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PARTIAL LINE GRAPH OPERATOR AND
HALF-ARC-TRANSITIVE GROUP ACTIONS

DRAGAN MARUSIC* — ROMAN NEDELA**

(Communicated by Martin Skoviera )

ABSTRACT. The concept of the partial line graph operator Pl (and its inverse
operator Al) on graphs of valency 4 with balanced orientation is developed in
order to study transitive permutation groups having a non-self-paired suborbit of
length 2 via the corresponding orbital graphs. If G is such a group and X is the
orbital graph associated with a suborbit of length 2 of G, which is not self-paired,
then X has valency 4 and admits a vertex- and edge- but not arc-transitive action
of G. There is a natural balanced orientation of the edge set of X induced and
preserved by G. An analysis of the properties of this oriented graph is performed,
using operators Pl and Al resulting in some partial results on the point stabilizer
of G (in the case when X is connected). Finally, a graphical realization of such
actions with nonabelian vertex stabilizers is given, that is, an infinite family of
tetravalent graphs admitting a vertex and edge but not arc-transitive action with
vertex stabilizer Dg, the dihedral group of order 8, is constructed.

1. Introduction

Throughout this paper, by a graph we mean an ordered pair (V, E), where
V is a finite nonempty set and E is a symmetric irreflexive relation on V' whose
transitive closure is the universal relation on V. (Graphs are thus assumed to
be finite and connected.) By an oriented graph we mean an ordered pair (V, A4),
where V' is a finite nonempty set and A, the set of arcs, is an asymmetric
relation on V. Furthermore, all groups are assumed to be finite. For a graph X,
let V(X), E(X), A(X) and Aut X denote the respective sets of vertices, edges
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and arcs, and the automorphism group of X. For graph-theoretic and group-
theoretic terms not defined here we refer the reader to [1], [2], [4], [13]. A graph
is said to be vertez-transitive, edge-transitive and arc-transitive, respectively,
if its automorphism group Aut X acts verter-transitively, edge-transitively and
arc-transitively. If a graph X admits a vertex- and edge- but not arc-transitive
action, briefly, a %-arc—transitive group action of a subgroup G of Aut X, we
say that X is (G, %)-are-transitive. In particular, if G = Aut X, then X is
said to be %-arc—transitive. Furthermore, if H is a vertex stabilizer in the above

%-arc-transitive action of G, we say that X is (G, %,

H ) -transitive.

It is the purpose of this paper to develop the concept of the partial line graph
operator Pl and its inverse operator Al on graphs of valency 4 with balanced
orientation in order to study the structure of transitive permutation groups
having a non-self-paired suborbit of length 2 relative to which the corresponding
orbital graph is connected (with the emphasis on their point stabilizers); in
graph-theoretic language, the structure of graphs of valency 4 admitting a -arc-
transitive group action. (We refer the reader to [10], [11], [12], [14] for related
results on point stabilizers of transitive permutation groups having suborbits
of small length, and to [6] for recent research on J-arc-transitive graphs.) The
particular combinatorial point of view adopted here sheds some new light on the
structure of 4-valent graphs admitting such group actions with (large) vertex
stabilizers and explains why it is that graphs of girth 4, in particular certain
Cayley graphs, are the focal point in the above analysis. Theorem 4.1 gives a
necessary condition for a group H to be a vertex stabilizer of a 3 -arc-transitive
action on a 4-valent graph X . Note that H is necessarily a 2-group, say of order
2" we call h the G-height of X . (Further improvements and generalizations of
Theorem 4.1 are obtained in [9].) As one of the by-products, a construction of an
infinite family of %-arc—transitive group actions with point stabilizers isomorphic
to the dihedral group Dy, the smallest nonabelian admissible group, is obtained.

In Section 2 the two paired operators P1 and Al are introduced, enabling us
to associate with each graph of valency 4 admitting a %—arc—transitive action
of height h > 1 of a group G, a particular Cayley graph on G (gcnerated by
two elements). The study of the properties of these Cayley graphs is the content
of Section 3 and provides the machinery needed in the proof of Theorem 4.1 in
Section 4. Finally, an infinite family of tetravalent graphs admitting a %—arc—
transitive group action with nonabelian vertex stabilizer Dy is constructed in

Section 4.
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2. Pl and Al operators on oriented graphs

Let X be an oriented graph. A path P of X is called directed if every vertex
of P of valency 2 is the tail of one and the head of the other of its two incident
arcs. A directed cycle in X is a cycle in which a removal of an arc results in
a directed path. An even length cycle C in X is an alternating cycle if every
other vertex of C is the tail and every other vertex of C is the head of its two
incident arcs. By an edge of an oriented graph we mean an edge of the underlying
undirected graph.

We are now going to introduce two operators on oriented graphs which will
play a crucial role in our study of %-arc-transitive group actions on tetravalent
graphs. Let X = (V, A) be an arbitrary oriented graph. The operator Pl is
defined as follows. Let the partial line graph Y = P1(X) of X be the oriented
graph with vertex set A such that there existsanarcin Y fromz € Atoy € A
in Y if and only if zy is a directed 2-path in X.

If the arc set of Y decomposes into alternating 4-cycles no two of which
intersect in more than one vertex, and if the maximum valency of Y is 4 (and
so every vertex in Y has valency 2 or 4), we may also introduce the inverse
operator Al. Let the vertex set of Al(Y) be the set of alternating cycles (of
length 4) in Y, with two such cycles adjacent in Al(Y) if and only if they
have a common vertex in Y. The orientation of the edges of Al(Y) is inherited
from that of the edges of Y in a natural way. Letting C, and C,, be the two
alternating 4-cycles in Y, corresponding to two adjacent vertices v and w in
Al(Y'), we orient the edge [v,w] in Al(Y) from v to w if and only if the two
arcs in Y with the tail in v € C, N C,, have heads on C, . Observe that
AI(P1(X)) = X for every balanced oriented graph X of valency 4. Moreover,
Pl(Al(Y)) =Y as long as the graph Y has the above assumed properties.

Let us remark that there are instances in this paper when these two operators
arc also applied to (undirected) graphs. This will occur whenever an accompa-
nying oriented graph is (perhaps tacitly) associated with the undirected graph
in question. A typical situation is presented by a tetravalent graph admitting
a %-arc—transitive group action and its two accompanying balanced oriented
graphs, or by a Cayley graph arising from a set of non-involutory generators for
each of which one of the two possible orientation is prescribed.

PROPOSITION 2.1. If X is a balanced oriented 4 -valent graph, then Aut P1(X)
= Aut X . Conversely, let Y be a balanced oriented graph of valency 4 such that

the alternating cycles have length 4, no two intersect in more than one verter,
and they decompose the edge set. Then Aut Al(Y) = AutY .
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Proof. Every automorphism of X permutes the edges of X (that is the
edges of the underlying undirected graph) and thus it can be viewed as a
permutation of the vertices of P1(X). Moreover it maps a directed 2-path
onto a directed 2-path and thus it preserves the adjacency in P1(X). Hence
Aut X < AutPI(X). To see that also the reverse inclusion holds, observe that
every automorphism of P1(X) permutes the alternating 4-cycles of P1(X) which
correspond to vertices of X, preserving, of course, the adjacency of these cycles.
Besides, every automorphism of P1(X) preserves the arcs of P1(X), that is the
directed 2-paths of X, and hence also the arcs of X . Therefore it must be in-
duced by an automorphism of X . Hence AutPl(X) = Aut X. To see that the
second statement of Proposition 2.1 holds, we only need to take into account the
fact that operators Al and Pl are inverses of each other. O

Given a balanced oriented 4-valent graph X, the four arcs incident with
a vertex in X give rise to an alternating 4-cycle C in P1(X), which may be
thought of as the image of that vertex under Pl. As the next step we consider
the second image of that vertex to be the subgraph P1(C) of PI*(X), where
C is the alternating 4-cycle C together with all the incident arcs in P1(X).
To formalize the notion of the nth image of a vertex it is more convenient to
use the Al operator. The nth image of a vertex v € V(X) is the subgraph
U, = U,(v) of PI"(X) for which v = AI"(U,). It is casy to see that for a
fixed n the graph U, is uniquely determined, that is, it does not depend on X
or on the choice of the particular vertex v. An alternative definition of U,, by
means of Pl operator reads as follows. Set U, = K. For a given U, let U,
denote the graph formed by adding two ingoing pendant arcs to each vertex of
U,, with indegree 0 and by adding two outgoing arcs to each vertex of U, with
outdegree 0. Then U, , =PI(U,).

The lemma below establishes some important properties of the graphs U,_,
n € ZT U {0}. By an m-alternating cycle of reduced length | = 2n we mean a
closed walk W in X of the form P1Ql_1P2Q2_1 ...P.Q-1, where P, and Q; are
directed paths of length m. In particular, 1-alternating cycles are precisely the
alternating cycles in X . For a subgraph X' of X let V*(X') denote the set of
all vertices of X' with indegree 0, and similarly, by V= (X') we denote the set
of all vertices of X’ with outdegree 0.

LEMMA 2.2. Let n > 1 be a positive integer. Then the oriented graph U,
satisfies the following properties:

(i) for each j € {0,1,...,n}, U, contains U; as an induced subgraph;
(ii) there are no directed cycles in U, ;
(iii) there are m-alternating cycles in U, of reduced length 4 ;
() [V+(U,)] =2" = [V=(U,)] and |V(U,)| = (n+1)2";
(V) Un - V+(Un) = 2Un—l = Un - V_(Un) .
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Proof. To prove (i) it is sufficient to observe that the graphs U ; appear
in U,, as jth images of vertices of U, _

Next, (ii) follows from the fact that the Al operator produces from a directed
cycle in U, (j =1,...,n) adirected cyclein U,_, . But then, since U, contains
no directed cycles, there are no directed cycles in U, either.

To see that (iii) holds, we use induction on n. The statement is clearly valid
for n = 1. Also it is easy to verify that an n-alternating cycle of reduced length

4 in U, gives rise to a collection of (n-+1)-alternating cycles of reduced length 4
in U

nt1-
To prove (iv), let v(n) = |V(U,))|, v*(n) = |V+(U,)| and v~ (n) = |V~ (U,)|.
Since U, ,, = = P1(U,), the vertices of outdegree 0 in U,.,, correspond to pendant

outgoing arcs in U,,. These arcs originate in V= (U, ) and hence v™(n+1) =

v (n). Conscquently, v=(n) = 2". A similar argument yields vt(n) = 2".
Since U,, = Al(U, +1) the vertices of U,, are in a 1-1 correspondence with the
alternatmg 4-cycles in U, , . Counting the arcs in U, ,, we get

4v(n) = 20" (n+1)+2(v(n+1)—v (n+1)—v~ (n+1)) = 2(v(n+1)—v~ (n+1)).
Taking into account that v=(n + 1) = 2"+ we obtain
v(n+1)=2v(n)+2"*! and v(0)=1.

These two equations determine the function v(n) uniquely. On the other hand,
the function f(n) = 2"(n + 1) satisfies the above recursive equation, and so
v(n) = f(n).
Fmally, we show that U, ,, — F 22U, for F=V~(U,,,). (The case when
= Vt(U,,,) is left to the reader.) We use induction on n. Clearly, the
statemcnt holds true for n = 1. By the induction hypothesis U, — F consists
of two copies of U,_,. The arc set of U, decomposes into two sets formed
by arcs with origins in the two respective copies U:_, (i = 1,2) of U,_,.
Recall that U, ., = PI(U,). Clearly, Ui_, c U, and the arc sets of these two
subgraphs are disjoint. Moreover, every arc in U i, terminates at a vcrtex of
outdegree 2 in U, . Hence the corresponding vertices in U: = PI(U:_,) also
have outdegree 2. Thus U, UUZ C U, ., —V~(U,,,). On the other hand by
Lemma 2. 2(1v),we have [VUD [V UD)] = VU, )|~ IV-(U, )| Therefore
U,UU2=U,,, -V~ (U,,,), completing the proof of Lemma 2.2. O

3. Characterizing %-arc—transitive actions
relative to their height

Concepts peculiar to oriented graphs, such as directed and alternating cycles,
may be extended to graphs admitting %-arc—transitive group actions via the
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orientation of the edge set induced by the corresponding group of automorphisms
in the following way.

A (G, %) -arc-transitive graph X of valency 4, where G < Aut X, gives rise
to two oriented graphs with X as their underlying graph, namely, the two orbital
graphs of the action of G on V(X) relative to two paired orbitals of length 2.
Let D5(X) be one of these two graphs fixed from now on. For u,v € V(X)
we shall say that u is the tail of (u,v), and that v is the head of (u,v) if
(u,v) is an arc in Dg(X). We remark that by the G-orientation of the edges
of X, that is by the orientation induced by the %—arc-transitive action of G,
we shall always mean the corresponding orientation of the edges in D,(X). A
path P in X is a G -directed path if it is a directed path in D4(X). A cycle of
X is a G -directed cycle, and a G -alternating cycle, respectively, provided it is a
directed cycle, and an alternating cycle in Dg(X). When the particular group
G is clear from the context, the symbol G will sometimes be omitted in the
above concepts. It transpires that all G-alternating cycles in X have the same
length and form a decomposition of the edge set of X ([5; Proposition 2.4]); half
of this length is denoted by r4(X) and is called the G -radius of X . Moreover,
any two adjacent G-alternating cycles of X intersect in the same number of
vertices. This number, called the G -attachment number of X, divides 2r,(X)
([5; Proposition 2.6]).

For a group G and a generating set S of G such that 1 ¢ § = S~!, the
Cayley graph Cay(G,S) of G relative to S has vertex set G and edges of the
form [g,9s], g € G, s € S. Note that the group G acts on Cay(G,S) by
left regular action as a regular subgroup of Aut Cay(G,S). In this context we
will throughout this paper always identify G and any of its subgroups with its
left regular action. The accompanied right translation of any subgroup H of G
on itself will be denoted by H*. Let S = {a,a™1,b,b671}, where a and b are
non-involutory elements of G. Let Cay(G;a,b) denote the (undirected) graph
Cay(@G, S) together with the implicit orientation inherited from the oriented
Cayley graph Cay(G, {a,b}).

Let X be a graph together with an inherited orientation given via an oriented
graph X', whose underlying graph it is. Then let the partial line graph Y =
P1(X) of X be the underlying graph of P1(X'). In a similar fashion, also the
operator Al may be extended to graphs possessing an implicit orientation of
their edge sets. Again, these two operators are inverses of each other also for
graphs.

PROPOSITION 3.1. Let X, Y be graphs of valency 4. Then
(1) If X is (G, %,H) -arc-transitive for some H < G < Aut X and |H| > 2,
then P1(X) is (G, %,K) -arc-transitive with G -rgdius 2 for some K < H
of index 2 in H. Conversely, if Y is (G, 1 K) -arc-transitive with
G -radius 2 and @ -attachment number 1 for250m6 K < G < AutY
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such that |K| > 2, then X = AlY) is (G, 3, H)-arc-transitive for

some H < G such that [H : K] =2 and thus |H| > 2.

(i) If X s (G, 2,Z ) -arc-transitive for some nonabelian subgroup G <
Aut X, then there ezxist non-involutory generators a and b of G such
that (ab=1)? = 1 and PI(X) = Cay(G’ a,b). Conversely, if Y is such a
Cayley graph, then AI(Y') is (G, 2,Z ) -arc-transitive.

Proof. To prove the first part of (i) assume that X is (G, 1, H)-arc-
transitive with H < G < Aut X and |H| > 2. It follows from Proposition 2.1
that G is a subgroup of the automorphism group of ¥ = PI(X) and that it
preserves the orientation of Y induced by X . Since G acts transitively on edges
of X, it acts transitively on vertices of Y. Let zy and zz be two directed
2-paths in X with the arc £ in common. To see that G acts transitively on
cdges of Y it is sufficient to realize that the assumption |[H| > 2 implies the
existence of an element of G fixing the arc = and interchanging the arcs y and
z in X . Since Y has twice as many vertices as X, it follows that [H : K] = 2,
where K is a vertex stabilizer in the action of G on Y.

To prove the second part of (i) assume that Y = PI(X) is (G, }, K)-arc-
transitive for some K < G < AutY. It follows from Proposition 2.1 that G <
Aut X and that G preserves the G-orientation of the edges of X induced by Y.
Since G acts transitively on G-alternating 4-cycles and vertices of Y, it acts
transitively on vertices and edges of X, respectively. Thus X is (G, 3)-arc-
transitive. Since X has half the number of vertices of Y, a vertex stabilizer of
the action of G must have twice as many elements as K.

To prove the first part of (ii), we conclude as in (i) that G actson Y = P1(X)
as a group of automorphisms and preserves the orientation of the edges in Y
induced by X . Since G acts transitively on edges of X, the action of G on Y
is transitive on vertices. Since Y has twice as many vertices as X and since
the stabilizer of the action on X is isomorphic to Z,, we conclude that G acts
regularly on the set of vertices of Y, and so Y is a Cayley graph of G. Let
zy and zz be two directed 2-paths in X. The %-arc—transitivity implies the
cxistence of automorphisms a, b mapping the arc x onto y and z, respectively.
Clearly, both a and b are non-involutory. Thus Y = Cay(G;a, b) . Besides, ab™!
fixes the head of z. Hence, (ab™1)2 = 1.

To prove the converse statement, let Y = Cay(G;a,b) satisfy the assump-
tions. The relation (ab~!)? = 1 gives rise to a decomposition of the set of
cdges into G-alternating 4-cycles. Moreover, the existence of two G-alternating
4-cycles in Y intersccting in two vertices forces G to be abelian, contradicting
the assumption. Thus X = Al(Y) is well defined. As above we deduce that G
acts on X as an orientation preserving group of automorphisms. Since the action
of G on Y is transitive on G-alternating 4-cycles and on vertices, the action
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on X is transitive on vertices and edges of X, in other words, X is (G, %)—arc—
transitive. Since X has half the number of vertices of Y, it follows that a vertex
stabilizer of the action of G on X is isomorphic to Z,. O

The above result shows that 4-valent graphs of radius 2, and more generally
of girth 4, are of crucial importance for the understanding of }-arc-transitive
group actions. These graphs were extensively studied in [8], where it was proved
that, apart from a few exceptional families, such graphs have either only alter-
nating 4-cycles or only directed 4-cycles. In the latter case the height of the
action must be 1. We say that a (G, %)-arc—transitive graph with G-radius 2 is
G -genuine if every 4-cycle in X is a G-alternating 4-cycle. It may be scen that
the operator Pl preserves genuinity whereas by performing the operator Al no
4-cycle which is not alternating is created, thus preserving genuinity as long as
the radius is still 2 (see also [8; Theorem 4.1]).

By making an additional assumption on the genuinity of the graphs in ques-
tion, it is possible to say how the full automorphism group of a graph behaves
with respect to the operator Al.

PROPOSITION 3.2. LetY be a graph of valency 4, let X = Al(Y), and let G
be the largest subgroup of Aut X such that X is (G, 1)-arc-transitive and Y is
G -genuine. Then Aut X > AutY . Moreover, if the G-radius of X is 2, then
either

(i) AwtX =G =AutY and X and Y are }-arc-transitive;
or
(i) At X = AutY, [AwtX : G] =2 and X and Y are arc-transitive.

Proof. By the genuinity of Y, every 4-cyclein Y is G-alternating. There-
fore every automorphism of Y permutes the set of G-alternating 4-cycles and
preserves their adjacency. Hence every automorphism of Y can be seen as a
permutation of the vertex set of X, preserving adjacency of vertices. Therefore
it is an automorphism of X . So Aut X > AutY.

Assume now that the G-radius of X is 2. By the comments preceding the
statement of this proposition, a 4-cycle in X is necessarily G-alternating. We
now prove the equality Aut X = AutY . First, since the G-alternating 4-cycles
in X decompose the edge set of X, an automorphism o of X induces a permu-
tation of the set of these cycles which cither preserves or reverses the oricntation
of all the edges on a given cycle. Moreover, the behaviour of a on two adjacent
G-alternating 4-cycles in X is uniform, that is, the orientation is either pre-
served or reversed by a. We conclude that a either preserves the G-orientation
in X or it reverses this orientation. But then a maps a directed 2-path into a
directed 2-path in X, implying that the action of a on Y preserves adjacency
in Y, and so @ € AutY . Thus Aut X < AutY and then the equality holds.
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Now assume that G # Aut X. Then there must exist an automorphism -~
of X which reverses the G-orientation in X. Obviously, v € G. It follows
from the above discussion that Aut X = (G,v). Hence [Aut X : G] = 2, and
morcover, X is arc-transitive in this case. O

Note that the above result is quite useful when one wants to construct %-a,rc-
transitive graphs of valency 4 with large vertex stabilizer (see [7]).

Let X be the Cayley graph X = Cay(G;a,b) of a group G generated by
two non-involutory generators a and b. We say that X satisfies the property
Cyc(h) for some integer h > 1 if a system of h irreducible relations of the form
fl’iU[]ViI/Vi‘l =1,1=12,...,h, is satisfied in G, where T}, U;, V;, W, are
words of length ¢ consisting of letters a and b, but not containing their inverses
a”! and b71.

It is casily seen that the lexicographic products C,[K%], n > 3, are the only
4-valent graphs admitting a 3 -arc-transitive group action with respect to which
the radius and the attachment number both equal 2. Thus the condition on the
G-attachment number in Proposition 3.1(i) can be replaced by the condition
Y 2 C, [K5], n > 3. In view of this fact any graph of the form Pl (Cn[Kz]) ,
where n > 3 and 0 <j <n —1, will be called degenerate.

THEOREM 3.3.

(i) Let X be a (G, %)-arc—tmnsitive 4 -valent graph with G -height h > 1 for
some subgroup G < Aut X. Then there exist non-involutory generators a and b
of G such that P1"(X) = Cay(G;a,b) and PI*(X) contains U, as an induced
subgraph, and in particular, PI*(X) satisfies the property Cyc(h).

(ii) Conversely, let G be a group generated by two non-involutory elements
a and b such that Y = Cay(G;a,b) is not degenerate and contains U, as an
induced subgraph for some positive integer h. Then A1*(Y) is a (G, 1)-arc-
transitive graph of G -height h.

Proof. To prove (i) we first apply the operator Pl on the graph X succes-
sively h—1 times. By Proposition 3.1(i), the graph PI*~!(X) is (G, 3, Z,)-arc-
transitive. By Proposition 3.1(ii), there exist non-involutory generators a and
b of G such that the graph Y = Plh(X ) is isomorphic to the Cayley graph
Cay(G; a,b). Moreover, Y (being equal to P1*(X)) contains an nth image of
every vertex of X . Finally, Lemma 2.2(iii) implies that the condition Cyc(h) is
satisfied in Y.

We now prove (ii). Since Y contains U, as an induced subgraph for some
h > 1, its edge set decomposes into G-alternating 4-cycles. Since Y is not
degenerate, Proposition 3.1(ii) implies that Al(Y) is a (G, §,Z,) -arc-transitive
graph. Since Al(Y’) contains U,_, as an induced subgraph and is not degenerate,
we can repeat the procedure provided h > 1. Using Proposition 3.1(i) at each
step we derive that Al*(Y) is (G, 1)-arc-transitive of height h. a
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Let us discuss the degenerate graphs in more detail. The graph X . = C,[K5],
n > 3, may be thought of as being formed from a cycle C of length n by
replacing each vertex v of C' by two vertices v, and v; and joining u; to
v; by an edge if and only if the vertices v and v are adjacent in C. If we
choose one of the two directed orientations of C, then this orientation induces
an orientation of X in the obvious way. Clearly, the stabilizer of a vertex u in
X, contains all the transpositions 7, = (vy,v,), where v # u. Moreover, these
transpositions preserve the prescribed orientation and they generate a group
H = ({r, : v € V(C)—u}) isomorphic to Z37'. Furthermore, there exists a
rotary automorphism p of X,, mapping every vertex to one of its two successors.
Now, it is easy to realize that X is a (Gn, ;—,Z';_l)-arc—transitive graph. By
Proposition 3.1, the graph PV (X,) is (G, 3,25 7" 77)-arc-transitive for 0 <
Jj £ n—2. The automorphisms in G, can be identified with the elements of the
semidirect product H,, = Z} X Z,,. It may be checked that H,, can be generated
by two non-involutory clements a and b satisfying the relations (aib=%)? =1
for i =1,...,n — 1. Indeed, if we set a = (¢;,1) and b = (e,,1), where ¢, is
the image of €, under the action of 1 € Z,, on Z%, then a direct computation
yields the required relations. Set Y = Cay(H,;a,b). By Proposition 3.1, the
graph Z = Alj(Y), je{1,...,n—1},is a (Hn, %,Z%) -arc-transitive graph. In
fact, one can prove that Z is isomorphic to PI"~!~7 (X,)-

We may now give a characterization of %-arc-transitive group actions of
height h € {1,2,3}.

COROLLARY 3.4. Let X be a (G, )-arc-transitive graph of height 1 < h

< 3. Then there exist non-involutory generators a and b such that P1*(X)
Cay(G;a,b) and a, b satisfy the following relations:
(i) ab lab™'=1ifh=1;
(i) ablab™! =a’v2a?2 =1 if h=2;
(iii) ab~lab™! =a?b2a?b 2 =a*h 3?3 =1
or
ab lab™! = a?b72a?b" 2 = a®*b 3’ la" b7 =1 if h=3.

Proof. In view of Theorem 3.3(i) it is sufficient to prove that if the Cayley
graph Y = Cay(G;a,b), where a and b are non-involutory generators of G,
contains U, , h € {1,2,3}, as a subgraph, then a and b satisfy relations (i), (ii)
and (iii). The case A = 1 is trivial. To prove the cases h = 2 and h = 3, we
inspect all possible assignments of arcs of the graphs U, and U, by elements
a and b. Taking into account that every G-alternating 4-cycle can be colored
by ¢ and b in a unique way (up to interchanging a with b), and using the
automorphisms of U, and U,, we get a unique coloring of U,, and two colorings
of U, (see Figure 1). The relations can be now derived from the colored graphs.

O
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FIGURE 1. Two colorings of U; and the associated Cayley graphs — the edges
are oriented from “left” to “right”.

4. On the vertex stabilizer

The theorem below gives a necessary condition for a group to be a vertex
stabilizer of a }-arc-transitive action on a connected 4-valent graph.

THEOREM 4.1. Let G be a group acting %-arc-tmnsitively on a 4-valent graph
X with vertex stabilizer H. Then there exists an integer h > 1 such that

(i) H is generated by h involutions 7y,...,7,;
(i) for each i € {0,...,h — 1} and each j € {1,...,h — i}, the subgroup
(Tiy1r- -+ Tiy;) has order 27 ;
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(iii) for any i € {0,...,h =1}, k € {0,...,4} and j € {1,...,h — i}, the
subgroups <Ti+1""’Ti+j) and (Tk+1""’Tk+j> are isomorphic.

Proof. Clearly, due to }-arc-transitivity, H is a 2-group, say of order 2"
for some integer h > 1. By Theorem 3. 3(1) there exist non-involutory generators
a and b of G such that the graph P1"(X) is isomorphic to the Cayley graph
Cay(G, a,b). In what follows, we shall restrict our analysis to a copy of U,
arising as an hth image of a given vertex v in X such that H = G,,. Apart
from the oriented structure in U, we also have a coloring of its arcs induced by
the two generators a and b. The respective colors will be called red and blue.

Since H = G, it follows that H fixes U, setwise. In view of Lemma 2.2 (ii),
every monochromatic connected component in U, is a (directed) path joining a
vertex in V+ = V*(U,) with a vertexin V~ =V~ (U,,). Let B and R denote
the respective sets of all such blue and red paths. Clearly, H permutes elements
of B as well as those of R. Since H is a subgroup of the group G acting
regularly on Plh (X), the action of H on each of these two sets is semiregular.
But |H| = 2" = [V*| = |B| = |R|, and so both of these actions are regular. We
may think of the vertices of U,, as arranged in a (2", A+ 1)-array with the rows
corresponding to the 2" blue paths and the A+ 1 columns C;, i =0,1,...,A,
consisting of all the vertices at distance i along directed monochromatic paths
from the set C, = V*. Clearly, the sets C; are precisely the orbits of H on
V(U,). We will now study the regular action of H on B (rows of the array)
in detail. In order to do that, we define an associated graph Y as follows. The
vertex set of Y is B with two blue paths in B being adjacent in Y if and
only if there exists a red arc in U, joining them in U, . Note that if z is a
red arc joining a blue path P to a blue path @, then there exists a unique red
arc y joining @ to P. The corresponding four vertices form a G-alternating
4-cycle in U,,. (Clearly, on each G-alternating 4-cycle the colors alternate too,
see Figure 2 for h = 3.) Thus each edge in Y is associated with a pair of red arcs
whose heads are in the same column C; for some i € {1,2,...,h}. We may thus
define a coloring of the edge set of Y by assigning color i € {1,2,...,h} to all
of the edges in Y arising from pairs of red arcs with heads in C;. Clearly, each
vertex of Y is incident with an edge of each color, thus giving rise to an edge
decomposition of Y. Recall that the group H is regular on the vertex set of Y.
Besides, it preserves G-alternating 4-cycles in U}, and so it preserves adjacency
of vertices in Y. Moreover, since the columns C; are orbits of the action of H
on U,, colors of the edges in Y are also preserved by H. In fact, the orbits of
the action of H on E(Y) are precisely the color classes. Note that since U, is
connected, the graph Y is connected too. It follows that Y is a Cayley graph
of a group isomorphic to H, with respect to the generators 7;, ¢ € {1,...,h},
given by the coloring of the edges of Y. More precisely, T, u) =w if and only
if {u,w] is an edge in Y colored by 4. In particular, all of these generators are
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distinct involutions because, if 7, = 7; for some i < j, then by the definition
of 7, and 7; we have the identity ab’—* = b"~*a. However, this is impossible
because the existence of U, in PI"(X) = Cay(G; a, b) implies, by Lemma 2.2(v),
that all the words in @ and b (not containing their inverses) of length at most
h are distinct. This proves (i).

The proof of (ii) is now easily at hand. Applying Lemma 2.2(v) it may be seen
that a removal of the column C, from U, gives rise to two copies of U, _; . In the
graph Y this operation corresponds to the removal of all the edges colored with
color h, yiclding two connected components. Thus there must exist a subgroup
of index 2 in H which is generated by elements 7,,...,7,_, . This subgroup acts
regularly on each of the two copies of U,_; above. By repeating this operation
h— (i + ) times, we get |(y,...7;; ;)| = 29, Let us consider a connectivity
component Z of U, —{C; 141, C,}, that is the graph obtained from U, by a
removal of the columns C; ;. 1, -+ Gy - Note that Z is isomorphic to U, ;. Now
let Y’ be the subgraph of Y corresponding to Z. It follows that the subgroup
(Ty5--+,7T;4;) acts regularly on Y'. Applying Lemma 2.2(v) we again have that
U;4j — O, consists of two copies of U;,;_;. In Y’ the corresponding operation
consists of removing all edges colored with color 1. Consequently, Y’ splits into
isomorphic connectivity components. By repeating this operation i times, we
obtain [(7;4,..., Ty )| =27,

Finally, to prove (iii), let us denote by Hi,j and by H, ; the respective
subgroups (7;,;,--.,7;,;) and (Tk417+++» Try;) and prove that H, . = H, ..
Note that Lemma 2.2(v) implies

o~ oh—j
Up —{Ch,--1C:Ciy i1+ Cp} 22V,
gUh—{Cl,...,Ck,CkHH,...,Ch}.

Let us choose connectivity components U]’- cv,-{c,...,C;, Ci+j+1, 0 G}
and U} C U, — {Cy,-,Cy Cyijrs--+1Cr}- Then U; and Uj are jth images
of vertices u' and " of the (G, 3)-arc-transitive graph AV (P1"*(X)). As above
we derive that the groups Hm- and H k,; act regularly on the first columns U, J’
and U, respectively. Thus H ,=G,=G,.=H k,j» completing the proof of
Theorem 4.1. O

In view of Theorem 4.1 let us now revise the case of height h € {1,2,3}
discussed in Corollary 3.4. Clearly, Z, and Z, x Z, are the only groups satisfying
conditions (i) and (ii) in Theorem 4.1 for A = 1 and h = 2, respectively. Let
h = 3.1If G, is abelian, then clearly G, = Z3. If G, is not abelian, then, by [3;
p. 134], it is either dihedral or the group of quaternions. However, Theorem 4.1
excludes the latter possibility, because the group of quaternions does not contain
three involutions. On the other hand, condition (ii) is satisfied for 7, = (1, 3),
7, = (1,3)(2,4) and 75 = (1,2)(3,4). Thus the group (7, 7,,73) = Dy satisfies
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the assumptions of Theorem 4.1. We conclude that either G, = Z3 or G, = Dy.
The comments below and the construction given in Section 5 show that both
possibilities do occur. To summarize, we have the following corollary.

COROLLARY 4.2. Let X be a (G, —;—) -arc-transitive graph for some G <
Aut X of G-height h € {1,2,3} and let v € V(X). Then G, = Z, if h =1,
G,=Z%ifh=2,and G, 2Z3 or G, = Dy if h=3.

We remark that }-arc-transitive group actions with abelian stabilizers are
completely characterized in [9]. It is proved there that, given two abstract groups
H < G, where H is abelian, there exists a 4-valent (G, %,H) -arc-transitive
graph X if and only if there exist a,b € G and an integer h > 1 such that the
following conditions are satisfied

(G) G=(a,b),

(i) o; = a~* is an involution for i =1,...,h,

(jij) H =(0y,...,04) is not a normal subgroup of G.

Note that in particular, H must be elementary abelian. Using the above
result we can construct infinite families of %—a.rc-ttansitive group actions on fi-
nite 4-valent graphs with vertex stabilizers isomorphic to an elementary abelian
group of arbitrarily large order (see [9]). Moreover 3-arc-transitive 4-valent
graphs with elementary abelian stabilizers of arbitrarily large height are con-
structed in [7].

5. An infinite family with nonabelian stabilizer Dy

The aim of this section is to construct an infinite family of (G, %, Ds) -arc-
transitive graphs. The construction is based on Theorem 3.3(i), which reduces
the problem to the task of constructing two non-involutory group elements a
and b satisfying an appropriate set of relations. More precisely, for every n =0
(mod 3) we shall construct a group G,, generated by two non-involutory ele-

ments ¢ and b satisfying identities
(@)2=1, (@ =1, @%b r=1. (1)

The elements a and b are chosen in such a way that Y, = Cay(G,;a,b)
contains a copy of U,. By Theorem 3.3 (ii) we then have that the graph X =
AB(Y,) is (G, 3)-arc-transitive with G-height 3. Combining together Corol-
lary 3.4 and the comments at the end of the previous section we have that the
stabilizer in G, of a vertex of X is isomorphic to Dy.

Let us now dcfine the two elements a and b which generate the group G .
We do this by representing them as permutations acting on the set Zg X Z
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where n = 0 (mod 3) in the following way:
(i,9)° = (f;@),5+1) and (i,5)° = (g;G),i+1), i€Zg, jEZL,,
where the functions f;(i) and g,(¢) are defined in Tables 1 and 2 below.

Table 1. The function f;(i).

£; (@) i=0|i=1|1=2|41=3|i=4|i=5]i=6|i=7
j =0 (mod 3) 0 5 2 3 4 1 6 7
j=1(mod3) | o 1 2 3 6 5 4 7
j=2 mod3 0 1 3 2 4 5 6 7

Table 2. The function g, (7).

9;(%) i=0]|i1=1|i=2|1=3|4=4|1i=5]1=6|:i=7
;=0 (mod3) | 4 1 6 7 0 5 2 3
i=1 (mod3) | 2 3 0 1 4 7 6 5
j=2 (mod3) | 1 0 2 3 5 4 7 6

Since (i,7)® = (5,5 + 3)* and (i,5)® = (4,7 + 3)°, in order to prove that
the identities (1) hold true, it is sufficient to verify that the permutations a =
(ab~1)2, B = (a®072)?, and v = a®b~3a3b"1a"1b~! fix each of the 24 ordered
pairs (i,5), i € Zg and j € Z,. Indeed, this is the case and therefore the group
G,, satisfies the required properties.

Let us remark that the above definition of the elements a and b as permuta-
tions on Zgx Z,, comes from an appropriate coloring of arcs of the oriented graph
U, (see Figure 2). Define a (colored and oriented) base graph B, with vertex
set Zg x Z,, and with arcs joining (i, j) to (fj(i),j + 1) and to (gj(i),j +1).
In other words the graph B, is obtained by consecutive glueing of % copies of
U, colored as in Figure 2. It may be seen that the Cayley graph Y covers B,
in such a way that the coloring is preserved. To prove that U, is a subgraph of
Y, , it suffices to show that an arbitrary copy of U; in B, lifts to disjoint unions
of U; in Y, . We omit the details.
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FIGURE 2. The coloring of U, defining the group G3 = (a,b : (ab™1)? =
(a?072) = a3b73adb" a1 = 11,...).

The smallest group G, in the above family is generated by the following two
permutations

a = (00,01,02)(10, 51,52, 50,11, 12)(20, 21, 22, 30, 31, 32) (40, 41, 62, 60, 61, 42) (70, 71, 72),

b = (00,41,42, 50, 51,72, 60,21, 02, 10, 11, 32, 30, 71, 52, 40, 01, 22, 20, 61, 62, 70, 31, 12) ,
where (i, j) is identified with ¢j for all (i,5) € Zgx Z4. The group G, has 1008
elements and hence the associated 4-valent (Gs,%,Ds)-arc-transitive graph
A(Y,) has 126 vertices.
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