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ON AN INTERNAL APPROXIMATION 
OF A CLASS OF ELLIPTIC EIGENVALUE PROBLEMS 

V A N M A E L E M . , V A N K E E R R., G E N T , Belg ium 

1 Introduct ion . 

Let V and H be two real infinite dimensional Hilbert spaces with V compactly and densely 

embedded in H. Let a : V xV —• R be a bilinear form which is symmetric, bounded and strongly 

coercive. Let (•,•) be the inner product in H, with norm | • |, Let \\ be a finite dimensional 

subspace of V . Finally, let (•, -)h> as an approximation of (•, •), be an inner product in \\. 

With these da ta we introduce the 'solution operators' 

T : H - V V/ G H,Vv G V : a(Tj\ v) = (j\v) (1.1) 

fh : Vh - Vh, V / G VhlVvh G Vh : a(fhf\vh) = ( / , vh)h 

and we consider the corresponding 'exact' and 'approximate' eigenvalue problems (EVP) : 

Find p G R and u G V : Tu = fi.u 

Find jj.h G R and uh G Vh : thuh = jxhuh. 

The former is the operator version of the EVP for a(-, •) in V x V, relative to (•. •), while die latter 

is equivalent to the EVP for a(-, •) in Vh x Vh relative to (•, -)/i-

This paper mainly deals withythe convergence for h —* 0 of an approximate eigenpair, allowing 

for a multiple exact eigenvalue, under the following hypotheses, met in practice, (|| • || is the norm 

in V), 

(HO VveV:mf{\\v-vh\\;vheVh}^0 if h -> 0 

(H2) Vvh,wh G Vh : \(wh,vh) - (wh,vh)h\ = \E(wh,vh)\ < e ( H | K | | . | N | , 

e (h) -> 0 if h->0. 

(Hi) is the standard approximation property of the finite element siibspa* c> »[' the Sobolev spaces, 

used in weak variational EVP's for PDE's. In that context, (H2) holds foi (•.)/» corresixMiding 

to a suitable numerical quadrature for (•,•). 

In the case of a simple exact eigenvalue the results are incorporated in those of [3], the latter 

however being obtained in a less transparent manner. Moreover, the present approach can readily 

be extended to the case that also a(-, •) is approximated suitably on \\ x \\. 

We rely on [4] (Section V.4.3). First we recall a classical result : Tr = T|v, (1.1). is a compact, 

self-adjoint, positive definite operator in V. Hence sp(Tr) consists of an infinite sequence of 

eigenvalues, all being strictly positive and having finite multiplicity, with zero as accumulation 
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point, fii > fi2 > ... > fin > . - . — • 0 (here every eigenvalue occurs as many times as given by its 

multiplicity). 

In what follows, C is a generic constant, only depending on V, H and a(-, •)• 

2 Uniform convergence of fh to Tr. 

Let Vh denote the orthogonal complement of Vh in V relative to a(-, •). One easily proves 

Propos i t ion 2 .1 

fh : V - V, fhv = ffct; if v e Vh, fhv = 0 if v e Vh
L (2.1) 

defines a compact, self-adjoint, positive operator in V (equipped with a(-,-)j\ having the same 

eigenpairs as Th, apart from the trivial eigenvalue zero. 

To 'compare' this extension Th with T, we use the 'intermediate' operator 

Th : V - V,, V/ 6 V,Vufc e V, : ci(Thf,vh) = (/,u f c). 

Note that T^ = 7r,vTr, where irh : V —+ Vh is the projection operator relative to a(-,-). Invoking 

(Hi) and the compactness of Tr, one has, using [1] (Theorem 3.2 p. 124) 

Propos i t ion 2.2 

||T„ - I * | | S 8 u p { | | ( T - T » H I ; » e v . l H l < 1} -» 0 if h - 0. (2.2) 

T h e o r e m 2 .1 

||T, - T * | | H sup{| | (T - f*)» | | ;» 6 V, | |v | | < 1} -» 0 if /» - 0. 

Proof By (2.2) it is sufficient to consider (TA — Th). Denoting by a the coercivity constant of a, 

one has 

Vv € V, a| |(T / l - fe
fc)u||2 < (v - whv,(Th - fh)v) + E(irhvATh - t / J )v ) . 

Using (H i) , the continuity of i : V —• II and the coercivity and boundedness of a, one gets 

| | ( T - - 7 * ) i ; | l < C . [ | r - n « | + e(fc).||t-l|]. 

From a variant of the Aubin-Nitsche lemma, cfr. [1] (Lemma 4.26 p. 215), one finds (with H the 

unit ball in H) 

\v - W>| < C.\\v - irhv\\. sup{\\w - T T ^ H ; w £ T(H)} < e(h).\\v\\. 

Invoking the compactness of i and the spectral decomposition theorem of a compact operator, T, 

(1.1), may be shown to be compact . (.Hi) then implies that e(h) —• 0 if h —• 0. I 
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3 Convergence of the eigenvalues. 

Relying on [4] (Section VA.3) one readily obtains 

Lemma 3.1 Let y. be an eigenvalue of Tr with multiplicity m and isolation distance d. If It is 

sufficiently small, then the open interval (u - d/2,n-\- d/2) contains exactly m eigenvalues oft'1, 

counting with their multiplicity. 

Lemma 3.2 

supinf \vh - v\ and supinf \vh -v\< \\Tr - fh\\ , 
»h V U Vh ' 

where v and vh run over sp(T r) and sp(Th) respectively. 

We number the nonzero eigenvalues //J1, 1 < / < dimF^ of t h , similarly to those of Tr. Then, 

combining the two lemmas, we arrive at 

Theorem 3.1 

\ti - /i/| < ||T r - fe
fc||, 1 < I < dim Vh, h sufficiently small. 

Consequently, from Theorem 2.1, fih —> pj, I > 1, if h —> 0. 

4 Convergence of the eigenfunctions. 

Let*//.*-! < Hk = t-*+i = . . . = AU-+m < pA+m+i, i.e. let fik be an {m + l)-fold <-igeuvalue of TP. 

Denote by uk+r, 0 < r < m, eigenfunctions of T r, cori-esponding to f.tk, urtlumorinal in 11. Let E 

be the space spanned by these eigenfunctions. Likewise, let t*J+r, 0 < r < m, he eigenfunctions of 

Th, corresponding to the eigenvalues /i£+r, 0 < r < m, and being orthonornialized with respect 

to (-y')h- Set Eh = s p a n ( u j , . . . , u j + m ) . Finally, let Ph be the spectral projection of V onto Eh. 

Similarly as in [5] (Section VIII.5), one has 

Propos i t ion 4 .1 Let wk € E, then, for sufficiently small h, 

\\wk-PhWk\\<C.\\(T-th)ivk\\. 

Corollary 4 .1 

6(E,Eh) = sup{d(wk,E
h);wk e E,\\wk\\ =- 1} < C.||Tr - 7*| | . 

Consequently, from Theorem 2.1, the distance between the two 'eigenspaces' tends to zero with 

h. Moreover one has 

Theorem 4.1 There exists a set of eigenfunctions Uk+r, 0 < r < m ofT, corresponding to ftk 

and being orthonormalized with respect to (•, •), such that, with uh+r, 0 < r < m as above, 

l l ^ + r - ^ + r l l - 0 i f h - > 0 , 0 < r < m . (4.1) 
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Proof. This adapts the two basic ideas of the proof in [2] (Theorem XIIA .5, p. 907-909), but is 

more involved. First one defines the non-singular square matrix (ft) = ((iri) by 

m 

Phuk+r = 5>H.«£+,., 0 < r < m 

i=0 

and one introduces 

Uk+t = JT((3-l)tl.uk+h 0<t<m. 
1=0 

Using Proposition 4.1, one may show that ||£lV{-t — uk+t\\ —> 0, 0 < t < m, if h -» 0. From this 

convergence, (4.1) can be derived by induction, whence Uk+r is generated from Uk+r, 0 < r < m, 

by the Gram-Schmidt orthonormalization procedure. I 

5 Approximat ion of the bilinear form. 

The analysis above may be adapted to the case that a(-,-) is suitably approximated on 14 x V̂  

and (•, •) is retained exactly. By superposition one arrives at the case where both a(-, •) and (•, •) 

are suitably approximated on Vh x Vh. Thus define 

fh : H -> Vh, V/ e H, .Vv <E Vh : ah(f
hf, vh) = ( / , vh) , 

where ah(-,-) is a symmetric, uniformly bounded and uniformly strongly coercive bilinear form 

on Vh x Vh (uniformly with respect to h), fulfilling a hypothesis similar to (H?). 

To show the convergence for h —* 0 of the eigenvalues and eigenfunctions of Th, which is a 

compact, self-adjoint, positive definite operator in H, one proves that 

|T - Th\ = sup{|(T - fh)v\; v <E H, \v\ < 1} -> 0 if h - 0. 
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