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ABSTRACT. Asymptotic properties of solutions of difference equations of the
form

2 —
A ‘zn - an<p(z11+p+1’ cet xn+p+k) + bn
are studied.

By Z, N, R we denote the set of integers, positive integers and real numbers,
respectively. Let p € Z, k € N. The asymptotic behavior of solutions of a
difference equation

2. _
Az _ancp(mn+p+1,...,mn+p+k) +b,,

X (E)
n,keN, a,b, eR, ¢:R" =R,
will be investigated.
The results presented here generalize some results of A. Drozdowicz,
J. Popenda [2], [3],and J. Migda, M. Migda [4].
By a solution of the equation (E) we mean a sequence z: N — R for which
there exists ¢ € N such that the equation (E) is satisfied for all n > q.

The space of all sequences z: N - R we denote by SQ. The Banach space

of all bounded scquences z € SQ with the norm ||z|| = sup{|z,|: n € N} we
denote by BS.

If B C R, then B* denotes the set Bx B x---x B C RF . Similarly, if ¢ € R,
then * = (¢,¢,...,¢) € R¥. The standard (Euclidean) metric on R¥ will be
denoted by d. We choose a constant A € R such that

d(t,s) < Amax{|t; — s, : i=1,2,...,k}
for every t = (tl,...,tk), s = (51,...,sk) € Rk,
If X C R, then ‘PIX denotes the restriction of the function ¢ to the set X
ie. oly: X =R, (| x)(t) =¢(t) forany t € X.
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o0 o0
LEMMA. If the series Y na, is absolutely convergent, r, = 3 a,, then the
1=n

n=1

o0 o0 o0
series Y. r, is absolutely convergent and ) r, = ) na,.
n=1 n=1 n=1

o0
THEOREM 1. Assume that ¢ is continuous, and the series ) na, is abso-

n=1
lutely convergent. Then for any bounded solution y of the equation Azyn =b,
there exists a solution x of (E) which possesses the asymptotic behavior

'Tn = yn + 0(1) ‘

Proof. Assume that y is a bounded solution of the equation A%y =1b |
and Y is the set of values of the sequence y. Choose a number a > 0. Let

U={te R¥ : there exists s € Y* such that d(s,t) < Aa}.

Since Y* is a bounded subset of R¥, U is bounded, too. Hence the closure U
is compact. Therefore ¢ is uniformly continuous and bounded on U. Choose

o0
M > 0 such that |p(t)] < M for any t € U. Let v, = 3 [a;] for n € N.

J=n

o0 o0
From Lemma, it follows that the series Zl 7, is convergent. Let p = > r, fo
n= ] n

n € N. Since lim p, =0, there exists ¢ > max{1, —p} such that Mp < a fo-
71— 00
any n = q.
Let

T={zeBS: z, =0 for n<q and |r,| <Mp, for n >q},

S={zeBS: z,=y, for n<q and |z, —y,| < Mp, for n>q}.

1

T is a convex and compact subset of the space BS. The mapping F: T — S
defined by F(z)(n) =z, +y, is an affine isometry of the set 7" onto .S. Hence
S is also convex and compact.

If €S, n>max{l,—p}, then (y,l+p+1,...,yn+p+,\,) € Y+ and

d( n+p+12°°° ’$n+p+k)7 (yn+p+1’ ce ’y11+p+k))

(z
< /\111ax{l£,l+l)+i —y”+p+z| D= 1,2,...,k} < Aa.

It mcans that ('Tn+p+17 e ,:1:”+p+k) € U for every ¥ € S and any n >
max{1, —p}. Hence |o(z, - Ty pip)| <A forevery 2 € § and any n >
max{1, —p}.Let x € §. For n > max{1, —p} let T, = a,0(r, - T 0)

00
In = Z Ij’
j—n
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Then |Z,| < Mla,,|. Hence it follows that

[o,¢] [o ¢]
j=n j=n

o0
Since the series Z r; is absolutely convergent, the series }_ g, is absolutely
ji=1 7j=1
convergent, too. Let us define the sequence A(z) as follows

Y for n < ¢,
— )
Al@)(n) Y,+ > g; forn>gq.
j=n

o0 o0
If n > g, then |A(z)(n) —y,,| = l > gjl < X lg;l- But |g;] < Mr;. Hence
j=n j=n

o0
[A@)(m) =y, S M Y 7; = Mp,.
j=n
It means that A(z) € S. Hence A(S) C S.

Let € > 0. Since the function ¢ is uniformly continuous on U, there exists
d > 0 such that if s,¢ € U and d(s,t) < Ad, then |p(t) — ¢(s)| < €. Assume
z,z € § and ||z — 2|| < §. If n > max{1l, —p}, then

ATy pr1r > Tpprr)s Znapr1re s Zngprn)) SAS.
Let 2, = a,0(2,4 pr1r- -+ Znyprs) and h, Z z; forn €N
] =n
Then
o0
14() = A2)Il = sup Zgj Zh < lg; =1yl
n2p| s i=p
But
o0 o0 o0
PRETI) 3P 351 S S
i=j i=j i=j
and '
|z, — 2| = |a O(Tiyprrr > Tigpyn) — av,;cp(ziﬂ,ﬂ,...,zi+]l+k)l < €lay].

Henee [g; — k| < er;. Therefore, [[A(z) — A(2)]| < E ET; = €p,-

Jj=q
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It means that A is continuous. By Schauder theorem there exists z € S such

that A(z) = . Then z,, =y, + Z g; for any n > ¢. Hence it follows that if

j=n
> q, then
A yn+l+ Z g] yn Zg] Ayn_gn'
Jj=n+1
Hence

00 oo
2. _ A2 = T L
AIn“‘Ayn_gn-{—l—*—gn_bnﬂ Z aj+zxj

=b, +%, =a,0(T, 1o Tpipr) T, for n>q.
(2]
From the convergence of the series Y g; it follows that =, =y, +o(1). 0O
=1

oo o0

COROLLARY 1. If the series Y na,, ». nb, are absolutely convergent,
n=1 n=1

is continuous, then for any c¢ € R there eaists a solution of (E) which converges

to c.
(e8]
Proof. Let c€ Rand r, = ) b, for n € N. From Lemma, it follows that
(o) =n o0
the series ) 7; is convergent. Let ¢, = > 7, and y, = c+1¢,,.
i=1 i=n
Then lim ¢, =0, At, = —r, and A%, = A(At,) = A(-r,) =D,

n—>00

Hence A%y, = A%c+ A%t =

Therefore, y is a bounded solution of the equation A%y =1, . From The-
orem 1 it follows that there exists a solution z of (E) such that =, =y, +0(1).
Obviously, lim z, =c. O

n—o00
THEOREM 2. If the function ¢ is uniformly continuous and bounded and the
(e

series Y. na, is absolutely convergent, then for any solution y of the equation

n=1
A%y, =b, there exists a solution x of (E) such that

T, =y, +o(l).

Proof. Assume y is a solution of the equation A%y, =1b,_. Choose M > 0
such that [o(t )| < M for any ¢ E Rk . Similarly as in the proof of Theorem 1 we

define 7, Z la;| and p, = z r;- Let

j=n
T:{zeBS lz,| < Mp,, n €N},
S={reSQ: |z,—y,| <Mp,, neN}.
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Let us define the mapping F: T — S by F(z)(n) = z,, +y,,. Then the formula
p(z,z) = sup{|z, — z,| : n € N} defines a metric on the set S such that F
is an isometry of T onto S. T is a convex and compact subset of the space
BS. Since S is homeomorphic to T, it follows from Schauder theorem that any
continuous mapping A: S — S possesses a fixed point.

For z € S, n > max{l, —p} let z, = ango(xn+p+1,...,
Z Z; and A(z)(n) =y, + Z 9g;-
i=n

The rest of the proof is analogous to the second part of the proof of Theorem 1.

O

xn+p+k)’ In =

COROLLARY 2. If the series Z na,,, Z nb, are absolutely convergent, ¢ is
=1 =1
uniformly continuous and bounded then for any numbers ¢,d € R there exists a

solution = of (E) such that

z, =cn+d+o(l).

o0
Proof. Let ¢c,d € R and r, Zbl,u Yr,and y, =cn+d+u,

i=n
for n € N. Since A%(cn+d) =0, then sxmllarly as in the proof of Corollary 1,
one can conclude that y is a solution of the equation A%y, = b,, . The assertion

holds since u,, = o(1) and by Theorem 2. O
EXAMPLE. Let a, = ;lf, b, = 0 for any n € N and let ¢ be a constant

function equal to 1. We will show the equation (E) has no solutions of the form
r, =y, +o(l), where y, denotes a solution of the equation A%y =b_. Let
S, =0y +ay+ - +an,s—2alandr Za
i=1
Assume z,, = y, + o(1) is a solution of (E) and A%y, = b, = 0. Then
y,, = bn + ¢ for some b,c € R. It means that z, = bn +c+zn, z, = o(1).

Since A%z, = a,, a, = A*(bn + c+ z,) = A%z,. Let u, = Az,. Then
Au, = A2 = a,. Hence u, = u, +a; + - +an1=u1+9_l.Since
z, =o0(l), u A = o(1). Hence 0 = 11m u, =u, + lim s, _, =u, +s,

3 . n—r00
which 1mphes u, =—s+8,_;, =-r,.

n—1 n
Since u, = Az,, it holds that z, = 2z, + > u; = 2z, — ) r;, and since
i=1 '

T, +Ty+Ts+ s =a; +2a, +3a3+ - = 1+%+%+--- = 00, we obtain
lim z, = 2, — o0 = —o00.
n—00

However, this contradicts the hypothesis z,, = o(1).
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o0
THEOREM 3. If the series ) na, is absolutely convergent and the function

n=1
(,0| [a, 00)* is uniformly continuous and bounded for some a € R, then for any
solution y of the equation A%y, = b which diverges to infinity there exists a
solution x of (E) such that

z, =y, +o(l).

Proof. Assume A%y, =b and lim y, = 0o. Choose M > 0 such that
n—oo

lo(t)] < M for any t € [a,00)¥. Similarly as in the proof of Theorem 1 we define
r, and p,. Choose q > max{l,—p} such that y, > a+ Mp, for any n > q.
Let

S={zesSQ: z,=y, for n<q and |z, —¥y,| < Mp, for n>q}.

The set S possesses the fixed point property (as in the proof of Theorem 2).
Ifz€ S and n > g, then =, >y, — Mp, > a+ Mp, — Mp, > a. Hence

(Tpgpr1r Tnapir) € [a,00)* for any z € S, n > q. The rest of the proof is

analogous to the proof of Theorem 1. O

oo oo

COROLLARY 3. If the series Y. na,, . nb, are absolutely convergent, there
n=1 n=1

erists such a € R that the function ‘P|[a,oo)k is uniformly continuous and

bounded, then for any ¢ > 0 and d € R there exists a solution x of (E) for
which £, =cn+d+o(1).

o0
THEOREM 4. If the series Y na, is absolutely convergent, the function

n=1
90|(—oo,a]’”' is uniformly continuous and bounded for some a € R, then for

any solution y of the equation A%y, = b, which diverges to —oo there exists a
solution x of (E) such that

z, =1y, +o(l).

Proof. One can prove this theorem similarly as Theorem 3. O

The following corollary is a consequence of Theorem 4 and Corollary 3.

(oo} (o]
COROLLARY 4. If the series ) na,, Y, nb, are absolutely convergent,
n=1 n=1

a >0, H= (—oco,—a]* U[a,oc0)¥, and the function (p|H 18 absolutely con-
tinuous and bounded, then for any nonzero ¢ € R and any d € R there evists a
solution x of (E) for which x, = cn+d+ o(1).
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[eo]
THEOREM 5. Assume ¢ is bounded, the series ) a, is absolutely convergent,
n=1
a sequence (z,,) is a solution of (E) and s, =b, + by +---+b, for any n € N.
Then:

S

n) is bounded from above, then (z,/n) is bounded from above,

)
n) is bounded from below, then (mn /n) s bounded from below,
) is bounded, then (z,/n) is bounded,

) i

(2) i

(3) if (s

E4; if (8,) is convergent, then (z, /n) is convergent,
5

(6)

n

(
(s
(
(s

if nllm s, = 0o, then nlg{.lo(wn/n) =00

if nll’ngo s, = —00, then nll)ngo(xn/n) = —00

Proof. For n > max{1,-p} let g, = P (Tpypr1r 1 Tngpan)s tn =
91+92+"‘+g".

. o0
The funCthn ¢ is bounded and the serics )" a,, is absolutely convergent, so
n=1
the series E g,, is absolutely convergent. Hence the sequence (t,,) is convergent.
n=1

Since A%z, =g +b, , we obtain

Ar, — Az, = A2z1 + A21:2 + 4+ A2;cn_l =t +S,_ ;- (%)
Hence it follows that if (s,) is bounded from above, then (Az,) is bounded
from above. Assume Az, < M for some M > 0 and any n € N. Then

T _;I;IZA{L‘I—f—A;L‘z +Am7l1\( —I)MSnJ\I

n

Henee (z,,/n) is bounded from above if (s,,) is bounded from above.
Similarly, one can show (2). Assertion (3) follows immediately from (1) and

(2). Now, assume (s,,) is convergent. Then by (x) the sequence (Az,) is also

convergent. If nli_{I;o Az, = c, then "le (Az, /An) = lim Az, = c. Hence by

Stolz theorem ([1; Theorem 1.7.9]), lim ( /n) =c. Slmllarly, if lim s, = oo,
n—00

11— 00
then lim Az, = oo and by Stolz theorem lim (z,/n) = co. Analogously, if
n—o00 n—r60
lim s, = —oo, then hm ( a/n) = —00. O
n—o00
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