ 2)d + K0d

]

≤ c1d max
{
1, ln2 d

} [
1

κ2
+

3

κ
+ 2 + K0

]
. (56)

The last inequality yields the desired stability inequality (33) with the constant
defined in (34). Inequality (35) in Corollary 2 follows from (43) and (56). ¤
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