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Abstract

Bounded commutative residuated lattice ordered monoids (R�-mon-
oids) are a common generalization of BL-algebras and Heyting algebras,
i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In
the paper we develop the theory of filters of bounded commutative R�-
monoids.
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1 Introduction

BL-algebras have been introduced by P. Hájek as an algebraic counterpart of
the basic fuzzy logic BL [5]. Omitting the requirement of pre-linearity in the
definition of a BL-algebra, one obtains the definition of a bounded commutative
residuated lattice ordered monoid (R�-monoid). Nevertheless, bounded com-
mutative R�-monoids are a generalization not only of BL-algebras but also of
Heyting algebras which are an algebraic counterpart of the intuitionistic propo-
sitional logic. Therefore, bounded commutative R�-monoids could be taken as
an algebraic semantics of a more general logic than Hájek’s fuzzy logic. It is

*The first author was supported by the Council of Czech Government, MSM 6198959214.
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94 Jiří RACHŮNEK, Dana ŠALOUNOVÁ

known that every BL-algebra (and consequently everyMV -algebra [2], or equiv-
alently, every Wajsberg algebra [4]) is a subdirect product of linearly ordered
BL-algebras. Moreover, a bounded commutative R�-monoid is a subdirect prod-
uct of linearly ordered R�-monoids if and only if it is a BL-algebra [13]. On the
other side, bounded commutative R�-monoids which need not be BL-algebras
can be constructed from BL-algebras by means of other natural operations, e.g.
by means of pasting, i.e. ordinal sums. For example, the pasting of Wajsberg
algebras which are not linearly ordered gives bounded commutative R�-monoids
which are not BL-algebras [8, 9].
In both BL-algebras and bounded commutative R�-monoids, filters coincide

with deductive systems of those algebras and are exactly the kernels of their
congruences. Various types of filters of BL-algebras were studied in [19], [7] and
[11]. Boolean filters of bounded commutative R�-monoids were investigated
in [14].
In this paper we further develop the theory of filters of bounded commutative

R�-monoids and among others, we generalize some results of [7] and [11].
For concepts and results concerning MV -algebras, BL-algebras and Heyting

algebras see for instance [2], [5], [1].

2 Preliminaries

A bounded commutative R�-monoid is an algebra M = (M ; �,∨,∧,→, 0, 1) of
type 〈2, 2, 2, 2, 0, 0〉 satisfying the following conditions:

(R�1) (M ;�, 1) is a commutative monoid.
(R�2) (M ;∨,∧, 0, 1) is a bounded lattice.
(R�3) x � y ≤ z if and only if x ≤ y → z, for any x, y, z ∈ M .

(R�4) x � (x → y) = x ∧ y, for any x, y ∈ M .

In the sequel, by an R�-monoid we will mean a bounded commutative R�-
monoid.
On any R�-monoid M let us define a unary operation negation − by x− :=

x → 0 for any x ∈ M .
Bounded commutative R�-monoids are special cases of residuated lattices,

more precisely (see for instance [3]), they are exactly commutative integral gen-
eralized BL-algebras in the sense of [10].

The above mentioned algebras can be characterized in the class of all R�-
monoids as follows: An R�-monoid M is

a) a BL-algebra if and only if M satisfies the identity of pre-linearity
(x → y) ∨ (y → x) = 1;

b) an MV -algebra if and only if M fulfills the double negation law
x−− = x;

c) a Heyting algebra if and only if the operation “�” is idempotent.
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Lemma 2.1 See [15] and [16]. In any bounded commutative R�-monoid M we
have for any x, y, z ∈ M :

(1) 1 → x = x.

(2) x ≤ y ⇐⇒ x → y = 1.

(3) x � y ≤ x ∧ y.

(4) x ≤ y → x.

(5) (x � y) → z = x → (y → z) = y → (x → z).

(6) (x ∨ y) → z = (x → z) ∧ (y → z).

(7) x → (y ∧ z) = (x → y) ∧ (x → z).

(8) x ≤ x−−, x− = x−−−.

(9) x ≤ y =⇒ y− ≤ x−.

(10) (x � y)− = y → x− = y−− → x− = x → y− = x−− → y−.

(11) x ≤ y =⇒ z → x ≤ z → y, y → z ≤ x → z.

(12) x → y ≤ y− → x−.

(13) x ∨ y ≤ ((x → y) → y) ∧ ((y → x) → x).

(14) x → y ≤ (y → z) → (x → z).

(15) x → y ≤ (z → x) → (z → y).

A non-empty subset F of an R�-monoid M is called a filter of M if

(F1) x, y ∈ F imply x � y ∈ F ;

(F2) x ∈ F, y ∈ M, x ≤ y imply y ∈ F .

A subset D of an R�-monoid M is called a deductive system of M if

(i) 1 ∈ D;

(ii) x ∈ D, x → y ∈ D imply y ∈ D.

Proposition 2.2 [3]. Let H be a non-empty subset of M . Then H is a filter
of M if and only if H is a deductive system of M .

By [18], filters of commutative R�-monoids are exactly the kernels of their
congruences. If F is a filter ofM , then F is the kernel of the unique congruence
Θ(F ) such that 〈x, y〉 ∈ Θ(F ) if and only if (x → y) ∧ (y → x) ∈ F , for any
x, y ∈ M . Hence we will consider quotient R�-monoids M/F of R�-monoids M
by their filters F .
A filter F of M is called maximal if F is a proper filter of M and is not a

proper subset of any proper filter of M .
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3 Implicative filters

Let M be an R�-monoid and F a subset of M . Then F is called an implicative
filter of M if

(1) 1 ∈ F ;

(2) x → (y → z) ∈ F , x → y ∈ F imply x → z ∈ F .

Proposition 3.1 Every implicative filter of an R�-monoid M is a filter of M .

Proof Let ∅ = F ⊆ M satisfy conditions (1) and (2) and let x, y ∈ M be such
that x, x → y ∈ F . Then 1 → (x → y) ∈ F , 1 → x ∈ F , hence y = 1 → y ∈ F .

�

If F is a filter of an R�-monoid M and a ∈ M , put

Ma := {x ∈ M : a → x ∈ F}.
Theorem 3.2 Let M be an R�-monoid and F be a filter of M . Then F is an
implicative filter of M if and only if Ma is a filter of M for every a ∈ M .

Proof Let F be an implicative filter of M and a ∈ M . Then 1 = a → 1 ∈ M ,
thus 1 ∈ Ma. Further, suppose that x, x → y ∈ Ma, i.e. a → x ∈ F and
a → (x → y) ∈ F . Then we get a → y ∈ F , and hence y ∈ Ma. That means,
Ma is a filter of M for arbitrary a ∈ M .
Conversely, let Ma be a filter of M for each a ∈ M . Suppose that x → (y →

z) ∈ F and x → y ∈ F . Then y → z ∈ Mx and y ∈ Mx, hence z ∈ Mx and
therefore x → z ∈ F . That means, F is implicative. �

Theorem 3.3 Let F be a filter of an R�-monoid M . Then the following con-
ditions are equivalent:

(a) F is an implicative filter of M .

(b) y → (y → x) ∈ F implies y → x ∈ F , for any x, y ∈ M .

(c) z → (y → x) ∈ F implies (z → y) → (z → x) ∈ F , for any x, y, z ∈ M .

(d) z → (y → (y → x)) ∈ F and z ∈ F imply y → x ∈ F , for any x, y, z ∈ M .

(e) x → (x � x) ∈ F , for any x ∈ M .

Proof (a)⇒ (b): Suppose that F is an implicative filter of M , x, y ∈ M and
y → (y → x) ∈ F . Then since y → y = 1 ∈ F , we obtain y → x ∈ F .
(b) ⇒ (c): Let F be a filter of M satisfying the condition (b), x, y, z ∈ M

and z → (y → x) ∈ F . Then z → (z → ((z → y) → x)) = z → ((z → y) →
(z → x)) ≥ z → (y → x) ∈ F , thus z → (z → ((z → y) → x)) ∈ F . From this
we have z → ((z → y) → x) ∈ F , that means (z → y) → (z → x) ∈ F .
(c)⇒ (d): Suppose that a filter F satisfies the condition (c). Let z → (y →

(y → x)) ∈ F and z ∈ F . Then also y → (y → x) ∈ F . At the same time,
y → x = (y → y) → (y → x), thus y → x ∈ F .
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(d)⇒ (a): Let a filter F fulfill the condition (d). Let x → (y → z) ∈ F and
x → y ∈ F . Then x → (y → z) = y → (x → z) ≤ (x → y) → (x → (x → z)),
hence (x → y) → (x → (x → z)) ∈ F , and therefore x → z ∈ F .
(a)⇒ (e): Let F be an implicative filter of M . Then x → (x → (x � x)) =

(x � x) → (x � x) = 1 ∈ F . Further, x → x = 1 ∈ F , and hence we obtain
x → (x � x) ∈ F .
(e) ⇒ (a): Let a filter F satisfy the condition (e) and let x → (y → z) ∈ F

and x → y ∈ F . Then (x → (y → z))�(x → y)�x�x ≤ (y → z)�y ≤ z, hence
(x → (y → z)) � (x → y) ≤ (x � x) → z, and thus (x � x) → z ∈ F . Further,
x → (x � x) ∈ F, (x � x) → x = 1 ∈ F , therefore from (x � x) → z ∈ F , we
obtain x → z ∈ F . �

Using the proof (a)⇒ (e) in the preceding theorem, we have as an immediate
consequence:

Theorem 3.4 If F is a filter of an R�-monoid M , then F is an implicative
filter if and only if the quotient R�-monoid M/F is a Heyting algebra.

Proposition 3.5 If F1 and F2 are filters of an R�-monoid M , F1 ⊆ F2 and F1

is an implicative filter of M , then F2 is also an implicative filter of M .

Proof Suppose that F1 and F2 are filters of an R�-monoid M , F1 ⊆ F2 and
F1 is implicative. Then, by Theorem 3.3, x → x � x ∈ F1 ⊆ F2 for any x ∈ M ,
and therefore F2 is also implicative. �

Let M be an R�-monoid and F a subset of M . Then F is called a positive
implicative filter of M if

(1) 1 ∈ F ;

(3) x → ((y → z) → y) ∈ F and x ∈ F imply y ∈ F , for any x, y, z ∈ M .

Proposition 3.6 Every positive implicative filter of an R�-monoidM is a filter
of M .

Proof Let x ∈ F and x → y ∈ F . Then x → ((y → 1) → y) = x → (1 → y) =
x → y, hence x → ((y → 1) → y) ∈ F , and thus y ∈ F . �

Proposition 3.7 Every positive implicative filter of M is an implicative filter
of M .

Proof Let F be a positive implicative filter of M , x, y, z ∈ M , x → (y → z) ∈
F and x → y ∈ F . We have (x → y) → (x → (x → z)) ≥ y → (x → z) = x →
(y → z), hence (x → y) → (x → (x → z)) ∈ F , and thus also x → (x → z) ∈ F .
Since ((x → z) → z) → (x → z) ≥ x → (x → z), then we get ((x → z) →

z) → (x → z) ∈ F . Further, 1 → (((x → z) → z) → (x → z)) = ((x → z) →
z) → (x → z), and since 1 → (((x → z) → z) → (x → z)) ∈ F and 1 ∈ F , we
obtain x → z ∈ F .
Therefore F is an implicative filter. �
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Theorem 3.8 Let F be a filter of an R�-monoid M . Then the following con-
ditions are equivalent:

(a) F is a positive implicative filter of M .

(b) (x → y) → x ∈ F implies x ∈ F , for any x, y ∈ M .

(c) (x− → x) → x ∈ F , for any x ∈ M .

Proof (a)⇒ (b): Let F be a positive implicative filter of M and (x → y) →
x ∈ F . Then since 1 → ((x → y) → x) = (x → y) → x ∈ F and 1 ∈ F , we get
x ∈ F .
(b) ⇒ (a): Let a filter F satisfy the condition (b) and let x → ((y → z) →

y) ∈ F and x ∈ F . Then (y → z) → y ∈ F , and therefore y ∈ F . Hence F is a
positive implicative filter of M .
(b) ⇒ (c): Let F be a filter of M and x ∈ M . Then (((x− → x) → x) →

0) → ((x− → x) → x) = (x− → x) → ((((x− → x) → x) → 0) → x) ≥ (((x− →
x) → x) → 0) → x− = ((x− → x) → x) → 0) → (x → 0) ≥ x → ((x− → x) →
x) = 1 ∈ F , thus (((x− → x) → x) → 0) → ((x− → x) → x) ∈ F , and hence
(x− → x) → x ∈ F .
(c) ⇒ (b): Let a filter F satisfy condition (c). Let (x → y) → x ∈ F .

We have (x → y) → x ≤ (x → 0) → x = x− → x, hence x− → x ∈ F . By
the assumption, (x− → x) → x ∈ F , thus x ∈ F . Therefore F satisfies the
condition (b). �

Proposition 3.9 If F1 and F2 are filters of an R�-monoid M , F1 is a positive
implicative filter and F1 ⊆ F2, then F2 is also a positive implicative filter of M .

Proof Let F1 ⊆ F2 and F1 be positive implicative. Then for any x ∈ M we
get (x− → x) → x ∈ F1, thus (x− → x) → x ∈ F2. Therefore, by Theorem 3.8,
F2 is a positive implicative filter of M . �

Theorem 3.10 Let M be an R�-monoid. Then the following conditions are
equivalent:

(a) M is a Heyting algebra.

(b) Every filter of M is implicative.

(c) {1} is an implicative filter of M .

Proof (a)⇒ (c): It follows from Theorem 3.4.
(a) ⇒ (b): Let M be an idempotent R�-monoid, F be a filter of M , and

x ∈ M . Then x → (x � x) = x → x = 1 ∈ F , hence by Theorem 3.3, F is an
implicative filter.
(b)⇒ (c): It is obvious. �
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Proposition 3.11 Let F be an implicative filter of an R�-monoid M . Then
the following conditions are equivalent:

(a) F is a positive implicative filter of M .

(b) (x → y) → y ∈ F implies (y → x) → x ∈ F , for any x, y ∈ M .

Proof (a)⇒ (b): Let F be a positive implicative filter ofM and (x → y) → y ∈
F . Since x ≤ (y → x) → x, we get ((y → x) → x) → y ≤ x → y. Hence (x →
y) → y ≤ (y → x) → ((x → y) → x) = (x → y) → ((y → x) → x) ≤ (((y →
x) → x) → y) → ((y → x) → x), and thus (((y → x) → x) → y) → ((y → x) →
x) ∈ F . Consequently, also 1 → ((((y → x) → x) → y) → ((y → x) → x)) ∈ F ,
and since F is a positive implicative filter, we get (y → x) → x ∈ F .
(b)⇒ (a): Let an implicative filter F satisfy the condition (b) and let x ∈ F

and x → ((y → z) → y) ∈ F . Then also (y → z) → y ∈ F . Further, (y → z) →
y ≤ (y → z) → ((y → z) → z), hence (y → z) → ((y → z) → z) ∈ F . Since F is
implicative, (y → z) → z ∈ F . Then, by the assumption, also (z → y) → y ∈ F .
Further, z ≤ y → z, hence (y → z) → y ≤ z → y, thus z → y ∈ F . We have
shown (z → y) → y ∈ F , therefore y ∈ F . �

Theorem 3.12 Let M be an R�-monoid. Then the following conditions are
equivalent:

(a) {1} is a positive implicative filter.
(b) Every filter of M is positive implicative.

(c) M(a) := {x ∈ M : a ≤ x} is a positive implicative filter of M , for every
a ∈ M .

(d) (x → y) → x = x, for any x, y ∈ M .

(e) M is a Boolean algebra.

Proof (a)⇒ (b): It follows from Proposition 3.9.
(b) ⇒ (c): Let a ∈ M . Then 1 ∈ M(a). Assume that x, x → y ∈ M(a),

i.e. a → x = 1, a → (x → y) = 1. Since by the assumption, {1} is a positive
implicative filter of M , we obtain a → y = 1, hence y ∈ M(a). That means
M(a) is a filter of M which is also positive implicative.
(c) ⇒ (d): If x, y ∈ M , then (x → y) → x ∈ M((x → y) → x), therefore

(x → y) → x ≤ x by Theorem 3.8. Moreover, x ≤ (x → y) → x, i.e. (x → y) →
x = x.
(d)⇒ (a): It follows from Theorem 3.8.
(d) ⇒ (e): Since (x → y) → x = x, we obtain (y → x) → x = (y → x) →

((x → y) → x) ≥ (x → y) → y, and similarly, (x → y) → y ≥ (y → x) → x.
Hence x−− = (x → 0) → 0 = (0 → x) → x = 1 → x = x and therefore by [12],
M is an MV -algebra. Then by [7, Lemma 3.16], furthermore M is a Boolean
algebra.
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(e)⇒ (d): Since M is a Boolean algebra, x− is the lattice complement of x
in M , and so x ∨ x− = 1. This implies, by [7, Lemma 3.16], (x → y) → x = x
for any x, y ∈ M . �

Theorem 3.13 If F is a filter of an R�-monoid M , then the following condi-
tions are equivalent:

(a) F is a maximal and positive implicative filter of M .

(b) F is a maximal and implicative filter of M .

(c) If x, y ∈ M \ F , then x → y ∈ F and y → x ∈ F .

(d) M/F is a two-element Boolean algebra.

Proof (a)⇒ (b): It is obvious.
(b) ⇒ (c): Let F be a maximal and implicative filter of M . By Theorem

3.2, My = {a ∈ M : y → a ∈ F} is a filter of M . If b ∈ F , then from b ≤ y → b
it follows that y → b ∈ F , thus b ∈ My. Hence F ⊆ My. Since F is a maximal
filter ofM and y /∈ F , we haveMy = M . Therefore y → x ∈ F . The assumption
x /∈ F analogously implies x → y ∈ F .
(c) ⇒ (a): Let a filter F satisfy the condition (c). Suppose that F is not

positive implicative. Then by Theorem 3.8, there are x, y ∈ M such that x /∈ F
and (x → y) → x ∈ F . If y ∈ F , then x → y ∈ F , and hence x ∈ F , a
contradiction. If y /∈ F , then by (c), x → y ∈ F , a contradiction. Hence F is a
positive implicative filter of M . We will prove that F is also a maximal filter of
M . If a /∈ F , then by the preceding part of the proof, F ∪ {a} ⊆ Ma. We will
show that Ma is the least filter of M containing F ∪{a}. Let G be a filter of M
such that F ∪ {a} ⊆ G. If x ∈ Ma, then a → x ∈ F ⊆ G, and since a ∈ G, we
have x ∈ G. Therefore Ma ⊆ G. Consider any element z ∈ M . If z ∈ F , then
z ∈ Ma. If z /∈ F , then since also a /∈ F , the assumption (c) gives a → z ∈ Ma.
Hence Ma = M , and therefore F is a maximal filter of M .
(c)⇒ (d): It is obvious. �

A filter F of an R�-monoid M is called

a) Boolean if x ∨ x− ∈ F for every x ∈ M ;

b) semi-Boolean if (x ∧ x−)− ∈ F for every x ∈ M .

Proposition 3.14 [14, Theorem 3.2]. If F is a filter of an R�-monoid M , then
F is Boolean if and only if M/F is a Boolean algebra.

Proposition 3.15 Every Boolean filter of M is semi-Boolean.

Proof Let x ∈ M . Then x− ≤ (x ∧ x−)− and x ≤ x−− ≤ (x ∧ x−)−, hence
x ∨ x− ≤ (x ∧ x−)−. �

Example 3.16 LetM = {0, a, b, c, 1} be the lattice with the diagram in Fig. 1,
and let � = ∧ and → be defined in the corresponding table in Fig. 1.
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→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1 �

� �

�

�

0

a b

c

1

Fig. 1

ThenM = (M ;∨,∧,�,→, 0, 1) is an R�-monoid (which is not a BL-algebra).
The filter F = {1} is semi-Boolean, but it is not Boolean.

Theorem 3.17 a) Let M be an R�-monoid. Then every Boolean filter of M is
positive implicative and every positive implicative filter of M is semi-Boolean.
b) If an R�-monoid M satisfies condition

((x → x−) → x−) ∧ ((x− → x) → x) = x ∨ x−, for any x ∈ M, (∗)

then Boolean and positive implicative filters of M coincide.

Proof a) LetM be an R�-monoid, let F be a Boolean filter ofM and let x ∈ M .
Then by Lemma 2.1, x ∨ x− ≤ ((x → x−) → x−) ∧ ((x− → x) → x), hence
((x → x−) → x−) ∧ ((x− → x) → x) ∈ F , and therefore (x− → x) → x ∈ F .
That means F is positive implicative.
Let now F be an arbitrary positive implicative filter ofM and x ∈ M . Then

(x−− → x−) → x− ∈ F and by Lemma 2.1, (x−− → x−) → x− = (x → x−) →
x− = ((x → x−) � x)− = (x ∧ x−)−. Thus F is a semi-Boolean filter.
b) Let an R�-monoidM satisfy condition (∗) and let F be a positive implica-

tive filter of M . Then a fortiori F is also implicative, hence x → (x � x) ∈ F
for every x ∈ M . We have (x → x−) → x− = (x → (x → 0)) → (x → 0) =
((x � x) → 0) → (x → 0) ≥ x → (x � x), hence (x → x−) → x− ∈ F , and
thus also x ∨ x− = ((x → x−) → x−) ∧ ((x− → x) → x) ∈ F . Therefore F is a
Boolean filter. �

As an immediate consequence we get the following theorem.

Theorem 3.18 [11, Theorem 2]. Boolean and positive implicative filters of
any BL-algebra coincide.

Proof IfM is a BL-algebra, then by [5, Lemma 2.3.4(8)], ((x → y) → y)∧((y →
x) → x) = x ∨ y, for every x, y ∈ M . �

Let F be a filter of an R�-monoid M . Then F is called an implicative
deductive system if x → (z− → y) ∈ F and y → z ∈ F imply x → z ∈ F , for
any x, y, z ∈ M .
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Theorem 3.19 [14, Theorem 3.2]. Let F be a filter of an R�-monoid M . Then
F is an implicative deductive system if and only if F is a Boolean filter.

Remark 3.20 Now we can rephrase Theorem 3.17 in this way. Let M be an
R�-monoid. Then every implicative deductive system of M is a positive im-
plicative filter and every positive implicative filter of M is semi-Boolean. If
M satisfies the condition (∗), then implicative deductive systems and positive
implicative filters of M coincide.

Theorem 3.21 If F is a maximal and (positive) implicative filter of an R�-
monoid M , then F is Boolean.

Proof Let F be a maximal and (positive) implicative filter of M . Then by
Theorem 3.13, M/F is a two element R�-monoid, hence a two element Boolean
algebra. Consequently, by Proposition 3.14, F is a Boolean filter. �

Theorem 3.22 If F is a maximal filter of an R�-monoidM , then the following
conditions are equivalent:

(a) F is a Boolean filter.

(b) F is a positive implicative filter.

(c) F is an implicative filter.

(d) F is an implicative deductive system.

Proof It follows from Theorems 3.17 and 3.21 and from Remark 3.20. �

Let M be an R�-monoid. If F is a proper filter of M , denote

F− := {x ∈ M : x ≤ y− for some y ∈ F}.
By [14, Proposition 3.4], F ∪ F− is a subalgebra of M for every proper filter F
of M .
An R�-monoid M is called bipartite if M = F ∪ F− for some maximal filter

F of M .
By [14, Theorem 3.6], M is bipartite if and only if M contains a proper

Boolean filter.
An R�-monoid M is said to be strongly bipartite if M = F ∪ F− for every

maximal filter F of M .
IfM is an R�-monoid, denote by B(M) the intersection of all Boolean filters

of M . Obviously B(M) is the least Boolean filter of M .
Further, denote by Rad(M) the radical of M , i.e. the intersection of all

maximal filters of M .

Theorem 3.23 [14, Theorem 3.8]. If M is an R�-monoid, then the following
conditions are equivalent:

(a) M is strongly bipartite.

(b) Every maximal filter of M is Boolean.

(c) B(M) ⊆ Rad(M).
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The following theorem is an immediate consequence of Theorems 3.22 and
3.23.

Theorem 3.24 If M is an R�-monoid, then the following conditions are equiv-
alent:

(a) M is strongly bipartite.

(b) B(M) ⊆ Rad(M).

(c) Every maximal filter of M is Boolean.

(d) Every maximal filter of M is positive implicative.

(e) Every maximal filter of M is implicative.

4 Fantastic filters

Let M be an R�-monoid and F a subset of M . Then F is called a fantastic
filter of M if

(1) 1 ∈ F ;

(4) z → (y → x) ∈ F and z ∈ F imply ((x → y) → y) → x ∈ F ,
for any x, y, z ∈ M .

Proposition 4.1 Every fantastic filter of M is a filter of M .

Proof Let F be a fantastic filter of M and x, y ∈ M . If x, x → y ∈ F , then
also x ∈ F and x → (1 → y) = x → y ∈ F , and thus by (4), y ∈ F . �

Theorem 4.2 A filter F of an R�-monoid M is fantastic if and only if
(5) y → x ∈ F implies ((x → y) → y) → x ∈ F , for every x, y ∈ M .

Proof Let F be a fantastic filter of M , x, y ∈ M and y → x ∈ F . Then
1 → (y → x) = y → x ∈ F and 1 ∈ F , hence ((x → y) → y) → x ∈ F .
Conversely, let a filter F satisfy the condition (5) and let z → (y → x) ∈ F

and z ∈ F . Then y → x ∈ F , therefore also ((x → y) → y) → x ∈ F . �

Theorem 4.3 Every positive implicative filter of an R�-monoid M is a fantas-
tic filter of M .

Proof Suppose F is a positive implicative filter of M and x, y ∈ M are such
that y → x ∈ F . We have x ≤ ((x → y) → y) → x, thus

(((x → y) → y) → x) → y ≤ x → y.

Further, ((((x → y) → y) → x) → y) → (((x → y) → y) → x) ≥ (x → y) →
(((x → y) → y) → x) = ((x → y) → y) → ((x → y) → x) ≥ y → x.
By the assumption y → x ∈ F , hence also

((((x → y) → y) → x) → y) → (((x → y) → y) → x) ∈ F.

Since F is positive implicative, we get ((x → y) → y) → x ∈ F , and hence F is
a fantastic filter. �
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Theorem 4.4 If F is a filter of an R�-monoidM , then the following conditions
are equivalent:

(a) F is a fantastic filter of M .

(b) x−− → x ∈ F , for every x ∈ M .

(c) x → u ∈ F and y → u ∈ F imply ((x → y) → y) → u ∈ F , for every
x, y, u ∈ M .

Proof (a)⇒ (b): Let F be a fantastic filter of M and x ∈ M . Since 0 → x =
1 ∈ F , we obtain from (5) that x−− → x = ((x → 0) → 0) → x ∈ F .
(b)⇒ (c): Suppose that F is a filter of M such that x−− → x ∈ F for every

x ∈ M . Let x, y, u ∈ M , x → u ∈ F and y → u ∈ F . Since x → u ≤ u− → x−

and y → u ≤ u− → y−, we get u− → x− ∈ F and u− → y− ∈ F , and thus
(u− → x−) ∧ (u− → y−) ∈ F .
Moreover,

(u− → x−) ∧ (u− → y−) = u− → (x− ∧ y−)
= u− → (y− � (y− → x−)) = u− → (y− � (y− → (x → 0))
= u− → (y− � (x → (y− → 0)) = u− → (y− � (x → y−−)).

Further,

(u− → (y− � (x → y−−))) → (u− → (y− � (x → y)))
≥ (y− � (x → y−−)) → (y− � (x → y)))
≥ (x → y−−) → (x → y) ≥ y−− → y ∈ F,

therefore also u− → (y− � (x → y)) ∈ F .
Moreover,

u− → (y− � (x → y)) ≤ (y− � (x → y))− → u−− = ((x → y) → y−−) → u−−,

hence ((x → y) → y−− → u−− ∈ F . Further we have

(((x → y) → y−−) → u−−) → (((x → y) → y) → u−−)
≥ ((x → y) → y) → ((x → y) → y−−) ≥ y → y−− = 1 ∈ F,

thus ((x → y) → y) → u−− ∈ F .
Moreover,

(((x → y) → y) → u−−) → (((x → y) → y) → u) ≥ u−− → u ∈ F,

therefore also ((x → y) → y) → u ∈ F .
(c)⇒ (a): If F satisfies the condition (c), then for u = x we get that whether

y → x ∈ F then ((x → y) → y) → x ∈ F , for every x, y ∈ M , hence F is a
fantastic filter of M . �
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Theorem 4.5 If F1 and F2 are filters of an R�-monoid M , F1 ⊆ F2 and F1 is
fantastic in M , then F2 is also a fantastic filter of M .

Proof Let F1 and F2 be filters ofM , F1 ⊆ F2, and let F1 be fantastic. Then by
Theorem 4.4, x−− → x ∈ F1 ⊆ F2, for every x ∈ M , hence F2 is also fantastic.

�

Theorem 4.6 A filter F of an R�-monoid M is fantastic if and only if M/F
is an MV -algebra.

Proof Let F be a filter ofM . Then F is fantastic if and only if x−− → x ∈ F
for every x ∈ M , which is equivalent to the following conditions in M/F :

x−−/F → x/F = F, x−−/F ≤ x/F and x−−/F = x/F,

for every x/F ∈ M/F , and this is equivalent to M/F is an MV -algebra. �

Proposition 4.7 If F is a maximal filter of an R�-monoid M , then F is fan-
tastic.

Proof It follows from [3, Proposition 3.5], where it is proved that M/F is an
MV -algebra for every maximal filter F of M . �

Remark 4.8 The MV -filters of R�-monoids, i.e. filters such that the corre-
sponding quotient R�-monoids are MV -algebras, were investigated in [16], [17]
and [3]. By Theorem 4.6, MV -filters of R�-monoids are exactly their fantastic
filters. If M is an R�-monoid, denote by D(M) := {x ∈ M : x−− = 1} the set
of all dense elements in M . Then D(M) is a proper filter of M and a filter F of
M is an MV -filter if and only if D(M) ⊆ F . Therefore we get as a consequence
the following proposition.

Proposition 4.9 A filter F of an R�-monoid M is fantastic if and only if
D(M) ⊆ F .

Proposition 4.10 Let M be an R�-monoid. Then the following conditions are
equivalent:

(1) M is an MV -algebra.

(2) Every filter of M is fantastic.

(3) {1} is a fantastic filter of M .

Proof (1)⇒ (2): Let M be an MV -algebra and F be a filter of M . Since the
class of MV -algebras is a subvariety of the variety of R�-monoids, the quotient
R�-monoid M/F is also an MV -algebra. Therefore by Theorem 4.6, F is a
fantastic filter.
(2)⇒ (3): It is obvious.
(3) ⇒ (1): Let {1} be a fantastic filter of M . Then M ∼= M/{1} is an

MV -algebra. �
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Theorem 4.11 If F is a filter of an R�-monoid M , then the following condi-
tions are equivalent.

(a) F is a Boolean filter.

(b) F is an implicative and fantastic filter.

Proof By Proposition 3.14, a filter F is Boolean if and only ifM/F is a Boolean
algebra. Moreover, an R�-monoidM/F is a Boolean algebra if and only ifM/F
is an MV -algebra and (x/F ) � (x/F ) = x/F for every x/F ∈ M/F . This is
equivalent to (x/F )−− = x/F and (x/F ) � (x/F ) = x/F , and it holds, by
Theorems 4.6 and 3.4, if and only if F is a fantastic and implicative filter of M .

�

We have characterized filters of R�-monoids such that the corresponding
quotient R�-monoids are Heyting algebras, Boolean algebras and MV -algebras,
respectively. (See e.g. Theorem 3.4, Proposition 3.14 and Theorem 4.6.) Now
we will complete it for the case when the quotient R�-monoid is a BL-algebra.
A filter F of an R�-monoid M is called a BL-filter of M if

(x → y) ∨ (y → x) ∈ F,

for every x, y ∈ M .

Theorem 4.12 A filter F of an R�-monoid M is a BL-filter of M if and only
if M/F is a BL-algebra.

Proof We know that an R�-monoid is a BL-algebra if and only if it satisfies
the identity of pre-linearity.
Let M be an R�-monoid and F be a filter of M . If x, y ∈ M , then

(x/F → y/F ) ∨ (y/F → x/F ) = ((x → y) ∨ (y → x))/F.

Hence (x/F → y/F )∨ (y/F → x/F ) = F if and only if (x → y)∨ (y → x) ∈ F .
�
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[15] Rachůnek, J., Šalounová, D.: Local bounded commutative residuated �-monoids.
Czechoslovak Math. J. 57 (2007), 395–406.

[16] Rachůnek, J., Slezák, V.: Negation in bounded commutative DR�-monoids. Czechoslovak
Math. J. 56 (2006), 755–763.

[17] Rachůnek, J., Slezák, V.: Bounded dually residuated lattice ordered monoids as a gener-
alization of fuzzy structures. Math. Slovaca 56 (2006), 223–233.

[18] Swamy, K. L. N.: Dually residuated lattice ordered semigroups III. Math. Ann. 167
(1966), 71–74.

[19] Turunen, E.: Boolean deductive systems of BL-algebras. Arch. Math. Logic 40 (2001),
467-473.


		webmaster@dml.cz
	2012-05-04T00:54:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




