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(Communicated by Michal Zajac ) 

ABSTRACT. In this paper we investigate the determinantal representation of 
{1 ,2} , {1 ,2 ,3} and {1 ,2 ,4} inverses, introduced in the papers [STANIMIRO­
VIC, P.—STANKOVIC, M.: Determinantal representation of weighted Moore-
Penrose inverse, Mat. Vesnik 46 (1994), 41-50] ([19]), [STANIMIROVIC, P.— 
STANKOVIC, M.: Generalized algebraic complement and Moore-Penrose in­
verse, Filomat 8 (1994), 57-64], [STANIMIROVIC, P.: General determinan­
tal representation of pseudoinverses and its computation, Rev. Acad. Cienc. 
Zaragoza (2) 50 (1995), 41-49] in the light of the recent papers [MIAO, J.: Re­
flexive generalized inverses and their minors, Linear and Multilinear Algebra 35 
(1993), 153-163], [PRASAD, K. M.: Generalized inverses of matrices over com­
mutative ring, Linear Algebra Appl. 2 1 1 (1994), 35-53]. We generalize results of 
[19], and prove tha t the determinantal representation developed in [19] is neces­
sary and sufficient for a matr ix to be a {1,2} inverse. Furthermore, we develop 
determinantal representation of the solution of a system of linear equations, based 
on the representation of {1,2} inverses introduced. 

1. Introduction 

Let C m x n be the set of m x n complex matrices, let Cn be the set of 
n-dimensional complex vectors, and let C m x n = {X G C m X n : rank(K) = r } . 
The adjoint matrix of a square matrix B is denoted by adj(B), and its deter­
minant by \B\. The conjugate, transposed and conjugate-transposed matrices 
of A are denoted by A, AT and A* , respectively. We denote the unit matrix of 
order k by Ik . The minor of A G C m X n containing rows a11..., at and columns 

j3A,...,(5t is denoted by A ( g1 ' nl j = \A%\, and its algebraic complement is 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 15A09, 65F05. 
K e y w o r d s : determinantal representation, Moore-Penrose inverse, group inverse, reflexive 
o-inverse, linear systems. 
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defined by 

A ( OLi ... a p _ i i a p + 1 . . . at \ _ (_-\\p+q A ( a i "• a P ~ - a P+- ••• a t \ 
Aij \fii ... /J,_i j /3g+i .- fit) -{ L> A\fii - 0«-i 0*+i - fit ) ' 

We use the notation Cr(A) to denote the r th compound matrix of A G C™x n , 
whose rows are indexed by r-element combinations a of the set { 1 , . . . , m}, and 
whose columns are indexed by r-element subsets (3 of the set { 1 , . . . , n } , and 
we denote the general (a,/?) entry by |-42|. 

We denote by A(i -» z), i G { l , . . . , n } , the matrix obtained from A by 
replacing its i th column by the vector z. 

Consider the following Penrose equations in X: 

AXA = A, (1) 

XAX = X, (2) 

(AX)* = AX, (3) 

(XAy = XA (4) 

and the following equation, applicable to square matrices: 

AX = XA. (5) 
The set of matrices obeying the conditions contained in a sequence S of 

{1,2,3,4,5} is denoted by A{S}. A matrix from A{S} is called an <S-inverse 
of A, and it is denoted by A^. In particular, for any A G C m X n , the Moore-
Penrose inverse of A, denoted by _4.t is the unique {1,2,3,4} inverse of A 
([12]). In the case m = n, the group inverse of A, denoted by A#, is the unique 
{1,2,5} inverse ([7]). 

In [1] A r g h i r i a d e and D r a g o m i r tried to use the method of determi-
nantal inversion in order to get the determinantal representation of the Moore-
Penrose inverse of a full rank matrix. In [8], the determinantal representation 
of the Moore-Penrose inverse of an arbitrary matrix is obtained. The proof is 
improved in [9]. In [20], we develop an elegant proof, based on a full-rank fac­
torization A = PQ. More precisely, we use A^ = Q^P^ and the well-known 
results for full rank matrices. In [2], the determinantal representation of the 
Moore-Penrose inverse over an integral domain is investigated. 

THEOREM 1.1. The element lying on the i-row and j-column of the Moore-

Penrose inverse A^ = (ajj) of a given matrix A G Cr
TlXn can be represented in 

terms of minors of A as follows: 

E -T (oci . . . i . . . a r \ A ( a i . . . i . . . a r \ 

^{fii ... j ... fir ) AJi \fii -.j .- fir) 
l<fii<--<fir<n 

\ _ l < a i < - < Q r < m /-, -. \ 
aa - y AQ1-]') A(I1-]') ' 

/ v V di . . . 0r J \ Ol . . . 0r ) 

l<61<...<5r<n 

l < 7 l < " - < 7 r < m 
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The determinantal representation of the group inverse is introduced in [21] 
for complex matrices, and in [12] for matrices over an integral domain. 

T H E O R E M 1.2. The group inverse A* = (afA of A G C n X n exists if and 

onh if zC -4 ( 7i 7̂  ) 7̂  0; and possesses the following determinantal 
i < 7 i < - - - < 7 r < n * 

representation: 

E AT ( oci ... j ... a r \ A ( ai ... j ... ar\ 
* \fii ... i ... j3r) *ji \0i ... i ... (3r) 

l<ai<-<ar<n 

a# = i<^<-</»-<" r i 2 ) 

£ ^(i:::: I; MG::::!;) ' l o 

l<7i<---<7r<n 
l<6i<--<5r<n 

The determinantal representation of the weighted Moore-Penrose inverse is 
studied in [19] for complex matrices, and in [14] for matrices over an integral 
domain. 

THEOREM 1.3. The weighted Moore-Penrose inverse A^M^N of A G C m x n 

possesses the following determinantal representation: 

£ ™ (;:::: i ZZ)AJÍ{2ZÁZZ) 
\<a\<---<ar<m 

( "•*!«- £ MAN (j;;;;];) A (];;;;£) ' (L3) 

l<7!<..-<7r<m 
l<5i<---<6r<n 

In [19] we discover the general determinantal representation for {1,2} in­
verses of complex matrices. The qualitative improvement is ensured by using 
the minors of two arbitrary matrices, as well as the minors of the given matrix: 

THEOREM 1.4. Let A = PQ be a full-rank factorization of A G C^Xn and 
let Wx G C n x r , W2 eCrXm be matrices such that 

rank(QW1) = rank(Q), rank(W2P) = rank(P) . 

The element lying on the ith row and jth column of A^1^ = (a\-' M is given 

by 

£ (Wt;:!:!)-^::!:;) 
a 

l<ß!<'--<ßr<П 
(1,2) _ l<ai<--<a г <m 

гj 

£ MZzrjWxWďCslzZ) 
l<61<---<6r<n 
l<7i<---<7r<m 

(1.4) 
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In [21] we define the algebraic complement of order t < rank(yl) and the 
general determinantal representation of order t. In this way, in the case t = r , 
we obtain the determinantal representation for all of the generalized inverses 
mentioned above. Moreover, in [21] we investigate the implementation of the 
determinantal representation introduced in the programming language C. 

THEOREM 1.5. The determinantal representation of the order t of a given 
matrix A G C m X n is given by 

E p / Q I ... j ... a t \ i (CLI .. j .. OLt \ 
11 \pi ... i ... foj^ji V 0i - i ••• Pt J 

(1.5) 

l < a i < - "<ott<m 
l<ßi<---<ßt<n 

E B(Î; : : : . ; )Л(І: :::!;) 
l < 7 1 < - . . < 7 t < m 
l<61<---<6t<n 

where rank(P) = r and 1 < t < rank(A) is the largest integer for which the 
denominator in (1.5) is different from zero. 

In the case R = {WXW2)*, where the matrices Wx G C n X r and W2 G C r X m 

satisfy rank(QVV1) = rank(Q), rank(TV2P) = rank(P), Theorem 1.5. reduces to 
Theorem 1.4. Representation (1.5) is applicable in the case when the rank of the 
given matrix is unknown. In this case, we start computation with t = min{m, n } , 
and the rank of given matrix is determined during the computation. 

For the sake of completeness, we restate the general forms of {i, j , k) inverses, 
the Moore-Penrose and the group inverse. 

THEOREM 1.6. If A G C m X n has a full-rank factorization A = PQ, P G 
C m x r , Q G q : x n

; and W1 G C n X r

; W2 G C r X m are matrices such that 
rank(QIV1) = rank(Q) ; rank(IV 2P) = r a n k ( P ) ; then: 

At = Q t p t = g * ( Q Q * ) - 1 ( P * P ) " 1 P * ([3]); 

the general solution of (I), (2) is W1{QW1)-1{W2P)~1W2 ([16], [18])/ 

the general solution of (I), (2), (3) is W 1 ( Q T V 1 ) - 1 ( P * P ) " 1 P * ([16]); 

the general solution of (I), (2). (4) is Q*(QQ*)~l(W2P)~lW2 ([16]); 

A# exists if and only if QP is invertible, and A# = P(QP)~2Q ([6]). 

We now describe the main results of the paper. In the second section wre 
investigate, in detail, the determinantal representation of {1,2} inverses of a 
rectangular matrix, as well as the conditions for its existence. Using M i a o ' s 
results [11] we generalize the result of Theorem 1.4. More precisely, we prove that 
the determinantal representation (1.4) is necessary and sufficient for a matrix 
to be a {1, 2} inverse of A. The determinantal representations of {1, 2, 3} and 
{1,2,4} inverses are derived from Theorem 1.4. Moreover, the Moore-Penrose, 
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weighted Moore-Penrose inverse and the group inverse can be obtained as special 
cases of the class of {1,2} inverses, according to Theorem 1.6. 

In the third section, we point out several characteristic definitions of determi­
nants of rectangular matrices and corresponding {1, 2} inverses, as special cases 
of Theorem 1.4. 

Finally, in the last section, for a given system of linear equations Ax = z, we 
represent the elements of A^^z as ratios of sums of determinants. In this way, 
we develop and investigate the determinantal representation of the solution of a 
system of linear equations, derived in terms of the determinantal representation 
of {1,2} inverses. The well-known representation of the Moore-Penrose solution 
_4tz can be derived in a certain case. 

2. Determinantal representations of {i,j, k} inverses 

In the following theorem we generalize Theorem 1.4. 

THEOREM 2 .1 . Let A e C m x n possesses a full-rank factorization A = PQ. 
The matrix G = (gij) is {1,2} inverse of A if and only if g^ is represented in 
the form 

£ (^w2r (2:.i:.Z) >-,, {%:±.Z) 
l<P1<-"<Pr<n 

_ l<a1<'<ar<m t o 1 ^ 
9l:'" £ HlzX)WM)TilzX) ' 

l<81<"'<5r<n 
l < 7 i < - - - < 7 r < m 

where Wx G C n X r , W2 e C r x m are matrices such that 

rank(Q!V1) = rank(Q), rank(lV2P) = r ank(P) . (2.2) 

P r o o f . 
( = > ): Suppose that G = A^1^ is an arbitrary {1,2} inverse of A. We 

prove that G possesses the determinantal representation (2.1). So this part of 
the proof is given in detail. Starting from 

Л(i,2) = W 1 ( Q W 1 Г 1 ( " У > Г 1 W ' 2 , 

it is easy to see that a\j' is equal to 

( l i 2 ) = (W.adKQiy.YadK^P)^).. 

V ~ \QW,\\W2P\ 
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By applying the Cauchy-Binet theorem, the denominator in the last formula, 
equal to IQWJIW^PI = IW^-AWJ, can be expressed as: 

£ -3(?.::?)w.f(ai1 :::*;) £ Q(kzl)^(lzi) 
\<OL1<"<ocr<m l</3i<-</3r<n 

£ (w^f (2zZ)^ (l::l) 
l<OL\<-'<OLr<m 
Pi<h<-<Pr<n 

The element in the ith row and jth column of W1 • a d j ^ W . ) is 

JZiW^ai^KQW,))^ 
k=l 

= £ « ) J(-Dfc+' £ Q (fi\:::'::
j+1::: AL. ) n f (A::: '-1k+1::: ^)} 

k = l k /9i<-</3r-i 

= £ (-iVQ (A::: '.T.1'?::: ̂  ) ( t ^ W ^ (A::: t 1 M.1::: .C.)} 
/9i<-</3r_i U = l J 

If i is contained in the combination P1,...,/3r_1, then 

ti-mw^w^iz^^z^^o. 
k=i 

If the set {(3l,... , /? r_1} does not contain i, then i = /3p and the system is 
denoted by /?-_,..., /? -_, /? + 1 , . . . , f3r. Now we get the following representation 
for the (ij)th element of Wx • adj(QVV1): 

£ <-D'Q (i::: £i\ &1.::: *'_.) H K U::: ̂  A M::: i ) 
/31<---</3r 

= __j W^ V/31 ... » ... /3r J ^ jH/31 ... i ... /3r J • 
/31<---<i<-"</3r 

Similarly, the element in the ith row and j t h column of adj(W2P) • W2 is equal 
to 

£ ^ [ar::. !./::.*;) pAar::.?.:::.a;)-
l<oci<-"<ar<m 
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Now, the element lying in the ith. row and jth column of the matrix 
W1 adj(QW^) adj(W2P)JV2 is 

t{ £ "fU:::!:i) ««(£:: •,-:::;)}•< 
k=l k 1</3i<.-</3r<n J 

{ £ ^(?:::i:::T)M-:':::")} 
^ l<Qi<-<Qr<m ' 

= E W^)r(^:::i:::?;)-£^(?:::.'.:.:a;)G„U:7:::i) 

k 

X 

Q I < - < Q Г A;=l 

/Зi<---</Зr 

£ (^iW,)г(й:::í:::г)-4jť(S:::í :::£)• 
l < Q i < - < Q r < m 
l</3i<---</3 r<n 

The denominator in (2.1) is IQW-JIW^I- Consequently, the conditions (2.2) 
ensure the regularity of the matrices QWX and W2P, which implies that the 
denominator in (2.1) is non zero. 

( <= ) : Conversely, suppose that the matrix G e CnXn has representation 
(2.1), where the matrices W1 and W2 satisfy the conditions (2.2). We prove that 
G is a reflexive g-inverse of A. For this purpose, we restate here the following 
result from [11]: A matrix G = (#••) is a reflexive #-inverse of A G R j n x n if and 
only if 

gij = Z_, A<*,/3 ' Aji {/3i ..! i .!! /3r j ' 
l</3i<--<i</3r<n 
l<Qi<---<<7<ar<m 

where Xaj3 G US, satisfy 

Z2 A Q , / 3 * ^ ( / 3 I ... pl) = *> 
l<ßl< — <ßт-<П 
l < Q i < - < Q r < m 

and the rank of the matrix A = (Aa Q) is rank(A) = 1. 

Consider the following real numbers: 

-" £ owT(.;:::.;M(.;:::.;)• 
l<5i<---<<5r<n 
l<7i<---<7r<m 
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According to the definition of the r th compound matrix, the matrix A = (AQ Q) 
can be expressed as: 

A = cr((wlW2r)  
E ^iW2)TQi::i)Aa::i)' 

l<Si<-"<8r<n 
1 < 7 i < - - ' < 7 r < ^ 

The conditions (2.2) ensure the existence of the expressions (2.3) and (2.4), 
because I W ^ W J / 0. It is trivial to verify rank(W1W2) = r . Indeed, 
rank(WXW2) > rank(W2.AW1) = r. On the other hand, it is evident that 
rank(W1W2) < r. Now we obtain 

rank(A) = rank(C r ((W1W2)T)) = 1. 

Also, in view of (2.3), one can verify the following: 

_C K#'A\lh ... £ ) ~ l 

l</3i<-"< i</3r<n 
l < Q i < - < j < a r < 7 7 l 

Consequently, using M i a o ' s result, we conclude that G represents a reflexive 
#-inverse of A. • 

R e m a r k 2 . 1 . Theorem 2.1 gives a characterization of all {1, 2}-inverses. Select­
ing appropriate values for the matrices Wx and W2 which satisfy the conditions 
(2.2), we derive the well-known determinantal representations of the Moore-
Penrose, weighted Moore-Penrose and the group inverse. 

From Theorem 2.1, in the case Wl = Q*, W2 = P * , we obtain the represen­
tation of the Moore-Penrose inverse, restated in Theorem 1.1. 

Also, the substitutions W1 = (QN)*, W2 = (MP)* lead to the known 
determinantal representation of the weighted Moore-Penrose inverse, restated in 
Theorem 1.4. 

When m = 72, W1 = P , W2 = Q we obtain the representation of the 
group inverse, and the results from Theorem 1.2. From the conditions (2.2), we 
conclude that _4# exists if and only if QP is invertible, which is the well-known 
C 1 i n e characterization of the group inverse (see [6]). 

Moreover, if the matrices W1, W2 satisfy 

iwмf (%;;%) = 1, 

we obtain the definitions of the determinant and generalized inverses introduced 
in [10] and [22]. 

If the matrices W1, W2 satisfy 

(w,w2)
T (2::: Z) = (-I)«-+-+«-+A+-+A- , 
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we obtain the definition of determinant and generalized inverses discovered 
in [17]. 

From Theorem 2.1. and Theorem 1.6. we obtain the following characterization 
of {1,2,3} and {1, 2,4}-inverses: 

COROLLARY 2 .1 . If A = PQ is a full rank factorization of A G C™Xn and 
Wx G C n X r . W2 G C r x m are selected such that the conditions (2.2) are satisfied, 

then a2
()'2'3) G A^2^ and a[)>2A) G A*1'2'4) if and only if a£ ' 2 ' 3 ) and a£ ' 2 ' 4 ) 

are represented as follows: 

£ (wfrczzlz&AjAílzízZ) 
l<ß1<-'-<ßr<П 

(1,2,3) K a i < - < a r < m 
/7 . . — —— = aгj 

£ -4(K:::J;)(wi/")r(íi:::2:) 
l<<5i<---<đ r<n 

l < 7 i < " - < 7 r < 7 П 

£ W*w,)r (?;::: :̂:: ?:) ̂  (21 :::í:::?;) 

% 

I< l3i<---< l3 r<n 
(1,2,4) _ l < a i < - - - < a r < m 

£ AaizDiQ'wjrazi:) 
l<61<---<6r<n 
l < 7 i < " " < 7 r < f n 

Comparing the results of Theorem 2.1. and the results contained in [15], it 
seems interesting to state the following problems: 

PROBLEM 2 .1 . To find alternative solutions for the matrix A, if it is possible. 

PROBLEM 2.2. Effective determinantal representation of {1} inverses of A = 
(a- ) can be developed by finding all possible solutions for the elements Aa * of 
the matrix A, from the following system [15]: 

% ( Y, KP -A(2 :: Z))= %• for a11 *> J • 
\ l< /? i<- . .< i< /3 r <n / 

l < a i < - - < j < a r < m 

A partial solution of this problem that is appropriate for the class of {1,2} 
inverses is given by (2.4). 
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3. Several additional {1,2} inverses 

Selecting the matrices Wx G C n X r and W2 G C r X m satisfying conditions 
(2.2), by means of (2.1) we may generate an infinite set of various definitions of 
determinants of a rectangular matrix and {1,2} generalized inverses. In the sec­
ond section, the determinantal representations of {1,2,3}, {1,2,4} inverses, the 
Moore-Penrose, weighted Moore-Penrose inverse and the group inverse were em­
phasized. Consequently, the determinantal representation of generalized inverses 
derived so far are only special cases of the representation (2.1). 

In this section we select several additional characteristic examples. 

EXAMPLE 3.1. Suppose that Wx, W2 satisfy 

/ l . . . 0 0 . . . 0\ 

wxw2 = (K ®\ 
\o OJ 

The denominator in (2.1) (i.e. the corresponding determinant of a matrix A G 

C m x n ) is equal to A (J "* r) , representing the first principal rxr minor of A. 

The corresponding {1,2} inverse of A is 

Л(R,r) 

/"..(::,) - M::;) ° - <л 

( : : : : ) 
0 

•• 4-(i:::í) ° • 
0 0 . 

. 0 

. 0 

0 0 0 . .. o) 

EXAMPLE 3.2. For a given matrix A G C^X n , let k be the first integer such 

that A(k
k " l*r) ^ 0. If the rectangular determinant of A, i.e. the denominator 

in (2.1) is equal t o 4 V '* ̂  J , then the corresponding {1,2} inverse of A is 
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rO ... 0 0 ... 0 
/ 

A~l 

A í k ... fc+тЛ 

VA; ... k+r ) 

0 ... 0 

0 ... Oч 

0 ... 0 

°-° Ч î : : :£) - A^Al:Лt) »•••» 

o-o^-(:::::::)-^.-(:::::)o-° 
0 ... 0 0 ... 0 0 ... 0 

^ o ... o o ... o o ... o ' 

4. Solut ion of a s y s t e m of l inear equat ions 

In this section, the determinantal representation of the solution of a system 
of linear equations is developed in terms of the determinantal representation of 
{1,2} inverses described. 

THEOREM 4 . 1 . The ith component of the solution A^1,2^z of the linear sys­
tem Ax = z. A G C™xn , x G C n , z G C m has the following determinantal 
representation: 

£ (w^f (2 ;;; 7 ;;; £) A (- ;;; 7;;; - ) (. - az) 
l < / 3 i < - - < / 3 r < n 

1?2 _ l < a i < - < a r < 7 n 
XІ = 

£ owr a:: I: MG::::!:) 
l < < 5 i < - - - < 5 r < n 

l < 7 i < " - < 7 r < m 

where Qz denotes the vector {za , . . . , z a } . 
(з.i) 

P r o o f . Starting from x\ ' — (_4(1,2)z). and from the determinantal rep­
resentation of all the reflexive ^-inverses, given by (2.1), we get 

£ ww,)r(;::::J:::,l')A«(S:::?:::?:) 
„ ( - . 2 ) 

l < ! 3 i < - - - < / 3 r < n 
l < a i < - - - < a r < m _ ^ - ^ l < a i < - - -

k=l £ (w.w^CsizDACslzl) 
l<ő1<--<őr<n 

1 < 7 i < - " < * 7 r <
m 

283 



PREDRAG STANIMIROVIC 

£ (wiwa)
т (;;::: î::: г ) 5ľ^« (ï::: î::: Z)z* 

l</Зi<--</Зr<n k=l 
l<ai<---<ar<m 

£ (WгW^CslzDAЦ ;;;£) 
l<<5i<---<5r<n 
l<7i<---<7r<m 

£ (вдT(;;:::;:)A(;;ľ::;:)иa2) 
l</3i<---</3r<n 
l<ai<--<a r<тn 

£ (^/(];:?;)A(i;:i;) 
l<<5i<-.<5r<n 
!<71<-..<7r<m 

D 

Remark 4 .1 . In the case Wx = Q*, W2 = P*, we get the determinantal rep­
resentation for the Moore-Penrose solution of the system of linear equations, 
introduced in [5]. In [20] we obtain the same results, using simpler proof. From 
Theorem 3.1, we can obtain an elegant derivation of the determinantal repre­
sentation of the best approximate solution, and improve the proof from [20]. 

Also, the substitutions W1 = (QN)*, W2 = (MP)* lead to the well-known 
determinantal representation of the weighted Moore-Penrose solution of a system 
of linear equations over the field of complex numbers ([19]), or over an integral 
domain ([14]). 

COROLLARY 4 .1 . Let A = PQ be a full-rank factorization of A. Then 

x\ ' ' = (A^ 1 ' 2 ^) . can be represented as the linear combination of the solu­

tions x\a ' of all uniquely solvable r x r subsystems A ( J "' Q \ x = az of 

the starting system Ax = z : 
(1>2) {a,/3) _ ^ 

Xi ^ P a ^ X i > Pa^l3GC> 

where 

Y Pa = 1 > Y Q(3 = 1-
l<ai<-- .<a r<m l<f31<---<0r <n 

P r o o f . In the case when A ( ̂  ' °^r \ ^ 0, the canonical embedding of 

the solution of the system A (Z1 '" ̂  \ x = az into the m-dimensional space, 

denoted by x\a ' , is equal to 

f 4 ( £ : : : v :::£:) (*'-•«*) 

xř^ = < л f a i M ' ie{ßv...,ßr} 
AУß! ... i ... ßr-J 

Ю , i^{ßv---,ßr} 
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In the singular case we define x\a ' to be the zero vector. Now, we easily verify 
the following: 

£ W(?:::a;)K (i::: •:::£) A(2:7:;:) a->aZ) 
l l < a i < — < a r < m 

(1,2) l < / 3 i < - < / 3 r < n 

\QWX\\W2P\ 

5ľ I^/з X
(a,/З) 

l < a i < - < a r < 7 т г 
l < / З i < - < ѓ < - < / З r < n 

where 

^ ( ? : r ) P ( ? : : : t ) wfU:::X)QU : * ) 
P a |PV2P| ' q? IQW-J 

The equations ^ P a

 = * a n ( ^ -C g^ = 1 can be easily verified. 
l<Ql<-<Qr l<(3i<---<(3r 

D 

Remark 4.2. In the case T^ = Q*, KV2 = P* we conclude p a > 0, q^ > 0, 
which implies that the Moore-Penrose solution of a system of linear equations is 
the convex combination of the solutions of all uniquely solvable rxr subsystems. 
This is the well-known result of [5]. In [4] a similar result is obtained for the least-
squares solution of an overdetermined system. 
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