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ABSTRACT. Asymptotic properties of solutions of difference equations of the 
form 

A<2xn = AnVK+P+l ' ' * * ' Xn+p+k) + K 
are studied. 

By Z , N, R we denote the set of integers, positive integers and real numbers, 
respectively. Let p G Z , k G N. The asymptotic behavior of solutions of a 
difference equation 

A 2 * n = anAXn+P+V • • • i Xn+p+k) + K > , „ . 

n , f c G N , a n , b n G R , c D : R f c - > R , 

will be investigated. 
The results presented here generalize some results of A. D r o z d o w i c z , 

J . P o p e n d a [2], [3], and J . M i g d a , M. M i g d a [4]. 
By a solution of the equation (E) we mean a sequence x: N -» R for which 

there exists q G N such that the equation (E) is satisfied for all n ^ q. 
The space of all sequences x: N —•> R we denote by SQ. The Banach space 

of all bounded sequences x G SQ with the norm ||x|| = sup{ |x n | : n G N} we 
denote by BS. 

If B C R, then Bk denotes the set B x B x • • • x B C Rk . Similarly, if c G R, 
then ck = (c, c , . . . , c) G Rk . The standard (Euclidean) metric on R^ will be 
denoted by d. We choose a constant A G R such that 

d(t,s) ^ Amax{|£7- — s{\ : i = 1,2, . . . , k] 

for every t= (tx,... ,tk), 5 = ( s t , . . . , sk) eRk . 

If X C R^ , then ip\ Y denotes the restriction of the function ip to tlie set A" 

i.e. ip\x: A" ->• R, (<p|x)W = ^ W for anY * € A\ 

2000 M a t h e m a t i c s Sub j ec t C la s s i f i c a t i on : Primary 39A10. 
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LEMMA. / / the series Y, nan ^s absolutely convergent, rn = Y a
1•• > ̂ ie71 ^ie 

n=l i=n 
oo oo oo 

series Y, rn is absolutely convergent and Y r
n ~ ^2 na

n • 
n = l n = l 7 i= l 

oo 

THEOREM 1. Assume that tp is continuous, and the series Y2 nan is abso-
n=l 

lutely convergent. Then for any bounded solution y of the equation A2Hn = bn 

there exists a solution x of (E) which possesses the asymptotic behavior 

xn = yn + °W-

P r o o f . Assume that y is a bounded solution of the equation A2Hn = bn, 
and Y is the set of values of the sequence y. Choose a number a > 0. Let 

U = {t G Rk : there exists s G Yk such that d(.s, t) < Xa} . 

Since Yk is a bounded subset of Rk , U is bounded, too. Hence the closure U 
is compact. Therefore ip is uniformly continuous and bounded on U. Choose 

oo 

M > 0 such that \ip(t)\ < M for any t G U. Let rn = Y \aj\ for n € N . 
j=n 

oo oo 

From Lemma, it follows that the series Y r
n
 ls convergent. Let pn = Y r

} -*°' 
?? = 1 j n 

n G N. Since lim p = 0 , there exists q ^ max{l, — p} such that Mp < a fo * 
n —•> oo 

any n ^ q. 
Let 

T = {x G BS : xn=0 for n < q and | .zj ^ Mpn for n > q} , 

5 = {x G BS : xn= yn for n < q and |xn - HJ < Mpn for n ^ q} . 

T is a convex and compact subset of the space BS. The mapping F: T —> S 
defined by F(x)(n) = xn + yn is an affme isometry of the set T onto S. Hence 
S is also convex and compact. 

If x G 5 , n ^ max{l, - / ; } , then (H n + p + 1 , . . . ,2/n+p+A.) G Yk and 

^ U ^ n + p + l ' ' * * iXn+p+k)i \2/n+p+l» ' * " ' ^ n + p + A j ] 

^ A m a x { | x n + p + ? ; - 7 / n + p + J : </= 1, 2 , . . ., k} < Aa . 

It means that ( .T n + p + 1 , . . . , x n + + / .) G £7 for every x G 5 and any ?? > 

max{l, -p). Hence |(/?(.x'77+p+1,..., x n + p + / c ) | < M for every x G S and any n ^ 

max{l, -p]. Let x G 5 . For n ^ max{l, - p } let x n = anip{xn+p+l,..., x n + p + J , 
oo 

On =ZiJ-J-П 
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Then \xn\ ^ M|an | . Hence it follows that 

CO CO 

3 = n 3=11 

Since the series Z r • is absolutely convergent, the series ]T g. is absolutely 
j=i 3=1 

convergent, too. Let us define the sequence A(x) as follows 

yn for n<q, 
A(x)(n) - > °° 

yn + E 9j for n^q. 
3=n 

CO CO 

lin^q, then \A(x)(n) - yj = Z 9j ^ Z \9j\- But \g.\ ^ Mry Hence 
j=n j=n 

oo 

\A(x)(n)-yn\^Mj2rj=Mpn. 
J=n 

It means that A(x) e S. Hence ,4(5) C S. 
Let e > 0. Since the function ip is uniformly continuous on U, there exists 

J > 0 such that if ,s,£ G £/ and d(s,t) < XS, then |<p(£) — (/?(«§) | < £. Assume 
x,z € S and ||x — z\\ < 5. If n ^ max{l, —p}, then 

d(\xn+p+li • ' * ' ^ n + p + f c ) ' ( Z n+p+l> • • * '^n+p+A;) / ^ ™ * 

oo 

Let zn = on¥>(«n+p+1,.. •, 2n+P+*) and lin = £ zj for n € N. 
j=n 

Then 

||.4(x)-.4(^11 = sup 
n^7> 

j=n j=n 
E^-E^hE^-^i-

J = P 

But 

and 

Ì9J-ҺJ- E^-E^ME1^-

г = j г=>» «=J 

I*. - 5.1 = kv(*,+p+i> • • -^i+p+k) ~ aMzi+P+v • •, zi+P+k)\ < e\ai\ 

OO 

Hence \gj - hj\ ^ £r-. Therefore, \\A(x) - A(z)\\ ^ X] ^rj = ePq-
3=<1 
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It means that A is continuous. By Schauder theorem there exists x G S such 
CO 

that A(x) = x. Then xn = yn + Yl 9j f° r a l iy n ^ Q- Hence it follows that if 
j = n 

n ^ g, then 
oo oo 

^xn = yn+i+ Yl yi-yn-YJ9j = ^yn-yn-
j=n+\ j — n 

Hence 
CO oo 

A2xn = A2yn-gn+1+yn = bn- £ ^ + XX' 
j=n+\ j=n 

= bn+Xn=an(p(Xn+p+V-'Xn+p+k)+bn for n > <1 • 
OO 

From the convergence of the series ^ g7 -̂  follows that x = y + o(l). D 

OO CO 

COROLLARY 1. If the series Y, na
n> -C n^n

 are absolutely convergent, if 
n=\ n=\ 

is continuous, then for any c G R there exists a solution of (E) which converges 
to c. 

oo 

P r o o f . Let c G R and rn = Y, ̂  f° r n ^ N- From Lemma, it follows that 
i=n 

oo oo 
the series J2 ri ls convergent. Let tn = Y ri a n d yn = c + tn. 

Then tan^ = 0, Atn = ~rn and A% = A(Atn) = A(-rn) = bn. 

Hence A2yn = A2c + A2 ln = bn. 
Therefore, y is a bounded solution of the equation A2yn = bn. From The­

orem 1 it follows that there exists a solution x of (E) such that xn = yn + o(l). 
Obviously, lim xn = c. D 

THEOREM 2. If the function (p is uniformly continuous and bounded arid the 
oo 

series Y nan Z5 absolutely convergent, then for any solution y of the equation 
n=\ 

A2y i = bn there exists a solution x of (E) such that 
Xn =Vn+ 0(1) . 

P r o o f . Assume y is a solution of the equation A2yn = bn. Choose M > 0 
such that |^(t)l < -W f° r any t eRk . Similarly as in the proof of Theorem 1 we 

oo oo 

define rn = E 1^1 and pn = Y,rj- L e t 

j—n j=n 

T={xeBS: \xJ^Mpn, neN}, 

S={xeSQ: \xn - yj < Mpn , neN}. 
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Let us define the mapping F: T -> S by F(x)(n) = xn + yn. Then the formula 
p(x,z) = sup{|xn — zn\ : n G N} defines a metric on the set S such that F 
is an isometry of T onto S. T is a convex and compact subset of the space 
BS. Since S is homeomorphic to T, it follows from Schauder theorem that any 
continuous mapping A: S -> S possesses a fixed point. 

For x G 5 , n ^ m a x { l , - p } , let xn = a n <p(x n + p + 1 , . . . ,xn+p+k), gn = 
oo oo 

£ Xj. and -4(x)(n) = yn + £ 5/ • 
j=n j=n 

The rest of the proof is analogous to the second part of the proof of Theorem 1. 
• 

oo oo 

COROLLARY 2. If the series __ nan, __ nbn are absolutely convergent, (p is 
n = l n = l 

uniformly continuous and bounded, then for any numbers c, d G M there exists a 
solution x of (E) such that 

xn = cn + d + o(l). 

P r o o f . Let c , d G K and r n = ]T b{, un = £ r • and yn = cn + d + un 
i=n i=n 

for n G N. Since A2(cn -f d) = 0, then, similarly as in the proof of Corollary 1, 
one can conclude that y is a solution of the equation A2Hn = bn. The assertion 
holds since un = o(l) and by Theorem 2. • 

EXAMPLE. Let an = -~2, bn = 0 for any n G N and let ip be a constant 
function equal to 1. We will show the equation (E) has no solutions of the form 
xn = yn + 0(1), where yn denotes a solution of the equation A2^ln = bn. Let 

Sn = ax+ a2 + • •• + «„. * = L o. and r n = ^ o.. 
г=l ѓ=n 

Assume xn = 
yn = Ъn + c for 
Since A 2 x n = < 

= yn + o(l) is a solution of (E) and 
some ò, c Є M. It means that xn = 

* „ . «„ = л'2(Ьrг + c + г n ) = Д 2 г „ 

Л 2 Ï / „ = 

òn + c + 
. Let un 

Zn> 

= 0. 
Zn = 

Azn. 

Then 
0(1) . 
Then 

Л «„ = Л Ч г = 
Zn = 0 ( 1 ) , Un = 

«„ 
Дл 

. Hence 
„ = o(l) 

W n = ^ l + ai + * ' * + tti 
. Hence 0 = lim un = ь 

n-юo " 

r г - l = U l 

ҷ + lim 
n—юo 

+ 
5 „-

Sn-1 • 

л = u 

Since 
•1+ s, 

which implies un = — s + sn_1 = —rn. 
n—1 n—1 

Since un = A ^ n , it holds that zn = zx + __] ui = zx — __\ ri, and since 
?:=i i=i 

r i + r 2 + r 3 + " " = a i + ^ a 2 + ^ a 3 + ••* = 1 + 2 "^ 3 "*" " " = o O ) w e obtain 
lim 2 = z, — oo = —oo. 

n->oo n x 

However, this contradicts the hypothesis zn = o(l). 
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THEOREM 3. If the series ]T nan is absolutely convergent and the function 
n=\ 

(p\\a oo)^ Z5 uniformly continuous and bounded for some a G M, then for any 

solution y of the equation A2?/n = bn which diverges to infinity there exists a 

solution x of (E) such that 
Xn = yn + °(1)' 

P r o o f . Assume A2yn = bn and lim yn = oo. Choose M > 0 such that 

|(^(/)| < M for any / G [a, oo)fc. Similarly as in the proof of Theorem 1 we define 
rn and pn. Choose q ^ max{l, -p] such that yn ^ a + Mpx for any n ^ q. 
Let 

S = {x G SQ : rrn = ?yn for n < q and \xn - yn\ ^ Mpn for n^q). 

The set S possesses the fixed point property (as in the proof of Theorem 2). 
If x G S and n ^ g, then xn ^ yn - Mpn ^ a + Mpx - Mpn ^ a. Hence 

( z n + p + 1 , . • • ,*n+p+fc) € l>, oo)fc for a n y * ^ ^^ n ^ ?• T h e r e s t o f t h o P r o o f i s 

analogous to the proof of Theorem 1. • 

oo oo 

COROLLARY 3 . If the series ^2nan, £) nbn are absolutely convergent, there 
n=\ n=\ 

exists such a G K /ha/ /he function </?| ra QQ)/- is uniformly continuous and 
bounded, then for any c > 0 aria7 d G R /here ezzs/s a solution x of (E) /or 
which xn = en + d + o ( l ) . 

oo 

THEOREM 4. I/ /he series ^2 na
n is absolutely convergent, the function 

n=\ 

^.(—oo alfc 25 uniformly continuous and bounded for some a G R, /hen /or 
amy solution y of the equation A2yn = bn Hjhzch diverges to — oo /here exis/s a 
solution x of (E) such /ha/ 

^n=»n + °(1)-

P r o o f . One can prove this theorem similarly as Theorem 3. • 

The following corollary is a consequence of Theorem 4 and Corollary 3. 

oo oo 

COROLLARY 4. If the series ]T n a n , ]T nbn are absolutely convergent, 
n=l n=l 

a > 0, H = (—oo, — a]fc U [a, oo)fc, ana7 /he function f\jj is absolutely (on-
tinuous and bounded, then for any nonzero c G M arid any d G IR /here e.i'/.s/.s a 
solution x of (E) /Or which xft — en + d + O(l). 
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oo 

T H E O R E M 5. Assume tp is bounded, the series __ an is absolutely convergent, 
n = l 

a sequence (xn) is a solution of (E) and sn = bx+b2 + \-bn for any n G N. 
Then: 

(1) */ (sn) is bounded from above, then (xn/n) is bounded from above, 
(2) if (sn) is bounded from below, then (xn/n) is bounded from below, 
(3) if (sn) is bounded, then (xn/n) is bounded, 

(4) */ (sn) is convergent, then (xn/n) is convergent, 
(5) if lim 5 - oo, then lim (x„/n) = oo, 

n->oo n ' n - > o o V n / ' 

(6) if lim 5 = - o o , £b,en lim (x„/n) = - o o . 
n->oo n «-->ooV n ' 1 

P r o o f . For n > m a x { l , - p } let gn = an<p(xn++l,...,xn++k), tn = 
9v+92 + '" + gn. 

. °° 
The function (p is bounded and the series __ an is absolutely convergent, so 

oo n=l 

the series __ gn is absolutely convergent. Hence the sequence (tn) is convergent. 
»=i 

Since A2xn = gn + bn, we obtain 
Axn - Ax, = A2xY + A2x2 + • • • + A2xn_1 = tn_x + sn_1 . (*) 

Hence it follows that if (sn) is bounded from above, then (Axn) is bounded 
from above. Assume Axn ^ M for some M > 0 and any n G N. Then 

xn - xx= Axx + Ax2 H h A x n _ 1 ^ (n - l)M ^ nM. 

Hence (xn/n) is bounded from above if (sn) is bounded from above. 
Similarly, one can show (2). Assertion (3) follows immediately from (1) and 

(2). Now, assume (sn) is convergent. Then by (*) the sequence (Axn) is also 
convergent. If lim Ax„ = c, then lim (Ax /An) = lim Axn = c. Hence by 

^ n->-oo n n - > o o v n ' n ->oo n 

Stolz theorem ([1; Theorem 1.7.9]), lim (xjn) = c. Similarly, if lim 5 = oo, 
n—>oo ' n—>oo 

then lim Ax = oo and by Stolz theorem lim (xJn) = oo. Analogously, if 
n->oo n n - ^ o o v 

lim 5, = - o o , then lim (xjn) = - o o . • 
n->oo n n^oox 
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