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ABSTRACT. A construction of canonical extensions of Stone algebras is pre
sented that uses the natural duality based on the three-element generating al
gebra 3 rather than the Priestley duality based on 2 that is traditionally used 
to build the canonical extension. The new approach has the advantage that the 
canonical extension so constructed inherits its algebra structure pointwise from 
a power of the generator, so that the extension of the fundamental operations 
and closure of the variety under the formation of canonical extensions occur in a 
transparent way. An analogous construction is outlined for two further varieties, 
indicating that the method has the potential to be applied in a similar manner 
to other classes of bounded distributive lattice expansions. 

1. Introduction 

Canonical extensions were first studied, in the context of Boolean algebras 
with operators (BAOs), in the classic work of B. J o n s s o n and A. T a r s k i 
[14]. The development of a corresponding theory in a less restricted setting than 
that of BAOs lagged far behind. However major advances have been made 
in the past ten years by M. G e h r k e in collaboration with B. J o n s s o n , 
J. H a r d i n g , Y. V e n e m a and others; see in particular [8], [9] and [10]. Ap
propriate definitions have been found for canonical extensions of distributive 
lattice expansions (that is, bounded distributive lattices with additional oper
ations, henceforth called DLEs) and more generally of lattice and even poset 
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expansions. Such structures arise naturally as semantic models of non-classical 
logics. A variety of algebras is canonical if it is closed under the formation of 
canonical extensions. When the members of a variety are the algebraic models 
of a logic, canonicity leads inter alia to completeness results for the associated 
logic (see [7] for selected examples and also [10]). The work of G e h r k e et al. 
has brought many new insights and has revealed symbiotic relationships be
tween duality and canonical extensions. This is resulting in a unification of the 
hitherto largely separate research tracks of duality, involving topologised rela
tional structures, and the relational semantics which has been such an important 
tool in modal and intuitionistic logic. We emphasise in particular the virtues, as 
enunciated in [10], of the canonical extension of an algebra in a canonical variety 
of DLEs: 

• the extension is a concrete structure of the same type as the original 
algebra but with stronger properties; 

• encoded within the extension are both the lattice reduct of the original 
algebra and its topological dual; 

• the construction is functorial. 

An important canonicity result proved by G e h r k e and J 6 n s s o n (see [10; 
§4]) asserts that any finitely generated variety of DLEs is canonical. Their route 
to this theorem is indirect. The result emerges as a consequence of a more general 
one, which can be viewed as an algebraic formulation of an extension of the 
Fine-van Benthem-Goldblatt theorem from modal logic 

Given the importance of canonical extensions for both logic and algebra, it 
is worthwhile fully to understand their structure, and how canonicity occurs. 
This paper seeks, through a study of three particular finitely generated varieties 
of DLEs, to contribute to such an understanding. The varieties we consider are 
Stone algebras, double Stone algebras and regular double Stone algebras, de
noted respectively <S, VS and 1Z. The structure of Stone, double Stone and 
regular double Stone algebras is well understood, thanks to major contributions 
of T. K a t r i n a k going back to the mid 1960s. In particular his triple represen
tations provided an important tool for studying these algebras, and contributed 
in part to interest in canonical extensions for regular double Stone algebras. 
In [2], S. D. C o m e r constructs canonical extensions for expansions of alge
bras in 1Z. The motivation for his paper comes from the relevance of Stone and 
regular double Stone algebras to rough sets; see [2] for references to this area 
of application. C o m e r firstly adapts the original Jonsson-Tarski construction 
for BAOs and then exploits a representation due to K a t r i n a k [19], which 
reveals the close relationship of the algebras in 1Z to Boolean algebras. Our 
method is quite different from C o m e r ' s . We remark that the very special na
ture of regular double Stone algebras implies the existence of a Boolean product 
representation, so that C o m e r ' s result may be seen as stemming from the 
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preservation of canonical extensions under the formation of Boolean products; 
see [10; Sec 3]. However, the same cannot be said for Stone, or double Stone, 
algebras. Although sheaf representations for Stone algebras are available, it is 
not the case that these yield decompositions of Boolean product type which 
would enable the natural dual representation of an arbitrary Stone algebra to 
be viewed in such terms. See, for example, [13], in particular Theorem 3.6. 

Traditionally, canonical extensions of distributive lattices have been obtained 
via Priestley duality and canonical extensions for DLEs have then been con
structed by enriching the canonical extensions of their lattice reducts by bolting 
on extensions of the additional operations. More explicitly, let us consider a 
DLE (L; A, V, 0 ,1 , {/A)AGA) ' W n e r e (^5 A, V, 0,1) is a bounded distributive lat
tice and A is a non-empty index set. By Priestley duality, (L; A, V, 0,1) can be 
identified with the lattice of clopen up-sets of its dual space Y of prime filters, 
or ultrafilters in the case that the lattice is Boolean. In this paper we take the 
canonical extension La of L to be the complete lattice of all up-sets of Y (this 
is equivalent to the definition in [10]; see Section 3), together with the natural 
embedding of L into L°. 

One now seeks to lift each operation /A to an operation / £ on La so as to 
obtain a complete extension of the expansion (L; A, V, 0 ,1 , {/A)AGA) * ^n -̂ - a n (^ 
[10], formulae for such extensions are proposed: the idea is to exploit the density 
property possessed by the extension; this asserts that every element of La is a 
join of meets, and a meet of joins, of the copy in La of the original lattice L\ see 
Section 3. In [10] a detailed analysis of extensions of maps is undertaken, in which 
canonical extensions are endowed with various topologies and an interesting 
interplay between algebra and topology is explored. The analysis, which is quite 
subtle, leads to various conditions guaranteeing canonicity and in particular to 
the canonicity of finitely generated varieties of DLEs. 

Furthermore, canonicity may be used to derive dualities via correspondence. 
A systematic study is undertaken by M. G e h r k e , H. N a g a h a s h i and 
Y. V en e m a in [9] in the context of distributive modal algebras (DMAs, for 
short); these are bounded distributive lattices whose additional operations are 
unary and either preserve V and 0, or preserve A and 1, or convert V and 
0 to A and 1 or vice versa. This setting certainly encompasses the particular 
varieties considered in this paper. However, the heavy machinery of [9], which is 
inspired by and extends sophisticated techniques from modal logic, is not needed 
for these varieties. Indeed, it is our purpose to show how, in these special cases, 
a different approach is available. 

Our new approach is based on natural dualities. The theory of dualities of this 
kind, of which Priestley duality is one example, is very well developed, especially 
for finitely generated varieties and quasi-varieties of DLEs. A comprehensive 
account can be found in the monograph [1] by D. M. C l a r k and B. A. D a v e y. 
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The varieties S, VS and 11 on which we focus have particularly simple natural 
dualities, all covered by the framework in [4]. We are thereby able to present our 
constructions without having to delve too deeply into the machinery of natural 
duality theory, which can be daunting to those unfamiliar with it. (A further, 
more technical, paper will treat a wider class of varieties.) 

To explain the relevance of natural dualities to canonical extensions of DLEs 
and to contrast the "natural" approach with the one hitherto adopted we first 
need to make a few remarks about the dualities based on Priestley duality for 
varieties of DLEs which abound in the literature. Under quite weak conditions 
on the additional operations, these expanded Priestley dualities are derived by 
enriching the Priestley duals of the lattice reducts with relations or, where possi
ble, functions, so as to capture the operations dually. The first systematic study 
of this process was undertaken by R. G o l d b l a t t in [12]. The dualities for 
varieties of distributive modal algebras presented in [9] follow the same pattern 
as those in [12]. Roughly speaking, DMAs provide the largest class of algebras 
involving additional operations which are at most unary in which varieties will 
possess dualities based on relational structures in the traditional way. 

We stress that, in the standard approach, the canonical extension of a DLE is 
built by first forming the extension of its lattice reduct and then superimposing 
extensions of the additional operations. Furthermore, the extended operations 
lead to the expanded duality in a very direct way. Thus the traditional canonical 
extension construction and the derivation of an expanded Priestley duality for 
a variety of DLEs rely, and in an interconnected way, on first working with the 
underlying lattices, rather than by giving constructions which are intrinsic to 
the variety under consideration. By replacing expanded Priestley dualities by 
natural dualities we are able to construct canonical extensions intrinsically. 

For a bounded distributive lattice L the canonical extension La, as defined 
above, may be viewed as the lattice of order-preserving maps from its Priestley 
dual space into the two-element chain 2 . The arbitrary joins and meets in 
L° are derived pointwise from those of 2 , now viewed as a complete lattice. 
However, when we move to DLEs, the extensions of the additional operations to 
L°, unlike the extensions of A and V, are not given pointwise: see the formulae 
for extensions of maps given in [8; §4], and [10; §3]. By working instead with a 
natural duality for a variety of DLEs we are able, as with Priestley duality itself, 
to extend all the operations in a pointwise fashion. As a result, the structure and 
the features of the canonical extensions become highly transparent. There is an 
additional advantage: in a natural duality, as in Priestley duality for bounded 
distributive lattices, the duals of free algebras are always obtained by forming 
concrete products. This rarely happens for expanded Priestley dualities. In the 
context of logic, the free algebra on a countable set of generators is, of course, 
of relevance, namely as the Lindenbaum-Tarski algebra. 
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By moving to a natural duality we do generally sacrifice one good feature 
possessed by expanded Priestley dualities: the concrete representation of algebras 
by algebras of sets. Instead, we have a concrete representation by algebras of 
functions. In [4], D a v e y and P r i e s t l e y showed that, for a wide class of 
DLEs, it is simple to translate backwards and forwards between a natural duality 
and an expanded Priestley duality. This allows one to reap the benefits of both 
approaches: most notably, the representation of free algebras from the first and 
the concrete representation of algebras in terms of sets from the second. We show 
that, for the varieties 5 , VS and 7£, a similar two-perspective view is available 
for canonical extensions. 

The paper is organised as follows. In the next section we review the available 
concrete representations for Stone algebras: via an expanded Priestley duality 
and via a natural duality. In Section 3 we look at the canonical extension of 
(the reduct of) a Stone algebra as hitherto constructed and show how this con
struction can be recast in terms of the natural duality. Section 4 develops a 
categorical framework. In Section 5 we discuss the different ways in which one 
can arrive at canonical extensions of Stone algebras, including one based in a 
free-standing way on the natural duality. In the final section we outline, without 
proofs, parallel constructions and results for double Stone algebras and regular 
double Stone algebras. 

2. Preliminaries: Stone algebras 
and their dual representations 

The variety S of Stone algebras can be identified with the quasi-variety 
ISP(3) generated by the three-element Stone algebra 3 = ({0, a, 1}; V, A, *, 0, l ) , 
where the underlying three-element bounded lattice 0 < a < 1 is equipped with 
a unary operation * of pseudocomplementation so that 1* = a* = 0 and 0* = 1. 
We draw attention explicitly to the fact that when a Stone algebra is identified 
with a subalgebra of a power of 3 , its lattice structure and its pseudocomple
mentation are obtained by lifting pointwise the corresponding operations on 3 . 

The Stone identity x* V x** = 1 characterises members of ISP(3) among 
the distributive pseudocomplemented lattices. With a slight abuse of terminol
ogy we shall also use the term Stone algebra when we are regarding a member 
(L; V, A, *, 0,1) of S simply as a special kind of distributive lattice. 
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In this paper, we generally work with functions rather than with sets. Ac
cordingly, as in [4], we use hom-functors to set up Priestley duality between 
the categories 

V : {0, l}-distributive lattices and homomorphisms preserving 0, 1, 

V : Priestley spaces and continuous order-preserving maps. 

Denote the two-element bounded distributive lattice, with elements 0 and 1, by 
2 and its alter ego, the two-element chain, with order 0 < 1 and the discrete 
topology, by 2 . The two-element chain without topology is denoted by 2 . Now 
define functors H: V -> V and K: V -> V as follows: for L G V and Y G V, 

On objects: 

On morphisms: 

H:LУ>V(L,2)< 2 ^ , 

K: ľ и P ( Қ 2 ) < 2 І у L 

Я : / н - > - o / , 

K: фt-^-oф. 

(Here | -1 denotes the forgetful functor to the category of sets and < means "is 
a substructure of".) Then H and K set up a dual equivalence. Specifically: 

(VF G V) (kL: L —r KH(L) is an isomorphism) , 

where kL(a)(f) = f(a) (aeL, / G I Y ( F ) ) , 

(VF G V) (KY : Y -> HK(Y) is an isomorphism), 

where KY(X)(</>) = </>(x) (x€Y, (f>eK(Y)). 

The maps kL and KY given at each point by evaluation are, respectively, the 
unit and co-unit of the dual adjunction. We note that the version of the duality 
in terms of sets comes from identifying H(L) with the prime filters of L and 
K(Y) with the clopen up-sets of Y. 

Stone algebras can be characterised amongst pseudocomplemented distribu
tive lattices by the property that every prime filter is contained in a unique 
maximal prime filter. The dual spaces of (the lattice reducts of) Stone alge
bras are exactly those Priestley spaces in which there exists a continuous order-
preserving retraction p = pop taking each point x to the unique maximal point 
p(x) above it. This result was first obtained in [20] (where a dual space of prime 
ideals, rather than prime filters, was used, so that the order on the dual space 
is the reverse of that used here). 

We denote by y the non-full subcategory of V whose objects consist of 
the spaces H(L) for L G <S; besides the order ^ and topology T they carry 

58 



CANONICAL EXTENSIONS OF STONE AND DOUBLE STONE ALGEBRAS 

by virtue of being Priestley spaces, these are also regarded as equipped with 
the retraction p. The morphisms of y are the P-morphisms which preserve 
the map p. We also denote by H and K the restrictions of these functors to, 
respectively, the non-full subcategories S and y of V and V. We remark in 
passing that, for an expanded Priestley duality in the true sense we must regard 
the retraction map p as part of the type of the objects in the dual category, and 
we elect to do this. Stone algebras have the special property that the additional 
operation * is determined by the operations of the underlying lattice and the dual 
structures can be treated simply as Priestley spaces having a special property 
(which is first-order definable in the language of posets). Therefore we could, 
had we so wished, have treated the duality for S as a restriction of Priestley 
duality rather than as an expansion of it. 

In contrast to the duality presented above for <S, which is based on the 
2-element generating algebra 2 for X>, the (full) natural duality for Stone alge
bras is based on 3 . To describe this, we must introduce the alter ego of 3 . This 
is the structure 3 = ({0, a, 1}; = ,̂ p, r ) , where the underlying three-element set 

is equipped with the order relation {(0,0), (a, a), (1,1), (a, 1)}, denoted ^ , a 
unary operation p (an endomorphism of 3) with graph 

graph(p) = { ( 0 , 0 ) , ( a , l ) , ( l , l ) } , 

and the discrete topology r. The structure in 3 is algebraic over 3 in the 

sense that =̂  and graph(p) are subalgebras of 3 2 ; the theory of natural dualities 

relies in a critical way on the fact that the structure chosen on the relational 

side is algebraic. The dual topological quasi-variety X = IS C P(^3 ) derived 

from 3 consists of topological relational structures which are isomorphic to 

closed substructures of powers of 3 ; powers carry the product topology and =<! 

and p are extended pointwise to subsets of powers. The morphisms of X are the 

continuous maps which preserve both -̂  and p. The class X can be characterised 

as the class of structures (X\ ^ , p, T ) , where (X; =<., T) is a Priestley space and p 

is a continuous retraction p mapping each element up to the unique maximal 

element above it (cf. [1; Theorem 4.3.7] with the reversed order -̂  and p mapping 

down rather than up). We set up functors as follows: 

On objects: 

On morphisms: 

D: L^S(L,3) < 3 | L | , 

E: X^X{X, 3 ) < 3 | x | 

D: f^-of, 

E: ф i-> - o ф. 
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The full natural duality theorem for S asserts that D and E define a dual 
equivalence between S and X. Specifically: 

(VL G S) (eL: L -» ED(L) is an isomorphism) , 

where eL(a)(f) = f(a) (aeL, f G D(L)), 

(VX G X) (ex: X -> DE(X) is an isomorphism) , 

where ex(x)((p) = (p(x) ( x G K , (f)eE(X)). 

Here again the maps eL and ex given at each point by evaluation are, respec
tively, the unit and co-unit of the dual adjunction. 

This set-up exactly parallels that for the Priestley duality, with 3 and 3 
taking the place of 2 and 2 . However, as the descriptions of the dual categories 
X and y suggest, there is a much closer connection. In [3], B. A. D a v e y re
vealed that the Priestley-type duality for Stone algebras led directly to the natu
ral duality (and likewise for double Stone algebras). D a v e y ' s paper was a first 
step towards natural duality theory, and also towards the theory of piggyback 
dualities within this. The key to the link between the two dualities, and to the 
results in this paper, is the way in which we can move backwards and forwards 
between, on the one hand, maps into the underlying set {0, a, 1} of 3 and into its 
alter ego and, on the other hand, maps into {0,1}. Define g: {0, a, 1} —> {0,1} 
by 9(1) — 1> d(a) — g(0) = 0- The following proposition originates in [3]. It is 
set in a wider context in [4] (see in particular Theorem 3.7); an account of the 
piggyback duality framework as it applies to Stone algebras (viewed as a variety 
of Ockham algebras) can also be found in [1; §7.5]. The proposition shows that 
in the case of Stone algebras the natural and expanded Priestley dualities are 
very closely related. 

2.1. PROPOSITION. Let L G S. Then there is a structure-preserving bijective 
correspondence between X := D(L) = <S(L,3) and Y: = H(L) = V(L,2) by 
the maps <S>: <S(L, 3) -> V(L, 2) and Q: V(L, 2) -* <S(L, 3) given by 

Ф(x) = gox (xЄS(L,3)) 

and 

(y)(b) = { 
ŕ 1 ify(b) = l, 

a if P(У)(Ъ) = 1 and y(b) = 0 , 

. 0 if p(y)(b) = 0 

for y ЄІ>(L,2) andbeL. 

In saying that the correspondence set up by $ and 0 is structure-preserving, 
we mean that these maps preserve =̂  and p and are continuous. 
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3. Canonical extensions of Stone algebras 

In introducing canonical extensions of lattices we follow [8; §2]. A completion 
of a (bounded) lattice L is defined to be a pair (e, C) where C is a complete 
lattice and e: L —> C is an embedding. Elements of C representable as meets 
(joins) of elements from e(L) are called closed (open). The sets of such elements 
are denoted K(C) (0(C)), respectively. A completion (e, C) is said to be dense 
if every element of C is both a join of meets and a meet of joins of elements 
from e(L); it is said to be compact if, for any sets A C 0(C) and B C K(C) 
with f\A < V B, there exist finite subsets A' C A and B' C B such that 
/ \ A' < V B'. A canonical extension of L is by definition a dense and compact 
completion. It is shown in [8] that any bounded lattice has a canonical extension, 
and that this is unique up to isomorphism. 

Now let L G V. As in the presentation in [10], we take the canonical exten
sion to be the pair (kL,La), where La denotes the set of all order-preserving 
maps from Y = H(L) into {0,1}, with the pointwise (lattice) order, and 
kL: L -» KH(L) < La is the embedding described in Section 2. Viewed an
other way, La is isomorphic to the lattice of all up-sets of Y, qua poset. (Note 
that for any poset P we have lattice isomorphisms 

U(P) £ U(Pd)d *. 0(Pd), 

where 0(P) and U(P) denote, respectively, the lattices of all down-sets and all 
up-sets of P ordered by C, and d denotes the order dual.) 

An element x in a complete lattice C is called completely join-irreducible if 
x > \/{y E C : y < x}. A completely meet-irreducible element is defined dually. 
Let J°°(C) and M°°(C) denote the sets of all completely join-irreducible and 
completely meet-irreducible elements, respectively. By our definition, 0 (the least 
element of C) is not completely join-irreducible, because it is the supremum of 
the empty set. Similarly, 1 ^ M°°(C). Observe that in a lattice U(P) the 
completely join- and meet-irreducible elements are, respectively, the elements 
t # and P \ iy for x,y G P . As we have defined La for L G V, we have 
H(L) £ J°°(La)d under the map y »-> t y . 

We collect together in Theorem 3.1 facts about lattices arising as L° for 
L G V. This portmanteau statement is part of the foundational folklore of 
the theory of complete lattices. For fuller accounts, see for example [5; The
orem 10.29] and in particular [11; Proposition VII-2.10], of which we need 
the algebraic counterpart, and the references cited there. We remark that it 
is elementary to prove that any order-isomorphism between complete lattices 
automatically preserves arbitrary joins and meets (see [5; Lemma 2.27]). Be
low, "isomorphism" can therefore be interpreted as "isomorphism of complete 
lattices". 
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3 .1 . THEOREM. Let L be a distributive lattice. Then the following are equiv
alent: 

(i) L is isomorphic to U(P) for some ordered set P; 
(ii) L is isomorphic to a complete sublattice of 2P, for some set P; 

(iii) L is completely distributive and is algebraic; 
(iv) L is doubly algebraic 

(that is, both L and its order dual Ld are algebraic); 
(v) L is complete, L satisfies the join-infinite distributive law and J°°(L) 

is join-dense in L; 
(vi) the map ry: c i-> L \ {x G J°°(L) : x ^ c} is an isomorphism from L 

ontoU(J°°(L)d). 

Following the notation of [10], we denote the class of distributive lattices sat
isfying the equivalent conditions of Theorem 3.1 by DL + . The following proposi
tion is in the same spirit as results given in [7], where objects in DL + are viewed 
as Heyting algebras. Note also the discussion of Stone negation in [9; Sec 6]. 

3.2. PROPOSITION. Let the lattice L, with underlying order ^ . belong to 
D L + . and represent L as U(Y) where Y = J°°(L)d and J°°(L) carries the 
order induced by ^ . Then L is pseudocomplemented, with U* = Y \ \U. Fur
thermore, the following are equivalent: 

(i) each element of J°°(L) majorises a unique ^.-minimal element of J°°(L); 
(ii) L is a Stone algebra. 

P r o o f . It is well known that any complete lattice satisfying the join-infinite 
distributive law is pseudocomplemented, and it is easily seen that the pseudo-
complement of U G U(Y) is given by Y \ \U\ compare [5; 11.23]. In just the 
same way as in the topologised version, we obtain that [/* U [/** = Y for all 
U G U(Y) if and only if (i) holds; this is simply an elementary order-theoretic 
calculation. • 

Given a Stone algebra L, the order-theoretic dual H(L)d of its Priestley dual 
satisfies condition (i) of the above proposition. Since H(L) is shown above to 
be isomorphic to Y = J°°(La)d, it follows that J°°(Lcr) also satisfies condition 
(i) of the proposition. Thus the proposition shows that the canonical extension 
of a Stone algebra is again a Stone algebra, so that the variety <S is canoni
cal. We denote by <S+ the class DL + D S of doubly algebraic Stone algebras 
and make <S+ into a category by taking as morphisms the complete Stone al
gebra homomorphisms, that is, maps preserving arbitrary joins and meets and 
the pseudocomplement. Note that such maps are automatically 0,1-preserving, 
because they preserve the join and the meet of the empty set. 

The structures we wish to use on the dual side to represent canonical exten
sions of Stone algebras are of the form (X;=4,p), where =3. is a partial order 
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and p is a retraction on X and is such that p(x) is the unique maximal point 
in X majorising x. We denote the class of all such structures by X+ and make 
this into a category by taking as morphisms the maps preserving the order and 
the map p. We obtain a structure 3 := ({0, a, 1}; =<., p) G X+ simply by remov
ing the discrete topology from 3 , the alter ego of 3 for the natural duality for 

S. In addition, Proposition 3.2 shows that, for any L G <S+, the set J°°(L)d 

carries the structure of an object in X+. 

Observe that in both the categories <S+ and X+, structures are isomorphic if 
and only if there is an order-isomorphism between them: an order-isomorphism 
between the underlying ordered sets of pseudocomplemented complete lattices 
automatically preserves the pseudocomplement as well as arbitrary joins and 
meets. Likewise, an order-isomorphism between .^-objects automatically com
mutes with the t>map. 

3.3. THEOREM. The class X+ of structures is exactly the (purely relational) 
quasi-variety ISP( 3) consisting of (order-)isomorphic copies of substructures 

of powers of 3 = ({0, a, 1);-^,p), the relational structure being lifted pointwise 
to powers. 

P r o o f . This is essentially just a topology-free version of results about topo
logical quasi-varieties stated in [1; 1.4.3, 1.4.4, 1.4.7]. • 

Before we can obtain an analogous result for S+ and set up a dual equivalence 
between <S+ and X+, which we do in the next section, we need to examine the 
objects of these categories more closely. In particular, for X G X+, we investigate 
3 x , the set of maps from X into 3 which preserve ^ and p. We order 3 x 

"schizophrenically"; that is, we define u ^ v in 3X if and only if, for all x G X , 
we have u(x) ^ v(x) with respect to the lattice ordering 0 < a < 1 of 3 . Since 
3 is in fact a complete lattice and a Stone algebra, the power 3lx l is, too, under 
pointwise-defined V, / \ and *. We shall see shortly that 3X, which sits inside 

31*1, is closed under the inherited operations. 

3.4. LEMMA. Let X G X+ and let u,v G 3X . Then u ^ v if and only if 

u~l(l) C v~l(l). 

P r o o f . If ^ ^ L > in 3X, then clearly u_1(l) C i> _ 1 ( l ) . Conversely, let 
us assume that u~*(l) C L>-1(1). Then we have p~1(u~1(l)) C p~l (v~x(l)). 
Because u preserves p , for every x G X , it follows that u(x) = a implies 
u(p(x)) = 1, whence u~l(a) C p _ 1 ( ^ _ 1 ( l ) ) . So, for every x G u~*(a), 
p(v(x)) = v(p(x)) = 1, that is, v(x) G {a, 1}. This shows that u ^ v. • 
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For X G X+, we have U(X) G S+, thanks to Proposition 3.2. We define 
r . 3 X -> U(X) by T(c) = c _ 1 ( l ) . Since 1 is maximal in 3 , the set c _ 1 ( l ) is 
certainly an up-set in X, so T is well defined. We now construct a map going in 
the opposite direction. For an up-set U in X we define a map \-/(U): X —> 3 , 
called the map determined by U, by 

1 if zeU, 

*([/•)(*) = { a if zep~1(U)\U, 

0 otherwise. 

3.5. LEMMA. Let (K; ^ , p ) <E X+ . Then tf ([/) G £ x /Or eac/i U G W(X). 

P r o o f . We first note that p~x(U) is an up-set in (X; =$) and that U C 
p - 1 (c7) . Let 2? =$ u; in X. To see that *(L/")(z) ^ #(U)(u>), we only need to show 
that it cannot happen that w G p~x(U) and 2 ^ p~l(U). But this is easy since 
z ^ w leads to p(iu) = p(z). To see that *(£/") preserves p , consider z G p~l(U). 
Then *(£/)(*) G {a, 1} and p(z) G U, whence tf(l0(p(*)) = 1 = p(^(U)(z)). 
The remaining case is easy as z <£ p~x(U) yields p(z) £ p~l(U). • 

The next proposition enables us to use the maps ^ and T to transfer back
wards and forwards between the setting of up-sets on the one hand and of maps 
into {0, a, 1} on the other. 

3.6. PROPOSITION. Let X e X+. Then the maps * and T are mutually 

inverse order-isomorphisms between U(X) and 3X . As a consequence, 3X, 

with f\. V and * given pointwise, belongs to <S+. The pseudocomplement a* 
of a G 3X is determined by the set 

(a*)-1(l) = {xeX: p(a(x)) + l } . 

P r o o f . Lemma 3.4 tells us that T is an order-embedding from 3X into 

U(X). Also r ( t f (L0) = U for all U G U(X), and it is easily checked that, 

because elements of 3X preserve p , we have ^(T(c)) = c for all c G 3X. 
The penultimate statement follows from the remarks above concerning iso

morphisms. For the explicit description of the pseudocomplement we note that 

x G r ( a* ) <£=-> x G T(a)* (since T is an order-isomorphism) 

«==i> X E I \ l (V (a) ) (from Proposition 3.2) 

x G X \ p~x ( r ( a ) ) (since T(a) is an up-set) 

p(a(x)) + 1. 

(Compare C l a r k and D a v e y [1; 4.3.8].) • 
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For arbitrary x, y in X G X+, let Jx := * ( t # ) and My := ty(X\ly) denote 
the maps in 3X determined by the up-sets ^x and X \ \y, respectively. The 
next lemma follows from the description of completely join- and meet-irreducible 
elements in an up-set lattice and the preservation of such elements under order-
isomorphism. Alternatively it can be verified directly. 

3.7. LEMMA. Let X G X+ and let C = 3X. Then: 

(1) J^(C) = {JX: xeX} and M°°(C) = {My : y G X}. 
(2) Let ceC. Then 

c = V Jx and c= f\My 
xec-Hl) 3/G(X\c--(l)) 

3.8. T H E O R E M . 

(1) Let X G X+. Then X is isomorphic to J°°( 3x)d. 

(2) Let L G 5+ . Then L is isomorphic to 3J°°{L)d . 

P r o o f . 

(1) By Proposition 3.6 we have that C := 3X belongs to <S+, and from 

Lemma 3.7 that J°°(C) = {Jx : x G X}, where Jx is as defined above. The 

map x »-> Jx is an order-isomorphism of X onto J°° ( 3X) . 
(2) The required isomorphism is obtained by composing the order-isomor

phism from L onto U(J°°(L)d) provided by Theorem 3.1 with the order-
isomorphism * from Proposition 3.6. (As already noted, an order-isomorphism 
automatically preserves * and arbitrary joins and meets.) D 

We let 3C denote the three-element algebra 3 regarded as a complete lattice 
and a Stone algebra. Thus 3C G <S+. Partnering Theorem 3.3 we now have the 
following characterisation theorem for <S+. 

3.9. THEOREM. For a distributive lattice L the following are equivalent: 

(i) LeS+; 
(ii) L G ISCP(3C) . that is, the class of those algebras which are isomorphic 

to a complete subalgebra of a power of 3 C . the structure being given 
pointwise on powers. 

P r o o f . 
(i) implies (ii): this is a consequence of Theorem 3.8. 
Assume L satisfies (ii). Then L is a Stone algebra, since S = ISP(3). Also, 

L is distributive and doubly algebraic, since any complete subalgebra of a power 
of 3C has these properties (see, for example, [11; 1-4.12, 1-4.14]). Hence the dis
tributive lattice reduct of L satisfies condition (iv) of Theorem 3.1. We conclude 
that LeS+. • 
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4. Categorical duality 

In this section we extend our representations from the previous section into 
a categorical duality between the categories <S+ and X+ introduced there. The 
result we prove is in the same spirit as that of S. K. T h o m a s o n [24] for modal 
logic. His result extends to the more general class of logics and the associated 
algebras considered by G e h r k e , N a g a h a s h i and V e n e m a [9], though it 
is not explicitly stated in full. Stone algebras are a very special instance of the 
algebras of the type studied in [9]. What is new here is not that an equivalence 
exists between the category <S+ of complex algebras and an associated category 
of frames, but rather the presentation of an equivalence set up by natural hom-
functors resembling those used in the full duality theorem for Stone algebras. 

We set up the required functors as follows: 

On objects: 

On morphisms: 

D+:L^S+(L,SC)<3^, 

E+: 1 4 ^ ( 1 , 3 ) < 3 | x | . 

D+ : / н> - o / , 

E+: ф^-oф. 

For X G X+, what we are now calling E+(X) is of course just the structure 
3X considered in Section 3. We already know that this belongs to <S+ . Clearly, 

D+(L) = (S+(L,3 c);--*,p) belongs to X+ since the order ^ of <S+(L,3C) is the 

extension to 3 ' L ' of the order -̂  of 3 and p also acts pointwise in <S + (L,3 C ). 

Observe that, since we are now considering general morphisms and not, as in 
the preceding section, isomorphisms, there is work to be done to make sure that 
D + and E+ are well defined on maps. Certainly they then satisfy the conditions 
to be functors. 

4.1. L E M M A . 

(1) Let 0: X -» Y be an X+-morphism. Then E+</>: E+(Y) -> E+(X) is 
an S+ -morphism. 

(2) Let f: L --> M be an <S+-morphism. Then D+f: D + ( M ) -> D + ( L ) is 
an X+ -morphism. 

P r o o f . By way of illustration we demonstrate preservation of arbitrary 
joins in (1). It is likewise shown by bracket-pushing that E+(f) preserves meets 
and *. 
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Let { a J i ( E / be a subset of E+(Y) and define a := V a-. We have to show 
iei 

that E+<j)(a) = V £ + 0 ( c ^ ) . For all x G X , 
iei 

( (£ + 0) ( a ) ) (* ) 

= f f \J a- J o 0 J (x) (by definition of E+(f> and of a) 

= (V a . ) (*(*)) 
^iei ' 

— \j a i (0(x)) (joins in E+(Y) being formed pointwise) 
iei 

= \J(aio^)(x) 
iei 

= \/(E+J>(ai))(x) 
iei 

= f \J E+cf)(ai) j (x) (joins in E + ( X ) being formed pointwise). 
^iei ' 

In exactly the same way, in (2), D+ f preserves -̂  and p , since these, too, 
are given pointwise. • 

4.2. PROPOSITION. For every LeS+, the structure D+(L) is X+ -isomorphic 
to J°°(L)d. 

P r o o f . Let a : L -» 3C be an <S+-morphism. Then the filter a _ 1 ( l ) of L 
has a least element, necessarily non-zero, and it is easy to see that this element 
must be completely join-irreducible. Hence, we can define j L : D+(L) -> J°°(L) 
by jL(a) = m i n a _ 1 ( l ) . To show that j L is onto, let c G J°°(L). Let a : L —•> 3 
be defined as follows: 

!

1 if x ^ c, 

a if x ^ p(c) and x ^ c, 

0 otherwise. 

(Note that the order here is that induced from L, with respect to which p(c) is 
a minimal element of J°°(L).) 

We must verify that a is an «S+-morphism. If so, j L maps D+(L) onto 
J°°(L)a. 

We first check that a preserves the lattice order. Let x ^ y in L. By transitiv
ity of ^ we see that a(x) = 1 implies a(y) = 1 and a(x) = a implies a(y) = a 
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or 1. Certainly a(l) = 1 and a(0) = 0, the latter because p(c), being completely 

join-irreducible, cannot be 0. Now consider a non-empty set {x{}ieI in L. Be

cause a is order-preserving, a( V xi) ^ V a(xi) a n (3 a( A xi) ^ A a(xi)-
^iei ' iei viGI ' iei 

We must prove the reverse inequalities. Suppose a( \J xA = 1 . Each xi is 
v i e I ' 

expressible as V x-- where x-- G J°°(L) for each j G I{. Then \j x - - ^ c, 
jeL ieijeu 

from which it follows that there exists i G l and j G Ĵ  such that x- ^ c. But 

then x^ ^ c, too. Hence Y/ a(x{) = 1. In a similar way, a( \J xA = a implies 
iei ^iei ' 

that there exists k such that xk ^ p(c), so that V a(x{) ^ a. We deduce that 
iei 

V cY(xJ = en V x{). An easy calculation shows that a preserves meets. 
iei v i G I ' 

It remains to prove that a preserves * . To do this, it is convenient to identify 
L with the lattice 0(Z) of down-sets of Z := J °° (L ) , with the completely join-
irreducible elements as the down-sets \.p for p G Z. For x G O(Z), we have 
x* = Z \ fx . Because L is a Stone algebra, x* U x** = Z , with the union 
disjoint; cf. [20; Proposition 2]. Consequently x* is both an up-set and a down-
set and each minimal point of Z belongs to either x* or to x**, but not to both. 
It follows that x ^ p(c) if and only if x* ^ p(c) (note that x and x** = Z\x* 
contain exactly the same set, M say, of minimal points and that a minimal point 
is in M if and only if it is not in x*). Accordingly a(x*) = a never occurs. Since 
* on 3C maps {0,a, 1}, it now suffices to show that a(x*) = 0 if and only if 
a(x)* = 0 (x G L). But 

a(x*) = 0 4=> x* ^ p(c) <=> x ^ p(c) 4=> cY(x) G {a, 1} <=> a(x)* = 0. 

To complete the proof we must show that j L is an order-isomorphism. Let 
/3,7 G D+(L). By definition, ft ^ 7 if and only if ft(x) ^ 7(x) in 3 for all 
x G L. So /? ^ 7 implies / ? - 1 ( l ) C 7 _ 1 (1 ) , whence min/? _ 1 ( l ) ^ L m i n 7 _ 1 ( l ) . 
Therefore jL(ft) ^ iL(7) in J°°(L)d. Conversely, assume that the last condition 
holds. It follows that ft~l(l) C 7 _ 1 (1 ) . Let x G L and suppose that ft(x) = 0. 
Then (5(x*) = ft(x)* = 1, so 7(x)* = 7(x*) = 1. Therefore 7(x) = 0. In a similar 
way, we can prove by considering x** that /3(x) = a implies 7(x) G {a, 1}. We 
conclude that ft ^ 7 . • 

For every X G X+, L G £ + we define the maps given at each point by 
evaluation ex: X —•> J ) + J7 + (X) and e L : L -» E+D+(L) in the usual way: for 
x G X , a G £ + ( K ) , ce L, ft e D+(L) we set 

e x ( x ) ( a ) = a ( x ) , eL(c)( /?)=/?(c) . 
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4 .3 . PROPOSITION. For every X G X+, L G <S+, the maps ex and eL are 
isomorphisms. 

P r o o f . In Theorem 3.8 we constructed isomorphisms F: X —> J°°(E+(X)) 
and G: L —•> E+(j°°(L)d). By Proposition 4.2 we have an isomorphism 

iDnLy.D+(L)->J~(L)9. 

One can verify that ex = i^+iE+cx)) ° ^ an<^ eL = ^+(^D+(L)) ° ^-> w r i - c r i 

shows that £ x and eL are isomorphisms. D 

4.4. THEOREM. The functors D+ and E+ establish a dual equivalence be
tween the categories <S+ and X+. 

P r o o f . It is routine to show that e: \s+ -» D+E+ and e: \x+ —.> E+D+ 
are natural transformations, that is, for any .^"^-morphism (j>: X —> Y and any 
5+-morphism f:L^M, the following diagrams commute: 

X * ) Y L —-—> M 

D+E+(X) D+E+*) D+E+(Y) E+D+(L) E+D+f) E+D+(M) 

(We note that the calculations here very much resemble those in B. A. D a v e y 
and H. W e r n e r [6; 1.5].) • 

5. The canonical extension revisited 

Fix L G S and let Y and X denote respectively its Priestley dual H(L) 
and its natural dual D(L), regarded as structures in X+. In Section 3, we 
investigated the canonical extension of L, defined to be the lattice of up-sets 
of Y. We showed that this is isomorphic in S+ to the lattice of ^ + -morphisms 
from Y into 3 , with pointwise-defined operations from 3 . This gives some 
insights into the canonical extension, but the viewpoint is a hybrid one. We 
moved to the natural duality setting at the second stage (the formation of the 
completion as a function lattice), but not at the first (the construction of the dual 
space Y). We now build in the natural correspondence between the Priestley 
dual and the natural dual of L given in Proposition 2.1, so transferring fully to 
the natural duality setting. 

We can see that this is possible by noting that the order-isomorphism be
tween X and Y lifts to an order-isomorphism between U(X) and U(Y), which 
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is necessarily an ^- isomorphism. Thus the canonical extension can be mani
fested as 3 x , instead of as 3 Y . 

We now show explicitly how, working wholly within the setting of maps 
into 3 and 3C and their respective alter egos 3 and 3 , we can verify that 

(eL,E+D(L)) does indeed yield the canonical extension of L G S. To do this, 
it suffices to verify the properties of density and compactness that characterise 
a canonical extension of L. We first derive two results revealing exactly how L 
sits inside E+D(L). 

5.1. LEMMA. Let L be a Stone algebra and let Lv := E+D(L). Then 

(1) every completely join-irreducible element of Lv can be expressed as 

Jx = /\(aeED(L)\a(x) = l); 

(2) every completely meet-irreducible element of Lv can be expressed as 

My = \f(a€ ED(L) | a(y) -- l ) . 

P r o o f . 
(1) Let X := D(L) and x G D(L). Let Ax := {a G ED(L) : a(x) = 1} 

and let us denote ax := f\(a | a G Ax) G Lv. (We note that Ax / 0 since 
eA(l) G Ax.) As each a G Ax is continuous and order-preserving, a~l(l) is 
a clopen up-set of D(L) containing x and it is easy to see that a~l(l) = 

p | a~l(l). We claim that a~l(l) = "[x. If z G t# - then clearly z G a " 1 ^ ) -
aeAx 

For the converse, assume that z £ ^x. We wish to find a G Ax such that 
a(z) 7̂  1. Since the order on D(L) is defined pointwise, there exists b G L such 
that eL(b)(z) = z(b) £ tx(b) = te

L(b)(x) in 3 . We now separate cases. First, 
if x(b) = 1, then we have eL(b) G Ax, but eL(b)(z) / 1, so a = eL(b) serves. 
Next, if x(b) = a, then z(b) = 0. We have eL(b**)(x) = x(b**) = ^(b)** = 1 
while eL(b**)(z) = z(b)** = 0. In this case we take a = eL(b**). Finally, if 
x(b) = 0, then z(b) = a or 1. We have eL(b*)(x) = x(b*) = x(b)* = 1 while, 
similarly, eL(b*)(z) = 0. So in this case take a = eL(b*). We have proved, as 
claimed, that «~1(1) = t# - As Jx

 ls the map in 3 1 determined by | x , this 
yields ax = Jx according to Lemma 3.4, which completes the proof of (1). 

To prove (2), for any y G D(L) we let By = {a G ED(L) : a(y) ^ 1} 
and define (3y := \J((3 \ /3 G By) G Lv. (We note that By contains eL(0) , 
and so is non-empty.) Then z G /?^"1(1) if and only if there exists (3 G ED(L) 
with P(z) = 1 and (3(y) 7-= 1. We are going to show that j3y is the map in 
3X determined by D(L) \ \y. Suppose z $ \y. Then there exists b G L 

such that z(b) £ \y(b) in j3 . In the case that z(b) = 1 and y(b) / 1 we 
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see that eL(b)(z) = 1, but eL(b)(y) / 1 . Hence z G /3_1(1)- I f z(b) = a and 
y(b) = 0, then eL(b**)(z) = 1 and eL(b**)(y) = 0 yielding z G / ^ H 1 ) - Finally, 
if z(b) = 0 and y(b) ^ 0, then eL (&*)(*) = 1, but eL(b*)(y) / 1. Again we 
have ^ G /? - 1 ( l ) • So D(L)\ly C /?_ 1(1) . Conversely, suppose for a contradiction 
that z G | i / . Then for all /3 G ED(L) we have /?(z) ^ /3(H) so that there does 
not exist /? with /?(z) = 1, but /3(H) ^ 1. We deduce that /?_1(1) = A f - ^ l ) , 
whence /? = M , as required. D 

5.2. PROPOSITION. Let L be a Stone algebra and let Lv := E+D(L). Then 

(1) every element c G Lv can be expressed as 

c= V ( A l a G i ^ ) : «(*) = 1}); 
•rec--( l ) 

(2) e^eru element c € Lv can be expressed as 

c= A (\J{a£ED(L): a(y) ? l}). 
j / € ( X \ c - - ( l ) ) 

P r o o f . According to Lemma 3.7, every element c £ Lv can be expressed 
as 

c= \M= A^-
x e c - - ( l ) i /G(X\c-- ( l ) ) 

Now (1) and (2) follow from Lemma 5.1 above. D 

As a consequence of Proposition 5.2, (eL,E+D(L)) is a dense completion 
of L. We remark that it is not difficult to show that density is equivalent to 
the following statement for L and Lv as above: every interval [c, d\ in Lv with 
c G J°°(LV) and d G M°°( I7) contains an element of ED(L). 

Compactness of Lv is equally easy to establish, since it follows from the 
(known) compactness of D(L) as a topological space. This is immediate from 
[8; Lemma 2.4], which asserts that compactness of Lv is equivalent to the re
quirement that for S, T C I , 

f\e(S) ^ \ / e ( r ) ^=> /\e(S') <: \/e(T') for some finite S ' C S , T ' C T . 

We remark that, because X = D(L) has a subbasis of clopen sets each of 
which is either an up-set or a down-set, it can easily be shown that compactness 
of the space X follows from the compactness condition on Lv. However, in 
this direction it is perhaps easier still to draw on the well-known facts about 
Priestley duality and the fact that D(L) and H(L) are homeomorphic and 
order-isomorphic. 
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We arrive at the following theorem. 

5.4. THEOREM. Let L be a Stone algebra. Then (eL,E+D(L)) is a dense and 
compact completion of L and so is, up to isomorphism, the canonical extension 
ofL. 

As the notation in the preceding discussion indicates, we can view the for
mation of the canonical extension on objects as a transition from <5 to <S+ 

via the composition of D and E+ on objects. Since each of D and E+ is a 
functor, we also have a corresponding extension of homomorphisms, whereby an 
<S-morphism /': L —•> M extends to an <S+-morphism fv': Lv —> Mv, given by 
fv — E+Df. A definition-chase shows that 

(fu(a))(x) = a(xof) (aeL», xeS(M,3)). 

This shows the way in which our construction is functorial. 

There is a little more that can instructively be said about the alternative 
perspectives on canonical extensions for Stone algebras. First we show how the 
canonical extension fits into the piggyback duality framework. The idea behind 
the piggyback method as it applies to varieties of DLEs is to use a known ex
panded Priestley duality to validate a hoped-for natural duality. Specifically, 
let us consider S. It can be shown by very general arguments that the map 
eL: L r-> ED(L) given at each point by evaluation is an embedding for each 
L £ S. The piggyback method seeks to show that eL is surjective by exploiting 
the known surjectivity of the map kL: L i-> KH(L) given at each point by evalu
ation for each L £ S. It is an elementary set theoretic exercise to show that eL 

is surjective if we can construct a well-defined injection A: ED(L) —» KH(L) 
such that A o eL = kL. The construction is carried out in the following way. 
Let (p £ ED(L). Then 0 maps <S(L, 3) into 3 = {0, a, 1}. We now try to define 
A((f)) on Y = H(L) so that the right-hand diagram in Fig. 1 commutes. (Recall 
that g: {0,a, 1} -> {0,1} is given by g(l) = 1, g(a) = g(0) — 0.) The situation 
is simpler here than in the piggyback method in general because $ is a bijection, 
so that A((f>) is definable directly as the composite g o <fi o T. 

KH(L) 

X = S(L,3)-^žt 

V(L,2)^UZt 

ED(L) 

FIGURE 1. 
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If we drop the continuity restriction on 0, so that we consider 0 as an 
element of E+D+(L) rather than an element of ED(L), then we extend the 
injection A: ED(L) -» KH(L) to an injection A + : E+D+(L) -> Lv. What 
we have shown is that the piggyback construction lifts up to the level of the 
canonical extensions. Thus the canonical extension translates into the natural 
duality setting in a piggyback way, as we would expect. 

6. Double Stone algebras and 
regular double Stone algebras 

A double Stone algebra is of the form (L; V, A, *, °,0,1) for which 
(L; V, A, *, 0,1) and (K; A, V, °, 1, 0) are Stone algebras. The variety VS coincides 
with the quasi-variety generated by the algebra 4 = ({0, a, b, 1}; V, A, *, °, 0, l ) , 
where the underlying bounded distributive lattice is the four-element chain with 
0 < a < b < 1 and 

1* = b* = a* = 0 , 0* = 1, 0° = a° = b° = l , 1° = 0 . 

We let VS+ denote DL + fi VS and X£s the class of structures (K ; -^,p, m) 
where -̂  is a partial order and p and m are retractions on X for which p(x) 
and m(x) are, respectively, the unique maximal point above x and the unique 
minimal point below it. 

A natural duality for VS is set up in the customary way by taking as alter 
ego 4 = ({0, a, b, 1}; =̂ , p, m, r ) , where, as usual, r is the discrete topology, ^ 

is the partial order shown in Fig. 2, and ({0, a, b, 1}; ̂ , p, m) G X£s. 

b 
0 

0 1 
o o 

FIGURE 2. 
o 

a 

Note that, as for Stone algebras, the alter ego structure we use does not 
exactly match that given in [1]. Our choice allows a smooth translation to Priest
ley duality (in terms of up-sets, or homomorphisms into 2) and fits into the wider 
framework of [22]. 

Just as for Stone algebras, this natural duality for VS is "essentially the 
same as" the expanded Priestley duality. This good behaviour stems from there 
being a VS analogue of Proposition 2.L 
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The development of a hom-functor based theory of canonical extensions for 
double Stone algebras now proceeds in exactly the same way as that for Stone 
algebras. 

Let XeX£s. We now define maps ^vs: U(X)-> 4 x andT^: 4X^U(X), 

which play the same role for VS as the maps \& and T from Section 3 do for S. 

These maps are given by Tvs(c) = c _ 1 ({1, b}) for every c G 4-X and 

*vs(U)(z) = { 

1 if z G r a - ^ U ) , 

b if zeU\m~1(U), 

a if zep~1(U)\U, 

t O \izip-l(U). 

The entire framework of Sections 3 and 4 can now be transferred, mutatis mu
tandis, to yield corresponding results for VS. We omit the details. 

Finally we consider the variety 1Z of regular double Stone algebras. More ad
vanced duality theory is involved here, and our purpose in including a discussion 
of this variety is to show that, notwithstanding, a "fully pointwise" construction 
of canonical extensions is still available. 

Regular double Stone algebras have several different incarnations. For our 
purposes it is most appropriate to treat 1Z as the subvariety generated by the 
three-element chain 3 = {0, a, 1} qua double Stone algebra. It is characterised 
implicationally within VS as follows: (x* = y* and x° = y°) implies x = y. 
Alternatively, 1Z can be viewed as the variety of three-valued Lukasiewicz alge
bras. For further details see [25]. 

It is easy to show that in fact 1Z = ESP(3). From this it follows, with the aid 
of [1; 1.3.1] and the expanded Priestley duality for double Stone algebras, that 
the Priestley dual spaces of algebras in TZ have the characterising property of 
having each point either maximal or minimal, or both. Every such space arises 
in the following manner. Take two disjoint copies Z1 and Z2 of a Boolean space 
Z , and denote by z1 and z2 the points of these sets coming from z G Z. Give 
X := Z1 U Z2 the disjoint union topology; order it by putting z1 < z2 for all 
z- G Z and imposing no other non-trivial comparabilities. Fix a closed subset 
W of Z and form an ordered quotient Y of X by identifying z1 and z2 for 
z G W. Pictorially, we have two homeomorphic "layers", with certain corre
sponding points pinched together. Let A be the regular double Stone algebra 
whose dual is Y. Then Z is the dual of the centre of A: 

C(A) = {aeA: a = a**} = {a* : a G A} = {a G A : a = a + + } 

= {a + : a€ A} . 

Under the duality for Boolean algebras, there is a bijective correspondence be
tween filters of the Boolean lattice C(A) and closed subsets of its dual space Z. 
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The algebra A is completely determined by the pair (Z, W) or, algebraically, 
by the pair (C(A),F(A)), where F(A) is the filter dual to W. K a t r i n a k ' s 
representation of regular double Stone algebras is obtained by explicitly building 
an algebra A out of a pair (B, F), where B is a Boolean algebra and F is a 
filter of B, either in a sheaf-theoretic way or in a purely algebraic manner, as 
described in [2]. 

C o m e r ' s construction of the canonical (alias perfect) extension A° of A in 
TZ is obtained as the algebra associated with the pair (C1,F1) where C1 is the 
canonical extension of C(A) and F1 is the principal filter generated by f\ F(A). 

Ci 
From the way that it is obtained, AG is a regular double Stone algebra. But some 
work is needed to show that it has the properties (now known as density and 
compactness) characteristic of a canonical extension and it is not immediately 
visible how the additional operations * and -f, on A°, are derived from the 
corresponding operations on A. 

We now consider how the canonical extension can be viewed from the perspec
tive of natural duality. When compared with S and VS, the variety 1Z raises 
some new issues as regards natural duality theory. The reason for this is that we 
cannot, for arbitrary A elZ, find a surjective map from 1Z(A,S) onto V(A,2) 
of the form a o -, where a is a fixed element of V(S,2) (cf. Proposition 2.1). 
However, trivially, V(A, 2) is the union of the images of 1Z(A, 3) under the 
maps a 1 o - and a2 o -, where the carrier maps cY1 and a2 are, respectively, the 
elements of X>(3, 2) which map a to 1 and a to 0. An analogous observation, 
in the context of Kleene algebras, initiated the theory of multi-sorted dualities 
[4] (see also [1; §7.1]). 

To obtain the multi-sorted duality which we require for 1Z, we may draw 
on the unified study of varieties of double MS-algebras in [23; §4], in which 1Z 
is the subvariety labelled 2 (and VS is labelled as 4) . Alternatively, we may 
appeal to the theory as presented for Lukasiewicz algebras in [21]. Either way, 
the dual space of an algebra A elZ consists of two disjoint copies X1 and X2 of 
V(A, 3) , one for each carrier map. The schizophrenic object M may be viewed 

as being based on disjoint copies Ml := {0l,al,V} (i = 1,2) of {0,a, 1} . For 
the algebraic persona we regard each copy as an algebra isomorphic to 3 . On the 
relational side, we have relations which are subsets of Ml x iVP (i, j G {1,2}). 
Specifically, we include 

r= { ( 0 ^ 2 ) , ( a \ a 2 ) , ( l S l 2 ) } CM1 xM2 

suppressing (because these relations will be preserved automatically by the maps 
we need to consider) the discrete orders on M1 and M2. Together, these three 
relations can be viewed as yielding a partial order on M1 U M2. Finally we 
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consider the two relations 

^i2 = { ( 0 1 , 0 2 ) , ( l 1 , l 2 ) } C M 1 x M 2 , 

r 2 1 = {(0 2 ,0 1 ) ,(1 2 ,1 1 )} C M 2 x M x . 

We only need to include one of these two relations in our relational type, and 
shall take r 1 2 . The dual space D(A) — X — X1 U K2 of an algebra A acquires 
its relational structure pointwise. Thus, for y G X1 and z G X2, we have 
(y, z) G rx if and only if (y(b), z(b)) G r for all b G A. This says precisely that 
y = x1 and z — x2, where x 1 and x2 are set-theoretically the same map from 
A into {0,a, 1}, regarded respectively as having codomain M 1 and M 2 . Also, 
(2/,;?) G r ^ if and only if (y(b),z(b)) G r 1 2 for all b e A. This happens if and 
only if y and z both come from the same map x: A -> {0,1}. A disjoint union 
topology, lifted from the discrete topology on M 1 U M 2 , is then imposed on X. 

To recapture the algebra A from its dual structure X, we consider the set 
E(X) of all continuous maps 0: X1 U X2 to M 1 U AJ2 which map X1 into 
M* (i = 1,2) and which preserve the relations r and r 1 2 in the obvious sense; 
this set acquires the structure of an algebra in 1Z pointwise from 3 . All this 
can be made functorial, so that D and E become functors between 1Z and a 
suitable topologico-relational category Xn generated, in an appropriate sense, 
from M . Indeed, we have a dual equivalence and in particular an isomorphism 
A .= ED(A) for each AeR. 

Now (at last!) our definition of the canonical extension Aa for A G 1Z is 
obvious: as a set, Aa consists of all maps (f>: X1 U X2 to M 1 U M 2 which map 
X1 into Ml (i = 1,2) and which preserve the relations r and r 1 2 . Because 
(j) is required to preserve r and r 1 2 , (^(x1) = </>(x2) for all (x x ,x 2 ) G r x and 
(j)(x) G {0,1} whenever imx = {0,1}. We make Aa into an algebra by imposing 
* and + , as well as the lattice operations, pointwise from 3 . In particular, 0* 
and (j)+ are obtained as follows from (f): for all x G X, 

ф*(x) = {ф(x))* = ^ 

ф+(x) = {ф(x))+ = I ° 

1 if <p(x) = 0 , 

0 otherwise, 

0 if <f>(x) = 1 , 

otherwise. 

In the same way that we obtained discrete (that is, topology-free) dual cat
egories for <S+ and X><S+, we can define a category X^, generated by M, the 
same structure as M , but with the topology omitted, which will be dually 

equivalent to n+ = DL+ H1Z. 

Finally, we note that the natural duality for 1Z and its expanded Priestley 
duality are related in exactly the way one would expect. The requisite translation 
process is described in [23; Theorem 3.8], or alternatively in [21; Theorem 3.9]. 
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For the very special case of 1Z this is extremely simple. The two disjoint pieces 
X1 and X2 of the natural dual X = D(A) are the spaces we previously called 
Zl and Z2. The relations r and r 1 2 , interpreted on X , encode respectively 
the ordering of X as two antichain layers and the subset W determining the 
quotienting map which identifies points of Z1 U Z2 to yield the Priestley dual 
space H(A). 
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