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DISCREPANCIES OF POINT SEQUENCES 
ON THE SIERPINSKI CARPET 

LlGIA L. CRISTEA* — ROBERT F . TlCHY** 

(Communicated by Stanislav Jakubec) 

ABSTRACT. Several types of discrepancies of finite point sequences on the 
Sierpiriski carpet Cs (s > 2) are introduced. Various estimates relating these 
discrepancies are proven. 

1. Introduct ion 

The (2-dimensional) Sierpiriski carpet is a well-known planar fractal set, 
which can be constructed as follows. Let A0 be the unit square of vertices 
P 0 (0,0) , P^O, 1), P 2 ( l , 0), P 3 ( l , 1). Let Ax be the set that one gets by divid­
ing A0 into 9 congruent squares with side length 1/3 and "deleting" the open 
"central" square. Ax is the union of 8 squares of side length 1/3. By repeat­
ing this operation for each of these eight squares successively one gets the sets 
A 2 , A 3 , . . . . The set An is the union of 8 n squares with side length 3 ~ n , called 
elementary squares of level n. In the following, for simplicity, we will also call 
them simply n-squares. 

oo 

DEFINITION 1. The set C -= f] An is called the (planar) Sierpiriski carpet. 
71 = 0 

4 
Figure 1 shows the set f] An. 

71 = 0 

The definition can be extended in higher dimension. 
The s-dimensional Sierpiriski carpet (s > 2) is a fractal set, embedded in W 

and can be obtained as follows. Let A0 = [0, l ] 5 be the unit cube in Rs . We 
denote by A1 the set obtained by dividing A0 into 3 5 congruent cubes with side 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 11K38, 28A80. 
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length 1/3 and "deleting" the open "central" cube, i.e Ax = [0, 1 ]*\( | , §)*• Ax 

is the union of 3 5 — 1 cubes with side length 1/3. By repeating this operation 
for each of these 3 5 — 1 cubes successively one gets A2, A31..., An,... . Thus An 

is the union of (3 s — l ) n cubes with side length 3 _ n , called elementary cubes of 
level n, or, simply, n-cubes. 

( 3 n - i _ 1 v s 

Jfe=0 / 

Pi 

fi.o 

•в--в-

| . и . "И-I^ШI-П- -i 

, n . . n - - B - - B -

4,1 

F I G U R E 1. p | An. The black squares are deleted. 
n = 0 

DEFINITION 2. The set Cs = f) An is called the s-dimensional Sierpinski 
carpet. n = 0 

l o g ( З s - l ) ., i 
i 3 , as it can be 

R e m a r k s . 

1. Obviously we have C2 — C. 

2. Cs is a fractal set with Hausdorff dimension a, 

shown e.g. by using techniques of [Fal90] and [Fal97]. 

If we regard Cs as the attractor of an IFS (Iterated Functions System) and 

observe that it verifies the open set condition, it can be shown, e.g. using tech­

niques of [Fal97], that 0 < 7ias(Cs) < oo, where T~ias(Cs) is the cY5-dimensional 

Hausdorff measure [x on Cs. Hence we introduce the normalized Hausdorff mea­

sure /i on Cs (/i(A) = n°s(Cs) ^or a ^ B o r e l s e t s -4 C C J . We will use, for 

simplicity, the notation a instead of a . 
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If we denote the set of all vertices of the n-cubes building up An by Vn and 
the set of all edges of these cubes by En, we get a finite graph Fn = (Vn,En) for 
every n G N\{0}. We will refer to this graph later, when we define the geodesic 
metric on Cs. 

In the present paper we study different types of discrepancies of point se­
quences on Cs. The notion of discrepancy is closely related to that of uniform 
distribution. 

In a compact metric space X endowed with a normed Borel measure v a 
sequence (xn) is said to be v-uniformly distributed if 

n=l x 

holds for all continuous real-valued functions / on X. 
It has been proven ([KN74]) that in order that (1) holds, it is necessary and 

sufficient that the above condition is satisfied for all functions / = XA > w n e r e 

A C X is any Borel set with v(dA) = 0. 
Let V be a system of Borel sets A (c X) in the mentioned metric space X, 

such that v(dA) = 0 for each A G V. 

DEFINITION 3. The (volume) discrepancy of the sequence {xlyx2,...,xN} 
C X with respect to V is defined by 

1 N 

DN(xn)=D%(xn)=sup -J2XA(Xn)-u(A) 
A^V N n=l 

where XA ls ^ne characteristic function of the set A. 

By changing the system V of Borel sets one gets different types of discrep­
ancies. 

Uniform distribution of point sequences occurs and plays a role e.g. when 
numerical integration has to be done. As it can easily be seen from the definitions, 
the discrepancy of a point sequence reflects the quantitative measure of "not 
being uniform distributed". The existence of uniform distributed sequences of 
points on the fractal Cs follows from [KN74; Chap. 3, Theorem 2.2]. 

Discrepancies of point sequences on fractals have already been studied for 
the planar Sierpinski gasket [GT98] and also for the Sierpiriski gasket in higher 
dimension [Kli98], The equivalence of the studied discrepancies on the gasket has 
been proven in both cases. In [AMT00] a tight bound for the L2 -discrepancy 
with respect to halfspaces is found for point sequences on self-similar fractals 
that fulfill the open set condition. 
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2. Discrepanc ies on Cs 

In the following we will define and compare different discrepancies on Cs for 
s > 2. The measure that we are using here is the normalized Hausdorff measure 
f.i already mentioned. 

NOTATIONS. Given two integers k < /, we shall write i = k,/ instead of 
i = k,..., / (all integers i which satisfy k <i < I). 

In some situations when we define certain cuboids we use the notation <*. 
This has to be read as one of the inequality symbols < and < , depending on 
whether we consider the defined cuboid together with its corresponding bound­
ary or not. 

The following remarks are useful for the study of Cs. 

R e m a r k s . 
1. The pairwise parallel faces of A0 are: 

filC={(xi>-->X8): ^ - € [ 0 , 1 ] , j € { l , . . . , s } \ { z } , x{ = c}, 

where c G {0,1} (see Figure 1 for the case s = 2). 
2. We call elementary face of a given type (i, c{) of an n-cube its face parallel 

to the face /• „. of An and closer (in the Euclidean sense) to f. „. than to f-, „.. 
•* v fC^% \J ^ ' Z 5 C 2 ** 1 j X C ^ 

5 

3. Every n-cube has a vertex of type /i, h G { 0 , . . . , 2s — 1}, h = ^ cz ' 2 S - Z , 
i = i 

namely the intersection of the n-cube's faces of type (z, c j , i = 1, 5 . 

2 .1 . Some defini t ions. 
Let D be a system of Borel sets A (C C5) such that the boundary dA satisfies 

fi(dA) = 0. By taking X = Cs in Definition 3 and by choosing different systems 
V of Borel sets we get different discrepancies on Cs. In all these considerations 
we consider Cs endowed with the Euclidean metric, unless we explicitly mention 
an other metric (the geodesic metric). 

The elementary discrepancy D^ is the discrepancy defined by the system £ 
of all elementary cubes (intersected with Cs). We consider each n-cube (n > 1) 
together with its faces of type (i ,0) , i = 1,2, . . . , 5 (i.e. with "half" of its 
boundary). Moreover, if for some i G {1,2, . . . , s } a face of type (i, 1) of the 
n-cube lies on the face of type (i, 1) of an m-cube (containing the n-cube, 
m < n) which is also a face of a deleted m-cube or if the face of type (i, 1) of 
the considered n-cube lies on fi±i then we take the n-cube together with its 
face of type (i, 1) (i.e. with more than "half" of its boundary). 

Furthermore we consider V to be the system S of all sets which are inter­
sections of Cs with cuboids whose faces are parallel to the faces of A0 and 
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whose vertices belong to C8 and thus we define the carpet discrepancy DN. The 

s 

cuboids mentioned here are sets of the form R= Yl [ai9 b{), a{, b{ G [0,1] for all 
i=l 

i G {1,..., s} and if for some i G {1,..., s} we have b{ = 1, then we take [av bj 
instead of [ai5 b{) in the above product. 

The last system V to be considered here is the one denoted by C which 
consists of all sets which are intersections of Cs with cuboids of S having as a 
vertex one of the vertices of AQ. For V = C we get the corner discrepancy DC

N. 
If p G C3 is arbitrary, we denote by Ah(p), h G {0,..., 2s - 1}, the cuboid 

of S with p and Ph as diagonal opposite vertices. The points y G Ah(p) (for 
s 

h = J2 ciW ' 25~2) are characterized as follows: 
i=l 

y e Ah(P) 

where 

y Є C3 and y. = (1 - q.(y)) • m ť + ? i(y) • M ť , 0 < ? i(y) <* 1, 
(3) 

mi = mm{xi{p)ixi(Ph)} and Mi = max{x.(p),o;.(P^)} , t = l , 3 . (4) 

In the above relations j/^, i -= 1,5, are the Cartesian coordinates of y, x^P^), 
z = T78, those of P^ and x{(p), z = 1, s, those of p. 

Pi 

Po 

Ai(p) Aз(P) 

P 

Ao(P) A2(p) 

Pз 

p2 

FIGURE 2. The sets defining corner discrepancy for 5 = 2. 

Remark. We can define for any cuboid A G S its face of type (z, c{) and its 
s 

vertex of type ft, for h = ]T) c{ • 25~z, ft G {0,1,..., 2s—1}, which we denote by 
i = i 

p'h. With these notations it is easy to see that if ft G {0,1,..., 2 s —1}, then p'-
with ft = 2s — 1 — ft is the vertex diagonally opposite to ph in A. Moreover, for 
A, as above, p'h and Ph are diagonally opposite vertices in the cuboid Ah (pL). 
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2.2. Comparison of the elementary, carpet and corner discrepancy. 

LEMMA 1. Let A C Cs be a Borel set and x = {xx,..., xN} C Cs. 
We set 

N 

#(A;N) = Ş2XA(XП), DN(A,x) = 
П=l 

ў(A;N) 

N 
-џ(A) 

If there are Al,A2 C Cs {Borel sets) such that A1 C A C A2, DN{A{,x) < e, 
i = 1,2, and max |/i(-4J — M-4)| < $, then DN{A,x) < e + 6. 

2=1,2 

P r o o f . The inequalities 

#(AX,N) 

N 
- џ(Ax) + џ(Ax) - џ(A) < Щ ß - џ(A) 

< 

N 

#(Ą,ЛQ 

N 
- џ(A2) + џ(A2) - џ(A) 

yield 

#(A;N) 

N 
џ(A) < max 

~ 2 = 1,2 

ШІ\N) 

N 
•MAt) + m a x | / i ( ^ ) - / i ( A ) | . 

2=1,-5 

Hence by the inequalities in the hypothesis we get DN{A, x) < e + 5. 

PROPOSITION 2. For any finite sequence of points {xv x 2 , . . . , xN} C Cs 

s \1-DN<DN<c,s)(DN) for all s>2. 

D 

(5) 

P r o o f . The left inequality follows directly from the definitions. Now we 
will prove the right inequality. Let R be a cuboid of S and let Tn be the union 
of all n-cubes contained in R. Then the number of n-cubes which intersect the 
boundary of R is less than 2s(3 5 _ 1 ) n . On the other hand, Tn\Tn_1 includes 
less than 2s(3 5 - 1 ) n - 1 (3 5 - 1 - 35"1) n-cubes. 

As Tn = T n \T n _ 1 U Tn_x \T n _ 2 U • • • U Tx \T0 U T0, the number of elementary 
cubes of level < n contained in Tn is less than 

2s{3s - 1 - 35"1) • ((35"-1)"-1 + (3 5 - 1 ) 7 2 - 2 + '-• + (3 5" 1) + 1) 
( 3 5 - i ) n _ x 

2s(Зs } 3 - 1 
) з*- 1 - 1 

Lemma 1 and the fact that the (normalized Hausdorff) measure of an n-cube is 
(3* - 1)-" yield: 

_! ( 3 s - 1 ) " - 1 
DN < (2s(Зs - 1 - З 8 - 1 ) \а-l_x + ^(Ъ3-x)n)D£

N + 2s(Зs~l) 
(3* - l)n ' 
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which implies, for any m G N\{0}, 

DS

N < 2s((3* - 1 - З ' - 1 ) 1 - , . ; ^ + (У-^Dfj + 2s(3*T 
1 

(З s - l ) т 

Inserting m = І 0Sз»-i Ш we get: 

log 3 ._! TiT ~ - < m <• l ogs»-i T - ' D& n£ 

DN 

DS
N < |2s((зs - 1 - з s ~ У ^ + (У'1)"1) + 2s(Ъs~l)m(Ъs - 1) D£ 

UN 

= 2s 

= 2s 

= 2s 

r ( 0 4 - l \ m . _ i , 

[(зs - 1 - з*~T ; + (з s _ 1 ) m (i + з s - i)JD 

s — l\m Ъs - 1 - З * - 1 + ( З 8 - 1 - 1)3S

 / л . _ l ч _ 2 - 3 * - 1 - ! 

з * - 1 - 1 

З s - 1 - З s _ 1 + 3 2 s _ 1 - 3 

(Зs 

s — l \m 

ъs~l - 1 •(з'-1) 

з 5 - 1 - 1 
2 - З s _ 1 - 1 

D N 

1 4 - 1 1 
D N 

o2s — 1 _ os — 1 _ i 

<** 3.-1 _ i Vr-^. 
On the other hand 

m < logg.. ! -^-- = logg..! ^ - • loga. . ! 3 5 - 1 

which implies 

( 3 5 - i ) m < ( 3 5 

thus 

'N 

- l ч

І 0 S з — i ^ - ' І 0 S з ^ - i З s 

1 J UN 

'N 

l o g З 3 " ^ l o g З 
_ \ l o g З ' l o g ( З s - l ) 

w 
JУN 

(DN) 
£)-' 

D£
N < 2s 

> 2 s - l З s _ 1 - 1 
ГZ-Г^ІDNУ 

c(«) 

D 

PROPOSITION 3. For any finite sequence of points {xx,x2,...,xN} C Cs, 

D% <DN < 2sD% for all s>2. (6) 
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P r o o f . Let A be a cuboid of S. With the notations of the above remarks 

we have A C A 0(p2-_i)-

Pз 

J-з-

Po p2 

FIGURE 3. Relating the sets defining carpet and corner discrepancy 

We denote by X \, i G {1,2,..., s}, the Cartesian coordinates of the vertex 
p'2s_l of A and by Xf , i G {1, 2 , . . . , 5}, the Cartesian coordinates of the vertex 
p'0 of A. 

For (ivi2,... , i j G {0, l } 5 we define 

5 ( z 1 , z 2 , . . . , z J = { p G C 5 : xk<*Xi

k\ k=M}, 

where xk, k = 1, s, are the Cartesian coordinates of the point p . 

Every set S(i1,i2,..., is) belongs to C (it is easy to see that it coincides with 
one of the sets A0(pf), where pf is one of the vertices of .A). 

We denote by # ( 2 \ , . . . , zs) the number of coordinates of the s-tuple 
(ili..., is) which are equal 1. 

By the inclusion-exclusion principle we obtain 

v — V^ (_1 y-#(ii,...,i s) 

(-i,...,--)e{o,i}-

where by —S we denote the complement of a set S. 

By integration we derive 

џ(A)= £ (-lY-#<ťь-.ь>/i(S(i1,' 
(û , . . . , - в )Є{0, l} s 

'2' ' •.O) 
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Thus 

i N 

-ӯExдW-мл) 
n=l 

N 

^ E E (-i)'-#(łi--ł-)xs(il. i2,-..,is) 

" = l ( - i > - . * . ) Є { 0 , l } в 

- £ ( - 1 ) ^ S ( % , t 2 O) 
( t i , . . . , i в ) Є { 0 , l } » 

< E ^E(-1) ł"# ( < 1 ,-A )x5(i1,i ï ia)ы 

( t i , . . . , i . ) Є { 0 , l } » " = 1 

-(-iГ # ( i l S^чл,...,..)) 

1 w 

E лғE^(ii,i2,...,i.)(arJ-/i(5(iľi2»---'iJ) 
( » l , . . . , * , ) Є { 0 , l } í n = l 

< 2łD£ 

COROLLARY 4. For am/ /mzte sequence of points {x1,x2,..., x ^ } C Cs. 

1 n í DN<De
N<c{s){DN) M 1 " 1 

/оr a/i s > 2 . 

D 

(7) 

P r o o f . It follows immediately from the last two propositions. D 

2.3. The isotropic d iscrepancy on C3. 

In the following we introduce a new type of discrepancy on Cs: by taking V 
in Definition 3 to be the (much larger) class of sets 

J = {C : C = AnCs, .A is a convex set contained in the unit cube A0 C f f } 

we get the isotropic discrepancy DN of a sequence {x l 5 x 2 , . . . , xN} C Cs. 

Remark. By simple arguments one can show that for any C £ J, C = AnCs, 
we have Ha(dA) = 0 and thus n(dAC\Cs) = 0. In particular, the a -dimensional 
Hausdorff measure of any bounded region of an (s—1) -dimensional hyperplane 
in Rs is zero. 

Our next aim is to compare DN with DN. In order to do this we first give 
some definitions. 
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A closed convex polytope is defined as the convex hull of a finite number of 
points in W . An open convex polytope is defined as the interior (with respect to 
the usual topology of W ) of a closed convex polytope. 

Let us define 

V — {C : C = P PiCs, P is an open or closed convex polytope 

contained in AQ with vertices in Cs} . 

R e m a r k . It suffices to consider instead of J the smaller class V in order to 
compute the isotropic discrepancy of a finite sequence of points on Cs. The proof 
of this fact is verbally the same as that of [KN74; p. 94, Theorem 1.5], where 
the analogous result is established for the isotropic discrepancy on the unit cube 
in W . 

PROPOSITION 5. For every sequence { x 1 , x 2 , . . . , x s } C Cs we have, with the 
above notations, 

D%<DN< (1 + 4S(3S - 1)){DS
N)1-^ . (8) 

P r o o f . The first inequality follows immediately from the definitions, as 
S Cj. 

Now we prove the second inequality. Let C be a set of J, C — A D Cs. By 
the previous remark, we may assume for simplicity that C = P fl Cs, where P 
is an open convex polytope or a closed convex polytope contained in AQ with 
vertices in Cs. 

We show that we can find two sets Px and P2, both of them finite unions of 
cuboids like those defining S, such that Px C P C P2. We construct P1 and P2 

such that we can apply Lemma 1. 
Let r be an arbitrary positive integer. For every lattice point (/i15 / i 2 , . . . , hs) 

with 0 < h • < 3 r for all 1 < j < s we define a cuboid 

<U = { ( I i > I 2 - - I , ) 6 R , ; ^ < ^ < * ^ for l < j < s } -

The collection ^4'r) of those cuboids forms a partition of AQ. We take P1 := P{r*, 

where P^ is the union of all cuboids of A^ that are entirely contained in P. 

We define P2 := P2 to be the union of all cuboids of A^ whose intersection 

with P is nonvoid. 
It is easy to see that if we fix 5 - 1 integers / i 1 ? . . . , hs_1 satisfying the 

(Y) 

above conditions, then the integers /i, 0 < h < 3 r , with Ah^m„h h C P are 

consecutive integers (because of the convexity of P). Thus the union of those 

cuboids Ahi,„hs_ih is a cuboid like those defining S. These yield that P1 can 
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be written as the union of at most 3 r (- _ 1 ) such cuboids. One can show in the 
same way that P2 can be written as the union of at most 3 r(5~ 1) cuboids like 
those mentioned before. Thus we have: 

max 
ś = l , 2 

#(PПC:N) 

N -Mi'.ncj <зҢs-^Ds

N. 

Now we estimate \fi(Pi n C3) - /i(P H Cs)\ for i = 1, 2. 

It is easy to see that the number of 3~r-grid cubes intersecting the set P2\P 
is not greater than 2 • 2s • ( 3 r ) 5 _ 1 • Thus 

fx(P2ncs)-fx(Pncs)<4-s (зг) r \ s —1 

(З s - l )r ' 

since the normalized Hausdorff measure of an r-cube is (3 5 — 1) r . 

Analogously one can show 

r \ s - l 

fi(Pncs)-KP1ncs)<4-s^ (зг) , 
(зs - iF 

Thus 

#(PnCs;N) 

N 
KPncs) < ( з s ч т е + ^ ' 37-П 

-1 \ r 

Since this upper bound does not depend on P , we get 

^ < ( 3 5 - 1 ) r ^ + 4 S 

3 , - 1 N r 

З s - 1 

This holds for any positive integer r . We take r := log3«^^ 733- • It is easy to 

show that 

( 3 ' " 1 Y < ( D ^ ) -

Hence 

and 
5 \ 1 " £----) <(3--n-(D£) 

oќ<(l + 4 5 (З s -l))(z4) S Ч І - - Î 1 

D 
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2.4. Uniform distribution on Cs. 
Propositions 2, 3, 5 and Corollary 4 show that the discrepancies DN, DN, 

DN and DN are equivalent in the following sense: 

PROPOSITION. For all sequences (xn) c Cs, 

lim D%(xn)=0 «==> lim Dc
N(xn) = 0 

IV—»oo IV—>co 

IV—>oo IV—»-co 

As Cs is a compact metric space, we can apply the general theory of uniform 
distribution. 

Since a continuous function / on Cs is uniformly continuous, we can approxi­
mate / uniformly by characteristic functions of elementary cubes. Therefore, if 
any of the four discrepancies above tends to zero as IV -> oo for some sequence 
(xn), then (xn) is uniformly distributed in the sense of Definition 1. 

2.5. The geodesic metric on Cs. 
We introduce a metric on Cs as follows: any points x, y G Cs are contained 

in k-cubes, k > 1, denoted by Qk(x) and Qk(y). Let xk and yk be vertices of 
type h0 (h0 G { 0 , . . . , 2s —1} , Ph is the reference vertex — for simplicity we 
may fix h0 = 0) of Qk(x) and Qk(y), respectively, which are also vertices of 
the finite graph Fk. We define 

d(x,y)= lim 3~kdk(xk,yk), 
k—>oo 

where dfc is the length of the shortest chain in Fk containing xk and yk. d is 
a metric on Cs, called the geodesic metric, d(x, y) is the length of the shortest 
continuous curve in Cs connecting x and y. 

Remark. It can be shown ([Cri02]) that the geodesic metric and the Euclidean 
metric on Cs are equivalent. This implies that both metrics lead to the same 
notion of (//-)uniformly distributed sequences. 

We will use this metric in order to define a new discrepancy on C for 5 = 2. 

3. The planar case. Special ball discrepancy 

3.1. Circles and balls on the carpet. 
Let us analyse the circles and balls (with respect to the geodesic metric) 

having the centre p0 G VQ and radius r > 0 or p0 G Vk \ Vk_x and 0 < r < 

3 - (* - i ) for k> 1. 
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We call "elementary diagonal" any diagonal of some elementary square. 
One can easily see that the circles mentioned above are intersections of C with 

the boundary of squares having the centre (intersection of their diagonals) in p0 , 
the diagonals parallel to the edges of A0 and the length of their diagonals 2r. 
Hence the circles are unions of Cantor sets. If the edges of the squares whose 
boundaries build the circles are elementary diagonals, then every such edge is in 
fact the image of the classical Cantor set on [0,1] by an affine transformation 
having as linear part a contraction of ratio 3~k. 

The balls mentioned above are intersections of C with squares having the 
centre p0, the diagonals parallel to the edges of A0 and the length of their 
diagonals 2r. 

Remark. It is easy to notice that any point p G Vk, k G N, is, if we relate it 
to an elementary square of level k — 1 which contains it, a point of the type qx 

(vertex of exactly one of the eight k-squares contained in the (k—1) -square and 
thus necessarily vertex of the (k-1) -square), q2 (common vertex of exactly two 
of the eight k-squares contained in the (k—1)-square) or q3 (common vertex of 
exactly three of the eight k-squares contained in the (k—1)-square). 

Figure 4 shows the boundaries of concentric balls (we have to intersect the 
lines shown with C) having their centre in qx, q2, or q3. 

i=Po 

F I G U R E 4 . Circles on C. 

As a conclusion may write 

B(p0,r) = C n ( J \Po, Po + v1re1,p0 + v2re2\ 
V i ^ } 2-simplex 

1=1,2 r 

vheve e1 = (1, 0) and e2 = (0,1) (unit vectors), p0eVk, k G N, r > 0. 
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3.2. Discrepanc ies on C. The special ball d i sc repancy . 
As we have seen in the previous section, we can define different discrepancies 

on C with respect to different systems V. By fixing s = 2 we get from the previ­
ous section the elementary, the carpet, the corner and the isotropic discrepancy 
on C. 

In the following we define and study an other notion of discrepancy on the 
planar Sierpinski carpet, the special ball discrepancy. We define special balls to 
be balls (with respect to the geodesic metric) having as their centre a point 
p0 G IJ Vk and radius r = 3~k if p G Vk. 

ken 
We will compare DN with the other four already mentioned discrepancies 

on C. 
In the following we approach the special ball discrepancy DN making use 

of the structure of the balls having as their centre a vertex of some elementary 
square of level n , n G N, and the radius 3 - n , n G N\{0}. 

P R O P O S I T I O N 7. We have 

±D£
N<DB

N°<l2D£
N + 6á(D£

Ný (10) 

P r o o f . It is easy to notice that in a given k-square there are exactly four 
(k + 2)-squares which do not have any common edge with any "deleted" ele­
mentary square, but necessarily have two common vertices with two "deleted" 
squares (see Figure 5). 

FIGURE 5. Particular (k+2)-squares inside a k-square, k > 0. 

First we take an (n—1) -square of the same type (with respect to the 
(n—3)-square that contains it) as the four (k-f2)-squares mentioned above. 
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It is easy to see that it can be approximated by eight balls of Bs with radius 
3~ n and an error not greater than 7 • 8 _ n (see Figure 6). 

PЧ 

FIGURE 6. Covering an elementary 

square with special balls on C. 

FIGURE 7. Covering a special ball with 

elementary squares on C. 

These imply (as any other elementary square of level (n -
many balls from Bs to be covered with) 

1) needs at most that 

D% < 8DN° + 7 - 8 Bs for all m 6 N\{0} . 

The deriving of this inequality can be done by using Lemma 1 (e.g. by letting 
A be the elementary square to be covered, Ax the union of the two special balls 
included in A and A2 the union of the mentioned special balls covering A). 

For m = [log8 фĄ we get DЄ

N < 6 4 E # 'N — ^ ^ J V 

For the second inequality in (10) we choose a ball of Bs with the radius 3~k 

and with the centre the common vertex of four "undeleted" k-squares, k > 2 
(see Figure 5 and Figure 7). 

It is easy to see that the ball is the union of twelve (k+1)-squares and eight 
rectangular triangles (each of them is a "half-square" of level (k + 1)). Every 
such triangle is a union of three (fc+2)-squares and two "half-squares" of level 
k + 2. 

Going on with this procedure we can conclude, after L + 1 steps, that the 
given ball may be covered by not more than 12 + 8 • 3 • ( l + 2 + 2 2 H h 2 L ) 

elementary squares of level < k + L + 1 with an error of 8 • 2 L + 1 • 8 ~ ( / c + L + 1 ) . 
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By applying Lemma 1, we get, for L G N, 

Dff < (12 + 8 • 3 • (2L - l))Ds
N + 8 • 2 L + 1 • 8~ (L+1) , 

and for L = log8 -^r we have 

Dff < (12 + 8 • 3 • 2 rø *)D* + 8-2- (D£
N)i = l2D£

N + 64(DNý 

D 

Remark. (The case 5 = 1.) It is easy to see that the analogon of Cs in R 
is the well-known two-thirds-Cantor set, let us denote it here by C1. Lemma 1 
holds also for s = 1. The assertion of Proposition 2 becomes DN < DN < 2DN , 
which is true ([KN74; Chap. 2, Theorem 1.3] states the analogous result on the 
unit interval). The assertion of Proposition 5 becomes DN < DN < 5DN and 
can be proven analogously. Problems occur when one tries to reconstruct the 
proof of Proposition 2 on Cx in the same way. 
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