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Octonionic Cayley spinors and E6

Tevian Dray, Corinne A. Manogue

Abstract. Attempts to extend our previous work using the octonions to describe
fundamental particles lead naturally to the consideration of a particular real,
noncompact form of the exceptional Lie group E6, and of its subgroups. We
are therefore led to a description of E6 in terms of 3 × 3 octonionic matrices,
generalizing previous results in the 2× 2 case. Our treatment naturally includes
a description of several important subgroups of E6, notably G2, F4, and (the
double cover of) SO(9, 1). An interpretation of the actions of these groups on
the squares of 3-component Cayley spinors is suggested.
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Classification: 17C90, 17A35, 22E70

1. Introduction

In previous work [10], [5], we used a formalism involving 2 × 2 octonionic ma-
trices to describe the Lorentz group in 10 spacetime dimensions, and then applied
this formalism to the Dirac equation. We developed a mechanism for reducing
10 dimensions to 4 without compactification, thus reducing the 10-dimensional
massless Dirac equation to a unified treatment of massive and massless fermions in
4 dimensions. This description involves both vectors (momentum) and spinors (so-
lutions of the Dirac equation), which we here combine into a single, 3-component
object. This leads to a representation of the Dirac equation in terms of 3 × 3 oc-
tonionic matrices, revealing a deep connection with the exceptional Lie group E6.

2. The Lorentz group

In earlier work [13], we gave an explicit octonionic representation of the finite
Lorentz transformations in 10 spacetime dimensions, which we now summarize in
somewhat different language.

Matrix groups are usually defined over the complex numbers C, such as the
Lie group SL(n; C), consisting of the n × n complex matrices of determinant 1,
or its subgroup SU(n; C), the unitary (complex) matrices with determinant 1. It
is well-known that SL(2,C) is the the double cover of the Lorentz group SO(3, 1)
in 4 spacetime dimensions, R3+1. One way to see this is to represent elements
of R3+1 as 2 × 2 complex Hermitian matrices X ∈ H2(C), noting that detX is
just the Lorentzian norm. Elements M ∈ SL(2; C) act on X ∈ H2(C) via linear
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transformations of the form

(1) TM (X) = MXM †

and such transformations preserve the determinant. The set of transformations
of the form (1) with M ∈ SL(2; C) is a group under composition, and is therefore
isomorphic to, and can be identified with, SO(3, 1). However, the map

(2)
SL(2; C) −→ SO(3, 1)

M 7−→ TM

which takes M to the linear transformation defined by (1), is not one-to-one; in
fact, this map is easily seen to be a two-to-one homomorphism with kernel {±I}.
We call such a homomorphism a double cover . Restricting M to the subgroup
SU(2; C) ⊂ SL(2; C) similarly leads to the well-known double cover

(3) SU(2; C) −→ SO(3)

of the rotation group in three dimensions. It is straightforward to restrict the
maps above to the reals, obtaining the double covers

SL(2; R) −→ SO(2, 1)(4)

SU(2; R) −→ SO(2).(5)

Since determinants of non-Hermitian matrices over the division algebras H

and O are not well-defined, we seek alternative characterizations of these complex
matrix groups which do not involve such determinants. The key idea is that the
determinant of (2 × 2 and 3 × 3) Hermitian matrices over any division algebra
K = R,C,H,O is well-defined, and therefore so is the notion of determinant-
preserving transformations. We therefore define

(6) TSL(2; H) :=
{
TM : det

(
TM (X)

)
= detX ∀X ∈ H2(H)

}

to be the set of determinant-preserving transformations in the quaternionic case,
where M is now a quaternionic 2 × 2 matrix. It is straightforward to verify that
TSL(2; H) is a group under composition, and that

(7) TSL(2; H) ∼= SO(5, 1)

under which we identify quaternionic linear transformations of the form (1) with
the corresponding Lorentz transformations in R5+1.

We also have the spinor action of 2×2 quaternionic matricesM on 2-component
column vectors, namely

(8) SM (v) = Mv

with v ∈ H2. We now define SL(2; H) to be the spinor transformations SM such
that the corresponding (vector) transformation TM is determinant-preserving,
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that is,

(9) SL(2; H) := {SM : TM ∈ TSL(2; H)}

and it is straightforward to verify that this set of linear transformations is a group
under composition. Furthermore, the map

(10)
SL(2; H) −→ TSL(2; H)

SM 7−→ TM

is again easily seen to be a two-to-one homomorphism, this time with kernel
{S±I}, leading to the double cover

(11) SL(2; H) −→ SO(5, 1).

Requiring in addition that tr(MXM †) = trX for all X ∈ H2(H), and repeat-
ing the above construction, leads to the subgroup SU(2; H) ⊂ SL(2; H) and the
double cover

(12) SU(2; H) −→ SO(5).

Generalizing these groups to O must be done with some care due to the lack of
associativity; for this reason, most authors discuss the corresponding Lie algebras
instead. However, since composition of transformations of the forms (1) or (8) is
associative, the above construction can indeed be generalized [13], provided care
is taken that (1) itself is well-defined, that is, provided we require M to satisfy

(13) M(XM †) = (MX)M †

for all X ∈ H2(O). In order to be able to later combine spinor transformations
SM with vector transformations TM , we also require our transformations to be
compatible [13], [11] with the mapping from spinors to vectors given by v 7→ vv†.
Explicitly, we require

(14) SM (v)
(
SM (v)

)†
= TM (vv†)

or in other words

(15) (Mv)(v†M †) = M(vv†)M †

for all v ∈ O2. Conditions (13) and (15) turn out to be equivalent to the assump-
tion that M is complex 1 and that

(16) detM ∈ R.

1A complex matrix is one whose elements lie in a complex subalgebra of the division algebra
in question, in this case O. Each such matrix has a well-defined determinant. It is important to
note that there is no requirement that the elements of two such matrices lie in the same complex
subalgebra.
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We therefore let M2(O) denote the set of complex 2×2 octonionic matrices which
have real determinant, and note that the corresponding vector transformations (1)
are determinant-preserving precisely when det(M) = ±1.

We are finally ready to define the octonionic transformation groups by gener-
alizing (6), noting that the composition of linear transformations is associative
even when the underlying matrices are not (since the order of operation is fixed).
However, in order to generate the entire group, (compatible) transformations must
be nested ; the action of a composition of transformations cannot in general be
represented by a single transformation. We therefore generalize (6) by defining

(17) TSL(2; O) :=
〈
{TM : M ∈ M2(O), det(M) = ±1}

〉

where the angled brackets denote the span of the listed elements under composi-
tion, and it is of course then straightforward to verify that TSL(2; O) is a group
under composition. A similar definition can be given for the spinor transforma-
tions, namely

(18) SL(2; O) :=
〈
{SM : M ∈ M2(O), det(M) = ±1}

〉
.

Since each transformation in TSL(2; O) preserves the determinant of elements
of H2(O), it is clearly (isomorphic to) a subgroup of SO(9, 1). Manogue and
Schray [13] showed, in slightly different language, that in fact

(19) TSL(2; O) ∼= SO(9, 1)

by giving an explicit set of basis elements which correspond to the standard ro-
tations and boosts in SO(9, 1). Furthermore, it is easy to see that the map

(20)
SL(2; O) −→ TSL(2; O)

SM 7−→ TM

is a two-to-one homomorphism with kernel {S±I}, which establishes the double
covers

SL(2; O) −→ SO(9, 1)(21)

SU(2; O) −→ SO(9)(22)

(where SU(2; O) is defined as for SU(2; H) by restricting to trace-preserving trans-
formations), which are known results usually stated at the Lie algebra level.

Despite the separate definitions presented above for SL(2; C), SL(2; H), and
SL(2; O), a uniform definition can be given for any division algebra K = R,C,H,O,
modeled on the definition over O. The basis used by Manogue and Schray [13]
consists of only two types of transformations: single transformations correspond-
ing to matrices of determinant +1, and compositions of two transformations, each
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corresponding to matrices of determinant −1; in this sense, each basis transfor-
mation can be thought of as being “of determinant +1”. If we now define

SL1(2; K) := {SM : M ∈ M2(K), detM = +1}

SL2(2; K) := {SP ◦ SQ : P,Q ∈ M2(K), detP = −1 = detQ}(23)

SL(2; K) := 〈SL1(2; K) ∪ SL2(2; K)〉

where M2(K) denotes the set of complex 2 × 2 matrices over K, we recover the
above definitions when K = H,O, while retaining agreement with the standard
definitions when K = R,C (under the usual identification of matrices with linear
transformations). A similar definition can be made for SU(2; K) by restricting to
trace-preserving transformations.

We can extend this treatment to the higher rank groups: There is a natu-
ral action of SL(n; C) as determinant-preserving linear transformations of n × n
Hermitian (complex) matrices, with the unitary matrices SU(n; C) additionally
preserving the trace of n× n Hermitian (complex) matrices, since

(24) tr(MXM †) = tr(M †MX)

and M †M = I for M ∈ SU(n; C), and these groups could be defined as (the
covering groups of) those groups of transformations. Analogous results hold for
SL(n; H) and SU(n; H) (and of course also for SL(n; R) and SU(n; R)).

When extending these results to octonionic Hermitian matrices, we consider
only the 2×2 case discussed above and the 3×3 case, constituting the exceptional

Jordan algebra H3(O), also known as the Albert algebra. In both cases, the
determinant is well defined (see below). The group preserving the determinant in
the 3 × 3 case is known to be (a particular noncompact real form of) E6; we can
interpret this as

(25) E6 := TSL(3; O) ∼= SL(3; O).

Furthermore, the identity (24) from the complex case still holds for X ∈ H3(O)
(and suitable M ∈ E6, as discussed below) in the form

(26) tr(MXM†) = Re
(

tr(M†MX )
)

where the right-hand side reduces to tr(X ) if M†M = I. The group which
preserves the trace of matrices in H3(O) is just (the compact real form of) F4 [8],
which we can interpret as

(27) F4
∼= SU(3; O).

(There is no double-cover involved in (25) and (27), since these real forms are
simply-connected.) At the Lie algebra level, this has been explained by Sud-
bery [19] and at the group level this has been discussed by Ramond [15] and
Freudenthal [7].
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The remainder of this paper uses the above results from the 2×2 case to provide
an explicit construction of both F4 and E6 at the group level, and discusses their
properties.

3. Generators of E6

We consider octonionic 3× 3 matrices M acting on octonionic Hermitian 3× 3
matrices X , henceforth called Jordan matrices , in analogy with (1), that is

(28) TM(X ) = MXM†.

For this to be well-defined, MXM† must be Hermitian and hence independent
of the order of multiplication. Just as was noted by Manogue and Schray [13] in
the 2 × 2 case, the necessary and sufficient conditions for this are either that M
be complex or that the columns of the imaginary part of M be (real) multiples
of each other. As with SL(2; O), we will restrict ourselves to the case where M
is complex; this suffices to generate all of E6.

3.1 Jordan matrices. The Jordan matrices form the exceptional Jordan al-
gebra H3(O) under the commutative (but not associative) Jordan product (see
e.g. [8], [16])

(29) X ◦ Y =
1

2
(XY + YX ).

The Freudenthal product of two Jordan matrices is given by

(30) X ∗ Y = X ◦ Y −
1

2
(X tr(Y) + Y tr(X )) −

1

2

(
tr(X ◦ Y) − tr(X ) tr(Y)

)

where the identity matrix is implicit in the last term. The triple product of 3
Jordan matrices is defined by

(31) [X ,Y,Z] = (X ∗ Y) ◦ Z.

Finally, the determinant of a Jordan matrix is defined by

(32) detX =
1

3
tr[X ,X ,X ].

Remarkably, Jordan matrices satisfy the usual characteristic equation

(33) X 3 − (trX )X 2 + σ(X )X − (detX ) I = 0

where we must be careful to define

(34) X 3 := X 2 ◦ X ≡ X ◦ X 2

and where the coefficient σ(X ) is given by

(35) σ(X ) := tr(X ∗ X ) =
1

2

(
(trX )2 − tr(X 2)

)
.
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3.2 SO(9, 1). Consider first matrices of the form

(36) M =

(
M 0

0 1

)

where M ∈ SL(2; O) is one of the generators given by Manogue and Schray [13].
These generators include straightforward generalizations of the standard repre-
sentation of SL(2; C) in terms of 3 rotations and 3 boosts, yielding 15 rotations
and 9 boosts, together with particular nested phase transformations (imaginary
multiples of the identity matrix), yielding the remaining 21 rotations correspond-
ing to rotations of the imaginary units (SO(7)). Each such generator is complex
and has real determinant; for further details, and an explicit list of generators,
see [13]. Since

(37) M

(
X θ

θ† n

)
M† =

(
MXM † Mθ

(Mθ)† n

)
=

(
TM (X) SM (θ)
(
SM (θ)

)†
n

)

and using the fact that

(38) det

(
X θ

θ† n

)
= (detX)n+ 2X · θθ†

where

(39) X · Y =
1

2

(
tr(X ◦ Y ) − tr(X) tr(Y )

)

is the Lorentzian inner product in 9+1 dimensions, it is straightforward to verify
that TM preserves the determinant of a Jordan matrix X , and is hence in E6, if
M is of the form (36). This shows that

(40) SL(2; O) ⊂ E6

as expected, where, as already noted, SL(2; O) is the double cover of SO(9, 1).
Since SL(2; O) acts as SO(9, 1) on X in (37), we will somewhat loosely describe
SO(9, 1) itself (and its subgroups) as being “in” E6.

This construction in fact yields three obvious copies of SO(9, 1) contained in
E6, corresponding to the three natural ways of embedding a 2 × 2 matrix inside
a 3 × 3 matrix. These three copies are related by the cyclic permutation matrix

(41) T =




0 1 0
0 0 1
1 0 0




which satisfies

(42) T −1 = T 2 = T †
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and which is clearly in E6.
Conversely, all elements of E6 can be built up out of these (three sets of)

SO(9, 1) transformations.

3.3 SO(8), triality, and F4. Since each copy of SO(9, 1) is 45-dimensional, but
the dimension of E6 is only 78, it is clear that our description so far must contain
some redundancy. We note first of all that (37) contains not only the vector
representation (1) of SO(9, 1), but also the dual spinor representations

(43)
θ 7−→ Mθ

θ† 7−→ θ†M †

and therefore combines 2× 2 vector and spinor representations into a single 3× 3
representation. Triality says that, for SO(8), these three representations are
isomorphic. 2

To see explicitly why triality holds, we begin with the description of SO(8) ⊂
SO(9, 1) from [13]. Since SO(8) transformations of the form (1) leave the diago-
nal of X invariant, these transformations correspond to the “transverse” degrees
of freedom in SO(9, 1). One might therefore expect SO(8) transformations to
take the form

(
q 0

0 r

)
with |q| = |r| = 1. However, the essential insight of [13]

was to require that all SO(9, 1) transformations be compatible, that is, that they
(be generated by matrices which) satisfy (15); we will see the importance of this
requirement below. This condition restricts the allowed form of SO(8) transfor-
mations to those which can be constructed from (2 × 2) diagonal matrices which
are either imaginary multiples of the identity matrix, or of the form

(44) M =

(
q 0
0 q

)

where |q| = 1, so that q = esθ for some imaginary unit s ∈ O with s2 = −1. As
discussed in [13], the matrix (44) induces a rotation in the (1, s)-plane through
an angle 2θ. Furthermore, SO(7) transformations, namely those leaving invariant
the identify element 1, can be constructed by suitably nesting an even number
of purely imaginary matrices of the form (44), that is, matrices of this form for
which θ = π

2
. This allows us to generate all of SO(8) using matrices which have

determinant 1. Alternatively, SO(7) transformations can also be obtained by
nesting imaginary multiples of the identity matrix (which have determinant −1),
since this involves an even number of sign changes when compared with the above
description.

2The term triality appears to have first been used by Cartan [2], who used it to describe
the symmetries of the Dynkin diagram of SO(8). An infinitesimal principle of triality in the

language of derivations is proved in [16], which credits Jacobson [9] with the analogous theorem
for Lie groups. Baez [1] describes the four normed trialities as trilinear maps on representations
of (particular) Lie algebras, and discusses their relationship to the four normed division algebras
and their automorphisms. A similar treatment can be found in Conway and Smith [3].
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Inserting (44) into (36), the resulting E6 transformation M leaves the diagonal
of a Jordan matrix X ∈ H3(O) invariant. Explicitly, writing

(45) X =



p a c

a m b
c b n




we see that the action (28) leaves p, m, n invariant, and acts on the octonions a,
b, c via

a 7−→ qaq

b 7−→ bq(46)

c 7−→ qc.

These three transformations are precisely the standard description of the (vector
and two spinor) representations of SO(8) in terms of symmetric, left, and right
multiplication by unit octonions. The actions (46) provide an implicit mapping
between these three representations (obtained by using the same q in each case), 3

which is clearly both a (local) diffeomorphism and a 1-to-1 map between the two
spinor representations, and a 2-to-1 map between either spinor representation and
the vector representation. For us, triality is this explicit relationship between the
three representations.

In our language, this means that if M in (36) is an SO(8) transformation, then
not only does M generate an SO(8) transformation on X via (37), but so do
T MT 2 and T 2MT , since each of these latter two transformations differs from
M merely in which representation of SO(8) acts on each of a, b, c. Even though
these individual transformations are different, the collection of all of them is the
same in each case. Note that this identification of the three copies of SO(8) is
only possible because the original SO(9, 1) transformation was assumed to be
compatible. Thus, (the double cover of) SO(8) is precisely the subgroup of E6

which leaves the diagonal of every Jordan matrix X invariant.
The dimension of the single resulting copy of SO(8) is 28. Adding in the

3 × 8 = 24 additional rotations in (the three copies of) SO(9) yields 52, the
correct dimension for F4. Including the 3 × 9 − 1 = 26 independent boosts gives
the full 78 generators of E6. Thus, triality fully explains the redundancy in our
original 135 generators.

At the Lie algebra level, the dimension of E6 can be determined by first noting
that the diagonal elements are not independent. It turns out that an independent
set can be taken to be the 64 independent tracefree matrices, together with the
14 generators of G2 (see below), for a total of 78 generators. Of these, 26 (24

3To verify this assertion, one must first argue that the implicit map between representa-
tions in (46) is well-defined. At issue is the uniqueness of representations such as a 7−→

q1(. . . (qma) . . . ) for a particular SO(8) transformation, and specifically whether this notion
of uniqueness is the same for the three representations. One way to show this is to explicitly
construct the maps between the representations.
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non-diagonal + 2 diagonal) are Hermitian and hence boosts (the third diagonal
Hermitian generator is not independent); the remaining 52 generators yield F4.
In fact, the (complex) generators of SO(9, 1) as given in [13] all satisfy either
MM † = I (rotations) or M = M † (boosts). But F4 is generated precisely by
the unitary elements of E6, and hence is generated by the (3 sets of) rotations
in SO(9).

3.4 G2. As discussed in [13], the automorphism group of the octonions, G2,
can be constructed by suitably combining rotations of the octonionic units, thus
providing explicit verification that G2 is a subgroup of SO(7). In particular, a
copy of G2 sits naturally inside each SO(9, 1), generated by 14 (nested) imaginary
multiples of the identity matrix (the “additional transverse rotations” of [13], also
denoted “flips”). 4 We thus appear to have three copies of G2 sitting inside E6,
one for each copy of SO(9, 1).

As further shown in [13], the automorphisms of O can be generated by octonions
of the form

(47) eq̂θ = cos(θ) + q̂ sin(θ)

with q̂ a pure imaginary, unit octonion, but where θ must be restricted to be a
multiple of π/3, corresponding to the sixth roots of unity. But, as can be verified
by direct computation, multiplying the identity matrix by such an automorphism
leads to an element of E6, thus giving us yet another apparent copy of G2 in E6.

Remarkably, due to triality, all four of these subgroups are the same.
To see this, consider the rotations by π

2
(“flips”) used in [13] to generate the

transverse rotations. Using the identification (36), such a transformation takes
the form

(48) Qq̂ =

(
q̂I 0

0 1

)

and we have

(49) Qq̂

(
X θ

θ† n

)
Q†

q̂ =

(
−q̂Xq̂ q̂θ

−θ†q̂ n

)
.

Under this transformation, X , θ, and θ† undergo separate SO(7) transformations,
related by triality. We emphasize that, in general, the off-diagonal elements of X
undergo different SO(7) transformations. (The diagonal elements are of course
fixed by any such transformation.)

Acting on a single octonion, nested sequences of these SO(7) transformations
can be used to generate G2. For instance, conjugating successively with

(50) q̂ = i, i cos θ + iℓ sin θ, j, j cos θ − jℓ sin θ

4Even though these three copies of SO(7) all live in the single copy of SO(8) described above,
they are not the same.
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yields a G2 transformation which leaves the quaternionic subalgebra generated
by k and ℓ fixed. What happens when this sequence of q̂’s is applied as E6

transformations, that is, in the form Qq̂? Remarkably, direct computation shows
in this case that the elements of X all undergo the same G2 transformation. Since
all G2 transformations can be generated by such transformations, triality is, in
this sense, the identity map on G2! The G2 transformation obtained by suitably
nesting Qq̂’s is therefore the same as the G2 transformation obtained by replacing
Qq̂ by q̂I at each step. This shows that the three G2 subgroups contained in
the three copies of SO(9, 1) are all identical to the “diagonal” G2 subgroup, as
claimed above.

An explicit example of triality-related automorphisms is given by 5

(51) k(j(iq)) = k(j(iqı))k = (((qı))k)

with q ∈ O, which realizes “ℓ-conjugation” as a linear map.

4. Cayley spinors

We have argued elsewhere [10], [5] that the ordinary momentum-space (mass-
less and massive) Dirac equation in 3 + 1 dimensions can be obtained via dimen-
sional reduction from the Weyl (massless Dirac) equation in 9+1 dimensions. The
dimensional reduction is accomplished by the simple expedient of choosing a pre-
ferred complex subalgebra of the octonions, thus reducing SL(2; O) to SL(2; C),
and hence the Lorentz group in 10 spacetime dimensions to that in 4 dimensions.

The massless Dirac equation in 10 spacetime dimensions can be written in
momentum space as the eigenvalue problem

(52) P̃ψ = 0

where P is a 2 × 2 octonionic Hermitian matrix corresponding to the 10-dimen-
sional momentum vector, ψ ∈ O2 is a 2-component octonionic column, corre-
sponding to a Majorana-Weyl spinor, and where tilde denotes trace reversal, that
is

(53) P̃ = P − tr(P ) I.

The general solution of (52) is

P = ±θθ†(54)

ψ = θξ(55)

where θ ∈ O2 is a 2-component octonionic vector whose components lie in the
same complex subalgebra of O as do those of P , and where ξ ∈ O is arbitrary.
(Such a θ must exist since det(P ) = 0.)

5Further examples can be found in [11].
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In [5], we further showed how to translate the standard treatment of the Dirac
equation in terms of gamma matrices into octonionic language, pointing out that
a 2-component quaternionic formalism is of course isomorphic to the traditional
4-component complex formalism. Remarkably, the above solutions to the octo-

nionic Dirac equation must be quaternionic, as they only involve 2 independent
octonionic directions. This allows solutions of the octonionic Dirac equation to
be interpreted as standard fermions — and one can fit precisely 3 “families” of
such quaternionic solutions into the octonions, which we interpret as generations.
For further details, see [5], or the more recent treatment in [12].

As outlined in [4], it is natural to introduce a 3-component formalism; this
approach was first suggested to us by Fairlie and Corrigan [6], and later used by
Schray [18], [17] for the superparticle. Defining

(56) Ψ =

(
θ

ξ

)

we have first of all that

(57) P := ΨΨ† =

(
P ψ
ψ† |ξ|2

)

so that Ψ combines the bosonic and fermionic degrees of freedom. Lorentz trans-
formations on both the vector P and the spinor ψ now take the elegant form (37),
which we used to view SO(9, 1) as a subgroup of E6; the rotation subgroup SO(9)
lies in F4. We refer to Ψ as a Cayley spinor .

Direct computation shows that the Dirac equation (52) is equivalent to the
equation

(58) P ∗ P = 0

whose solutions are precisely quaternionic matrices of the form (57), that is,
(the components of) θ and ξ must lie in a quaternionic subalgebra of O; Ψ is a
quaternionic Cayley spinor. But the Cayley plane OP2 consists of those elements
P ∈ H3(O) which satisfy

(59) P ◦ P = P ; trP = 1

and this turns out to be equivalent to requiring P to be a (normalized) solution
of (58). Thus, in this interpretation, the Cayley plane consists precisely of nor-
malized, quaternionic Cayley spinors, and these are precisely the (normalized)
solutions of the Dirac equation.

Furthermore, any Jordan matrix can be decomposed in the form [14]

(60) A =

3∑

i=1

λiPi
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where

(61) A ◦ Pi = λiPi

and

(62) Pi ◦ Pj = 0 (i 6= j)

so that the Pi are orthogonal eigenmatrices of A with eigenvalue λi. As discussed
in [4], we refer to the decomposition (60) as a p-square decomposition of A, with
p denoting the number of with p denoting the number of nonzero eigenvalues λi,
and hence the number of nonzero primitive idempotents in the decomposition. As
shown in [4], if det(A) 6= 0, then A is a 3-square, while if det(A) = 0 6= σ(A), then
A is a 2-square. Finally, if det(A) = 0 = σ(A), then A is a 1-square (unless also
tr(A) = 0, in which case A ≡ 0). It is intriguing that, since E6 preserves both
the determinant and the condition σ(A) = 0, E6 therefore preserves the class
of p-squares for each p. But solutions of the Dirac equation (58) are 1-squares!
Thus, the Dirac equation in 10 dimensions admits E6 as a symmetry group.

The particle interpretation described in [10], [5] suggests regarding 1-squares
as representing three generations of leptons. If 1-squares correspond to leptons,
could it be that 2-squares are mesons and 3-squares are baryons?

5. The structure of E6

We have shown that the massless 10-dimensional Dirac equation, originally
posed as an eigenvalue problem for 2 × 2 octonionic Hermitian matrices, is in
fact equivalent to the defining condition for the Cayley plane. This suggests that
the natural arena for the Dirac equation is a 3-component formalism involving
Cayley spinors, which explicitly incorporates both bosonic and fermionic degrees
of freedom, suggesting a natural supersymmetry. Furthermore, the symmetry
group of the Dirac equation has been shown to be E6, suggesting that E6 (or
possibly one of its larger cousins, E7 or E8) is the natural symmetry group of
fundamental particles.

Understanding the structure of (this particular real representation of) E6 may
therefore be of great importance to an ultimate understanding of fundamental
particles. In this regard, we call the reader’s attention to the recent work of
Aaron Wangberg [20], [21], which describes the real representations of E6 and its
physically important subgroups. A “map” of E6, excerpted from [20], appears in
Figure 1.
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Figure 1. A map of E6 (taken from [20]).
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