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ON THE SOLVABILITY 
OP THE NON-HOMOGENEOUS POTENTIAL PROBLEM 

AT A CORNER SINGULARITY 

AKSCOTT F., WINNIPEG, MANITOBA, Canada 

1. The problem 

In several branches of applied mathematics one meets the following 

mixed boundary value potential problem: 

JO is a plane infinite sectorial region in 1R , given by x Z 0, 

|y| £ x tan Y* Z - 0. W E require a function ^ such that 

(i) V ij> *= 0 in IR W (ii) ty takes prescribed values on w , 

i.e. iMx,y,0) - f(x,y) for (x,y) € J (iii) W / 3 * L _ n = 0 
/ 0 2 2 2 * iz-u 

for (x,y) f. ti (iv)ip -> 0 as r = (x +y +z ) * -*- «> 

(There is an analogous problem with ip , 3\p/8zinterchanged in (ii) 

and (iii)). 

Such problems occur, for instance in 

(a) electrostatics (potential due to a charged plate,[8]), 

(b) aerodynamics (air flow over a 'delta wing*,[4],[10]), 

(c) elasticity, (indentation of an elastic medium by a wedge-

shaped punch, [5],[9]). 

2. Observations 

It must first be noted that the problem does not have a unique 

solution. If f(x,y) H 0, the problem is homogeneous, with zero 

boundary conditions, but nevertheless has non-trivial solutions. 

(The sector 3 acts in a similar manner to the 'spine1 described 

in [71, page 2S$). Hence, if we denote solutions of the homo

geneous and non-homogeneous problems by "ijV and i/> ,, then 

\p . + ip . .is also a solution of the non-homogeneous problem. 

On both mathematical and physical grounds,one expects a 

solution to have (locally,at least) a dominant component of the 

form 

r v x (angular function), (2.1) 

where the index v (which depends on the vertex angle y of $ ) 
has to be determined. 

There appears to be some confusion in the literature regard

ing the acceptable values of v , which requires some comment. 

Morrison and Lewis [8] argued correctly that for the homogeneous 

problem v is necessarily real, but their reasoning does not 

carry over to the non-homogeneous problem. Moreover, it is found 
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that for a solution f to be real, it is only necessary that the 
quantity v(v+l) be real. Besides the obvious possibility that 

V is real (we take v £ -$ without loss of generality), we can 
also take v in the range 

v = -i + ip (p i? 0) (2.2) 

and the main purpose of this paper is to show that such values 

of v suffice to solve the non-homogeneous problem. Such a 

solution is unique in the sense that the function f(x,y),subject 

only to reasonable smoothness and suitable behaviour at infinity, 

determines the solution completely. The non-uniqueness of the 

solution arises only from the possible occurrence of solutions 

of the homogeneous equation with v real. 

When considered in a physical context, there may be grounds 

on which a solution with complex v must be excluded. For example, 

in the wedge punch problem, this would theoretically imply loss 

of contact between the punch and the elastic material near the 

vertex. Such an argument on physical grounds is, however, not 

wholly convincing because in the real world a completely sharp 

vertex cannot be achieved or would, at least, have effects such 

that the assumption of linearity, implied in the formulation of 

the problem, ceases to hold. (For example, in the wedge punch 

problem, the material would cease to behave elastically and would 

become plastic.) It seems reasonable, therefore, to regard a 

solution with v complex as quite possibly valid in a region 

away from the vertex, where the solution is in any case indeter

minate both physically and mathematically. This is the viewpoint 

adopted here. 

The analysis was done jointly by the author and Dr.A.Darai 

of the University of Western Illinois. 

Solution of the problem 

The method is to embed the sector JO in a system of elliptic conal 

coordinates, which allows separation of variables. Morrison and 

Lewis [8] use a trigonometric form, but here we use the more 

compact version which employs Jacobian elliptic functions. 

Setting 

x = rr,dnadn3 , y = kr sna sn3 r z - jrrcna en3 (3.1) 
with ranges 

r € [G,oo) # a 6 ( - 2 K , 2 K ] , . 3 e [ K , K + 2 i K ' ] , ( 3 . 2 ) 

the sector & is given by 3 = K+2iK' , and the remainder of the 
plane z=0 is made up of the regions 3 = K, a = ±K. The vertex 

angle of «8 isjsin k, where k ( 6 (0,1)) is the modulus of the 
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2 
elliptic functions. In these coordinates, V ip = 0 becomes 

k2(sn2a - sn23) f-(r2 W ) = £± - -^f (3.3) 
3r 3r aa2 33 

([l]f p.24,[2], sect. U ). 

Separation in the form ty = R(r) A(a) B(3) (3.4) 

gives the three equations 

fj(r2 |5) - v(v+l)R = 0, (3.5a) 

A" + (A-v(v+l)k2sn2a)A =- 0, .B»!+ (X-v(v+l)k2sn23)B=0 (3.5b,c) 

in which X and v(v+l) are separation constants. Equations 

(3.5b,c) are Lame equations. 

The equation (3.5a) provides different forms of Solution R(r) 

according to the value of the(real) quantity v(v+l). According 

a s (a) v(v+l) £ -*, (b) v(v+l) = -£ (c) v(v+l) < -* (3.6a,b,c) 

we have _ , ' , 
(a) R(r,v) = Arv+ Br v x (vl> - * ) , (b) R(r,v)=r M A + B£n r), 

(c) R(r,v) = r"MA cos (p In r)+ B sin (p in r)) (p£ 0) 

(3.7a,b,c) 

For simplicity, we now assume that the boundary-value func

tion f(x,y), and hence also the solution ty , is symmetric about 

the centre line of o . Then consideration of the coordinate 

system [5] shows that A(oO must be even in a with period 2K, so 

we adjoin to (3.5b) the conditions 

A1 (0) = A'(K) = 0. (3.8) 

We have thus a regular Sturm-Liouville problem, with the 

usual infinity of eigenvalues X and corresponding eigen-

functions. Such solutions were investigated by Ince [6], 

denoted by Ecy
m(a), and given either as power series in sn a 

or as Fourier-Jacobi series. They were partly tabulated by Ince, 

but may readily be computed by the technique given in [3]. 

Further analysis shows that B(3) must be the same function 

of 3 that A(a) is of a . We thus obtain a separated solution , 

satisfying (i), (iii) of the original problem, for arbitrary v and 

arbitrary m = 0,1,2,... A more general solution is obtained by 

summing over m and integrating with respect to v , in the form 
f oo 

4> = if>(r,a,3) = /dv £ c
m<

v> R(*,v) Ec2m(a) Ec2m(3) (3.9) 
J m=0 

The range of integration with respect to v is at present unspec
ified. It remains to satisfy the boundary condition on -» , 
which becomes ' 

iMr,a ,K+2iK*) = F ( r , a ) where f (X/y)-- F (r ,a) 
(3.10) 
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The integral relationship consisting of (3.9), (3.10) must 

now be inverted to give C (v) in terms of F(r,a). In [51 it is 

shown that this can be done uniquely if the range of integration 

for v is taken to be v= -i+ip, p £[0,°°), subject only to moderate 

conditions on the smoothness of F and its behaviour as r+ °° 

The mathematics involves only the orthogonality of the EcK
m 

with respect to m, and a Fourier transform with respect to 

s = Jin r. It is obvious that, since R^ r~* as r -• °° , the 

condition (iv) is also satisfied so the solution is completed. 

R E F E R E N C E S 

[11 F.M.Arscott, Periodic Differential Equations, Pergamon Press, 

1964. 

[2J F.M.Arscott, A.Darai, Curvilinear coordinates in which the 

Helmholtz equation separates, IMA Jour.Appl.Math 27(1981),33 

33-70. 
[Зj F,M.Arscott, R.Lacroix,W.T.Shymanski, A three-term recursion 

and the computation of Mathieu functions, Proc.вth. 

Manitoba conference on numerical mathematics (1978) 107-115. 

[4] S.N.Brown, K.Stewartson, Flow near the apex of a plane delta 

wing, Jour.I.M.A., 5 (1969) 206-216. 

[5] A.Darai, Ph.D.Thesis, University of Manitoba, 1985. 

[6] E.L.Ince, The periodic Lamé functions, Proc.Roy.Soc.Edinburgh, 

60 (1939) 47-63 and Further investigations into the periodic 

Lame functions, ibid. 83-94. 

[7] O.D.Kellogg, Foundations of Potential Theory, Ungar, 1929. 

[8] J.A.Morrison, J.A.Lewis, Charge singularity at the corner of a 

flat plate, SIAM J.Appl.Math. 31 (1976) 233-250. 

[9J V.L.Rvachev, The pressure on an elastic half-space of a stamp 

with a wedge-shaped planform, PMM (Jour.of Appl.Math. and 

Mech.) 23 (1959) 229-233. 

[10J R.S.Taylor, A new approach to the delta wing problem, J.Inst. 

Math. Applics 7 (1971) 337-347. 

217 


		webmaster@dml.cz
	2012-09-13T04:21:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




