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ALGEBRAIC PROPERTIES OF FUNCTIONS W I T H 
THE CANTOR INTERMEDIATE VALUE PROPERTY 

KRZYSZTOF BANASZEWSKI 

(Communicated by Bubica Hold) 

ABSTRACT. We prove that : 

1. Every function can be expressed as a sum or product of two functions with 
Cantor intermediate value property (CIVP) and the pointwise or transfinite limit 
of functions with week Cantor intermediate value property (CIVP). 

2. The maximal additive and multiplicative classes for the family CIVP are 
equal to the family of all constant functions. 

3. The uniform closure of the class CIVP is equal to UnWCIVP (where U 
denotes the uniform closure of Darboux functions [Bruckner, A. M.—Ceder, J. G. 
—Weiss, M.: Uniform limits of Darboux function, Colloq. Math. 15 (1966), 
65-77]). 

1. Introduction 

We shall consider only real functions of a real variable. We will use the fol­
lowing notations: 

Const — the class of constant functions, 

C — the class of all continuous functions, 

V — the class of Darboux functions, 

Bx — the family of all functions of the first Baire class, 
VIZ — the class of all functions having a bilateral perfect road at each 

point of the domain [6] (cf. [2]), 
CIVP — the class of functions / having the Cantor intermediate value 

property, i.e., functions for which the following condition is satis­
fied: for every rr, y £ R and for each Cantor set K between f(x) 
and f(y), there is a Cantor set C between x and y such that 
f(C) C K ([4]), 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26A15. 
K e y w o r d s : CIVP property , WCIVP property, Darboux property, maximal additive family, 
maximal multiplicative family, limits of functions. 
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WCIVP — the class of functions / having the weak Cantor intermediate value 
property, i.e., functions for which the following condition is satis­
fied: for every x,y G R such that f(x) < f(y), there is a Cantor 
set C between x and y such that f(C) C (f(x),f(y)) ([5]), 

UQ — the set of all functions / such that f(J) is dense in the interval 

inf/, s u p / for each interval J c K ([3]), 
- J j -

U — the class of all functions / such that for every interval J and 
every set A of cardinality less than c (c means the cardinality of 

the reals), the set f(J\A) is dense in the interval inf/, sup / ! 
([3]). L j J 

R. G. G i b s o n and F. R o u s h prove that CIVP C VK ([4]), and therefore 
CIVP n B1 = VBX. It is clear that CIVP is a proper subset of WCIVP. 
R. G. G i b s o n [5] showed that V \ WCIVP ± 0. Let X be a class of real 
functions. The family of functions Ma(X) = {/ <G X; Mg^X f + g G X} 
is called the maximal additive family for X. Similarly, we define Mm(X), the 
maximal multiplicative family of X. 

We will use the fact that we can represent every Cantor set C as the un­
countable union of pairwise disjoint Cantor sets | j Ca . Because there exists a 

a<c 
homeomorphism 0: C -» C x C, we can find such a family {Ca}a<c. 

Towards the end of this paper, we state that the symbols K~(f, x), K*(f, x) 
denote the cluster sets from the left-hand side and from the right-hand side of 
the function / at a point x, respectively, and K(f,x) = K~~(f,x) n K+(f,x). 
Denote by C(f) the set of all points of continuity of / , and V(f) = R\ C(f). 

Let x be a real and A C R. Mark by x + A = {x + a; a G A} and 
xA = {xa ; a G A} . A symbol such as [a, b] will always denote the interval with 
endpoints a and b whether or not a < b. 

2. Algebraic properties 

We shall say that a function / is nowhere constant on a set J if f\tj Q J\ 

is constant for no interval I such that I n J ^ 0. Denote by A* the set of all 
points x G J for which there is an open interval I such that x e I, I D J ^ 0 , 
and f\(jf^j) iS constant. Then the set A* is open in J. Let {Jn}ne^ be a 

oo 

sequence of open components of Af. Denote by A? the set l j Jn . Notice that 
7 1 = 1 

R \ A? is a Gs set which is c-dense in itself, and for each open interval I such 
that InJ^0, I\A? is a Baire space. 
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REMARK 2 .1 . V \ CIVP ^ 0 and CIVP \ V ^ 0. 

P r o o f . Let {xa}a<c be a transfinite sequence of all reals different from 
zero, and {-fn}^i:1 be a sequence of all open intervals having rational endpoints. 
We can find a family of pairwise disjoint Cantor sets { C n } ^ = 1 such that Cn C In 

for n G N. Represent each Cantor set Cn as a union of pairwise disjoint Cantor 
oo 

sets IJ Cna for n G N. Let B be a Bernstein set in [J Cn. Then for each 
GL<C ' n=l 

n G N the set BnCn is uncountable. Denote by </>n a bijection between 5 f l C n 

and R. Put 

and 
\ 1 otherwise, 

(x)=f ^ » i f xeBnCn, n G N , 
\ 0 otherwise. 

Then / G C I V P \ V and g G 2? \ CIVP. D 

LEMMA 2 .1 . Let f: R —r R be a continuous non constant function, and I be 
an open set such that I\Af ^ 0. TVien /o r eac/i Cantor set K C R \ f(Af), for 
any set P which is of the first category in I\Af , and for each real number y there 
is a Cantor set C C I\[Af UP] which is of the first category in I\[Af UP] and 
such that (y+f(C))nK = 0. I/O g If. ttere exists a Cantor set C C I\[A/UP] 
o/^rst category in I \ [ ^ U P] /o r M/MC/I (yf(C)) n If = 0. 

P r o o f . Let g = / | / r \ j / \ - Then o is a continuous nowhere constant 

function, (H + g)_1(If) is a closed and nowhere dense set in I\Af . L = (I\Af)\ 
[P U (y + g)~l (IQ] is a residual set in I \ Af. Since I \ Af is a Baire space, L 
is a non-empty Borel set in R. So we can find a Cantor set C C L of the first 
category in I \ [A* U P ] . Therefore C Cl\[AfUP] and C n (y + g)~l (K) = 0. 
Since y + f(C) = y + g(C), [y + / (C) ] n K = 0. 

If 0 ^ If, then in the same way, we can prove that there is a Cantor set C 
for which (yf(C)) n If = 0. • 

LEMMA 2.2. Assume CH. Let / : R —> R be a continuous non constant func­
tion, K C R \ f(Af) be a Cantor set such that 0 ^ If, and {ya}a<u> be a net 
of real numbers. Let {In}n

<)
:=1 be a sequence of all intervals having rational end-

points such that In\A
f ^ 0. We can choose an uncountable family of pairwise 

disjoint Cantor sets {C* } a < n G N such that C C In\A
f is of the first 

category in In \ Af for a < LJ1 , n G N and (ya + f)(x) £ K for x G Ca n 

{{yaf){x)iK forxeCan). 

P r o o f . Assume that we can choose all Cantor sets C» n for j3 < a and 
n G N. By CH and by Lemma 2.1, P = (J [j Cp n is of the first category 

(3<aneN 
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in In \ A* for all n G N. Moreover, by that lemma, there exist Cantor sets 

Ca,n Cln\(PUAfu U C t t |„) such that (ya + f)(C^n) n K = 0 for n G N. 
x m<n ' 

The proof that there exists a family of Cantor sets {Can ; a < ux , n G N} 
for which (yaf)(x) <£ K for x G Ca is analogous. • 
THEOREM 2.1. Assume CH. For each non constant function f G CIVP there 
exists a function g G CIVP such that f + gi CIVP and f + g £V. If f G V, 
then geVn CIVP. 

P r o o f . 
(1) Let / G CIVP \ C, and x0 be a point at which / is discontinuous from 

the right (if / is a discontinuous function from the left, the proof is similar). By 
[1; Lemma 3.2], there exists a finite number c G K+(f,x0) \ {/(x0)} . Put 

f -c if x < x0 , 

I -f(x) it x > x0 . 

We can easily see that g G CIVP, (f+g)(x0) = / ( x 0 ) - c ^ 0 and (f+g)(x) = 0 
for x > x0 . This implies that f + g £ CIVP and f + g £ V. Moreover, if / G V, 
then g G V. 

(2) Assume that / G C\ Const. Denote by K C (R \ /(-4y)) n (0,1) a 
Cantor set, and by {Jn}n G N the family of all intervals having rational endpoints 
for which In \ Af •=£ 0. Let {ya}a<UJl be an uncountable sequence of all real 
numbers. By Lemma 2.2, we can find a family {Ca n } n G N a<UJl of Cantor sets 
such that Can C In and (ya + f)(x) $ K for x G Ca>n. Let x0 G R \ A ^ . Then 
x0 is a point of bilateral accumulation of R \ A^. Let c = /(xn) - 1, and put 

{ Va i f x G Ca jn , 

- c if x = x0 , 
—f(x) otherwise. 

We shall prove that g G CIVP. 
Let g(x) 7-= ̂ (y), and let C C (g(x), g(y)) be an arbitrary Cantor set. Denote 

by z some point from C. Notice that x and y do not belong to the same 
component of Af . Thus there exists an interval Jn C (x, y) such that In\A

f ^ 0, 
and a Cantor set Can C In for which g(Ca n) = {z} C C. 

In the same way, we can prove that g G V. 
Now we prove that (f+g) £ CIVP. Let x1 G R\ U U c

an and x0 < xx . 
Then (f+g)(x0) = 1, (f+g)(xx) = 0, and K c ( ( Z + s ) ^ ) , (Z + ff)(x0)) • Since 
(Z + g)(^) §- K for any x G R, f(C) <£ K for each Cantor set C C (x0, xx). It 
is clear that f + g £V. D 
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THEOREM 2.2. Assume CH. For each non constant function f G CIVP there 
exists a function g G CIVP such that fg £ CIVP and fg £ V. Moreover, if 
f eV, then g eV Pi CIVP. 

P r o o f . 

(1) Assume that / is continuous and non constant. 

Denote by K C (R \ f(Af)) n (0,1) some Cantor set, and by { I n } n G N the 

family of all intervals having rational endpoints for which In \ A? ^ 0. Let 

{ya}a<UJ be a sequence of all real numbers. By Lemma 2.2, we can find a 

family {Can}neNa<u;i of Cantor sets such that Can C In and (yaf)(x) $ K 

for x E Ca n. Let x0 G R \ Af . Put 
a,n 

Уa if x Є C, 

g(x) 

a,n ' 
co 

l //(x) if f(x) + 0 and x i U U Ca>n, 
a<o;i n = l 

0 if (/(z) = 0 and z £ U U Ca>n) 
x a<tJi n = l ' 

We shall prove that g G CIVP nV. 

Let g(x) 7̂  g(y), and let C C (g(x), g(y)) be an arbitrary Cantor set. Denote 
by z some point from C. Notice that x and y do not belong to the same 
component of Af. Thus there is an interval In C (x,y) such that In \Af / 0, 
and we can find a Cantor set Ca n C In for which g(Ca n) — {z} C C. Now we 
prove that (fg) $ CIVP. Let 

C l € ( R \ ( J U C a , n ) n ( x 0 , O o ) . 
^ a<o;i nGN ^ 

Then (fg)(x0) = 0, (/g)(xx) = 1, and K C (( /g)(x 0) , (fg)(x,)). Since 
(fg)(x) £ K for any x G R, f(C) <f_ K for each Cantor set C C (x^x^). 
In the same way, we can prove that fg^V. 

(2) Suppose that / G CIVP\C. By (1), we can assume that if 7 is a closed 
interval and f\j is continuous, then f\j is constant. 

We shall prove that there is a point x0 G V(f) for which f(x0) ^- 0. 
Assume that f(V(f)) = {0}. Then there exists a point z0 of continuity of / 

at which f(z0) ^ 0, and an interval J such that z0 G J and / | j is continuous. 

Therefore we have that f\j is constant. Let a = inf < x ; / | r x ^ -i is continuous > 

and b — sup<x; / | r^ x i is continuous >. Because / ^ C, (a,6) ^ R . Assume 

that a 7-- - c o . So / is discontinuous at a and f(a) ^ 0. This is impossible 
because we assume that f(V(f)) — {0}. Therefore we can assume that / is 
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discontinuous at xQ from the right, and a = f(xQ) ̂  0 (if / is discontinuous at 
xQ from the left, the proof is similar). 

We shall consider two cases. 
(a) There exists a sequence {xn}^L1 such that xn \ xQ and f(xn) = 0. 
Define g: M-> M by 

(2a for x < xQ , 

\ 2a — f(x) for x > xQ . 

According to [1; Lemma 3.3 and Theorem 3.5], g G CIVP, and if / G V, then 
g G V. On the other hand, /g ̂  CIVP and fg^V since fg(xQ) = 2a2 , and 
for x > x0 

/^(o:) = ( 2 a - / ( x ) ) / ( x ) < a 2 < 2 a 2 . 

(b) There exists d > 0 for which f(x) ^ 0 for x G (x 0 ,x 0 -F d ] . Let c $_ 
{ ± / ( x 0 ) , 0 } be a point from IT+(/, x 0 ) . By [1; Lemma 3.2], such a point exists. 
Then we define 

{ l / | c | for x < xQ , 

l/\f(x)\ for x G OT0,x0 + d ] , 

l / | / (o; 0 + rf)| for x > xQ + d. 
By [1; Lemma 3.3 and Theorems 3.4, 3.5], g G CIVP. Notice that /g (x 0 ) = 
/(a;0) / |c | / ± 1 , and fg(x) = ± 1 for x G (xQ,xQ + d]. Thus fg $ CIVP and 
/0£Z>. a 
COROLLARY 2 .1 . Ma(CIVP) = A i m ( C / V P ) = A4a(Z> n C I F P ) = 
Mm{VnCIVP) = Const. 
THEOREM 2.3 . Assume CH. Let { / a } a < u ; &e a class of real functions. Then 
there is a function f G CIVP n P suc/i tta^/ + fa G C / ^ P HV for all a <c. 

P r o o f . Let {In}^i :1 be a sequence of all intervals having rational end-
points. Let {Cn i a : n G N, z = 1,2 , a < c} be a class of Cantor sets which 
fulfils the conditions: 

C ^ n C ^ / l for (n,i,a)^(m,j,p) 

and 
Cn,i,aclm w h e r e ™^ N > * = 1,2, a<c. 

Let { # a } a < c be a sequence of all real numbers. Put 

' Xa~fa(X) for XeCn,l,ai 

f(x)=<Xa f°TX£Cn:2,a' ™ ^ N , CY<C, 

^ 0 otherwise. 

Then fJ+faeCIVPHV. • 
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COROLLARY 2.2. Every f: R -> R can be expressed as the union of two 
CIVP functions. 

THEOREM 2.4. Let f\R-+R. Then there exist CIVP functions O, h: R ->• R 
such that f — gh. 

P r o o f . Let {Ik}
(

k=l be a sequence of all open intervals whose endpoints are 

rationals. Then we can find families of pairwise disjoint Cantor sets {Ck 1}K%1 

and {Ck 2}kLi s u c n t n a t Ckn C Ik for each k G N, n = 1,2. We can represent 
each set Ckn, k G N, n = 1,2, as the union pairwise disjoint Cantor sets 
U C,. „ „. Let jr- V^„ be a net of all real numbers different from zero. Put 
v^ k,n,ct L ctJct<c a<c 

and 

<?(*) = { 

h(x) 

r 
a 

І f x Є C f c , l , a . fcєN, a < c, 

m/ra 
І f X Є Ofc,2,a . fceN, a < c, 

f(x) otherwise, 

m/ra 
І f æ Є Cfc,l,a > A : Є N , a < c, 

ct 
i f * Є CkXa , fcєN, a < c, 

1 otherwise. 

We can easily see that gh — f and /, g G CIVP. • 

If {/J*eT - s a n arbitrary class of real functions, then / = 0 = 0/ t G CIVP 
for all c G T . Let us ask whether Theorem 2.3 is true if a sum becomes a 
composition and assume that / ^ 0. The answer is negative, even if the family 
/ a contains only one function. 

REMARK 2.2. There exists a function f such that fg £ CIVP for each 
function g G CIVP \ {0} . 

P r o o f . Denote by A a Bernstein set. Put 

0 if x G A , 
M ; ' 1 if re G R \ -4 . 

Assume that there exists a function g G CIVP \ {0} such that fg G CIVP. 
Then we can find a point y G K. \ A such that g(y) ^ 0. Choose an x G 
4̂ n (-co,?/) . Then does not exist a Cantor set C C (x,y) such that fg(C) C 

(o,fg(y))- n 

EXAMPLE 2.1 . T/iere exisis a family F dBx with card(jF) = c suc/i that for 
each function g: M —>• R if fg G CIVP for each f £ J7, then g = 0. 

P r o o f . Let {a;Q}Q < c be a net of all reals. Put 

= xc 
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[f g zfi 0, then there exists a point a such that g(a) ^ 0 . We can find an a < c 
such that a = x a , and we have gfa = g(a)fa £ CIVP. • 

THEOREM 2.5. Assume CH. Let {fk}^Lx be a countable family of Lebesgue 
measurable functions. There exists a Lebesgue measurable function f £ CIVPnV 
such that / 7̂  0 and ffk £ CIVP DV for all k £ N. Moreover, if for each 
k £ N, fk is with the Baire property, then f can be taken with the Baire 
property, too. 

P r o o f . Let [fk = 0] = {x £ R; fk(x) = 0} and [fk ^ 0] = {x £ R; 
fk(x) ^ 0} for fc £ N. Denote for each k £ N by Sk (Pk) the set of all 
points x £ [fk y^z 0] (x £ [/fc = 0]) for which there exists e > 0 such that 
(x - e, x -F e) n [/fc 7̂  0] ((x — £, x + e) fl [/fc = 0]) has measure zero, and let 

OO OO 

£ = (J 5 fc, P = |J Pj,. Fix a fc £ N. If [/fc = 0] has positive measure, then 
fc=i k=i 

let A .̂ C [fk = 0] \ P be a Borel set c-dense in itself such that the measure of 
[fk — 0] \ Ak is zero. Otherwise, let Ak = 0. If [/^ 7-= 0] has positive measure, 
then let Bk C [fk ^ 0] \ 5 be a Borel set c-dense in itself such that the measure 
of [fk ^ 0] \ Bk is zero. Otherwise, let Bk = 0. Let { J n } ~ = 1 be a family of 
all open intervals having rational endpoints. By [7; Lemma 2], there exists a 
family of pairwise disjoint sets {Ck n , Kk n}k n E N such that Ckn C In n Ak, 
Kk,ncinnBk, 

is a Cantor set if In n Ak ^ 0 , 

and 

Ck,n ~ 

Kk,n = 

i f I n П ^ = 

is a Cantor set if InD Bk ^ 

i f I n n I ? f c = 

We can represent each Cantor set Kk n as the union | J IJ Kk n a of pair-
2 = 1 a < c 

wise disjoint Cantor sets for /c,n £ N. Similarly, let Ck n = IJ Ck , where 
Q < C 

{̂ /c n a)a<c is a n e ^ °f pairwise disjoint Cantor sets. Let {%a}a<c be a transfi-
nite sequence of all reals. Put 

[*a if X^Ck,n,a^Kn,a^ 
f(x) = l xjfk{x) iix£Klna, k,n£N, a<c, 

[ 0 otherwise. 
Then / £ CIVP n V is a Lebesgue measurable function, and 

f * a L » if^eI^U.a-

/ / » = < 
*a

 i f * Є K 2

 П i a , 

xj,(x)/fk{x) HxeKlna, ken\{s}, 
L 0 otherwise 
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for s G N. Let x < y, and assume that ffs(x) < ffs(y). Choose a Cantor set 
K C ( / / 5 (x ) , ffs(y)), and denote by z some point belonging to K. Then there 
is an interval In C (x,y) such that Bs n In ^ 0, z — xa for some a < c, and 
ffs(K^n,a) = {z) c K- Similarly, we can prove that ffseV. 

If the functions fk have the Baire property, then we can easy see that / has 
the Baire property. • 

3. Uniform limits of CIVP functions 

THEOREM 3 .1 . CIVP CU. 

P r o o f . Fix an open set U C inf / , sup / = [m, M ] , / E CIVP, and 
- J j -

J = [a,/3] C R. Let A be a set of cardinality less then c, and (a, b) be an 
interval whose closure is contained in U. Then there are numbers a1,P1 G J 
such that 

™ < f(oLx) <a<b< f(p^) < M. 

Let K C (a, b) be a Cantor set. Then there exists a Cantor set C C (0^ , /^) 
such that / ( C ) C K C (a, 6). Because C \ A ± 0, 0 + f(C \ A) C (a, 6) C U. 

a 

THEOREM 3.2. In the class of all Borel measurable functions, U is a proper 
subset WCIVP. 

P r o o f . Fix a Borel measurable function / £ U and points a, b £ R such 
that f(a) < f(b). Assume that a < b. Then B = f~l ( ( / (a ) , /(b)) n (a, b) is a 
Borel set whose cardinality is equal to the continuum, and we can find a Cantor 
set C c B . l t is easy to observe that / ( C ) C ( / ( a ) , / ( b ) ) . 

To prove that U ^ WCIVP, we consider a function 

f x if x > 0 , 
j(x) — < 

{ —1 otherwise. 

• 
REMARK 3 .1 . In the class of all Borel measurable functions, U \ CIVP ^ 0 . 

P r o o f . Let {•In}^=1 be a family of all open intervals having rational end-
points, and let {Cn m } £ ° m = 1 be a sequence of pairwise disjoint Cantor sets such 
that Cnm C In. Denote by {qm}m^zl an enumeration of all rationals. Define 

{ 00 

qm if xG U Cntm, men, 
0 otherwise. 
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Then f(J \A) = R for each interval J , for each a set A of cardinality less then 
c, so / G U. Let K C R \ Q be a Cantor set. Then / ( C ) n i f = B for each a 
Cantor set C . So we have / £ CIV P. • 

THEOREM 3.3. ZY n TVC7VP = w0 n WCIVP. 

P r o o f . For the proof, we must show that if / G U0 n WCIVP, then / G W. 
Assume that a < 6, / ( a ) < f(b). Put by J = [a, 6]. Denote by U C ( / (a) , /(b)) 
some open interval and by A arbitrary set for which card A < c. Because f(J) 
is dense in U, then there exist points x1,x2 G J and ylyy2 G U such that 
vi ^ v2-> f(xi) ~ V\ a n d $(Xti) = v2- We c a n fi11^ a Cantor set C C (xl,x2) 
with / ( C ) C (yl^y2). Since C \ A is non-empty, then there exists x G C \A 
and / (x ) G U. • 

REMARK 3.2. U0 n CIVP is a proper subset of U0 D WCIVP. 

P r o o f . We need only prove that the inclusion is proper. Let {In}n
<Ll be a 

sequence of all open intervals having rational endpoints. Choose a net of pairwise 
disjoint Cantor sets {Cn } n e N <c with C C In. Let IT be a Cantor set, 
and {ra}a<c be a net of all points of R \ K. Define 

CЮ 

./ v , a i f « U C , a<c, 
f{x) = \ n=l ' 

0 otherwise. 

Then / € (u0 n WCIVP) \ (u0 n CIVP). D 

REMARK 3 .3 . WCIVP is not uniformly closed. 

P r o o f . Put 
' - 1 if X < 0 , 

L,(-0 = < ^M if x e (°' -) -
1/n otherwise 

for n e N . Then fn G WCIVP, fn is uniformly convergent to 

f - 1 if z < 0 , 
/ W = n -f ^ n tO if x > 0 , 

and / £ WCIVP. • 

THEOREM 3.4. 7/ / is JAe uniform limit of a sequence {fn}n
<!=1 of CIVP 

functions, then f G U0 n TVC/VP. 

P r o o f . Let J = [a, b]. Without loss of generality, we can assume f(a) < 
/ (b ) . Let U be an open interval whose closure is contained in (/(a), /'(b)). 
Express U as (y-e,y + e). Then there exists an n G N such that \fn(x)-f(x)\ 
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< e/4 for x € J, and fn(a) < y - e and fn(b) > y + e. Since fn G CIVP, 
there exists a Cantor set C C (a, b) such that fn(C) C (y — e/4,y + e/4). 
Then f(C) C (y - e/2,y + e/2) C U, and this implies that / e WCIVP. 
Because CIVP C U and U is closed under the operation of uniform limit ([3]), 
f eU CU0. D 

LEMMA 3 .1 . Let J = (a ,b ) ; f eU0n WCIVP, A = f~l(J), and denote by 
{Im}m=i the set of all intervals having rational endpoints for which Im nA ^ 0. 
If A y£ 0. £ben ttere ezz'sfc a sequence of-pairwise disjoint Cantor sets {Cm}m=1 

such that CmC Anlm forme N. 

P r o o f . Denote by { J m } ^ = 1 the set of all open intervals having rational 
endpoints for which Im n A ^ 0. First we shall prove that if f\/j ^ ^ \ is 

constant, then Im C A. 
Assume that f\rj ^ ^ \ is constant, x G Im \A and f(ImnA) = {z}. Then 

f(x) £ (a,b). Suppose that f(x) > b. Let U = (z ,b) . Because f(Im) n £/ = 0, 
then f iU. 

Choose an m G N. If f\/j o A) ls c o n s t a r n % then w e c a n n n d a Cantor 

set Km C Im n A. Otherwise, there exist points x^.y^ G Im n A such that 
7 / 1 7 / v ' "*• 77& *^ TIL TTt 

f{xj < f{yj- Then there is a Cantor set Km C (xm,yj, and f{KJ c 
(/frj./fom))- T h u s *m <- f-^ttKJ) C / - X ( J ) = A. By [7; Lemma 2], 
we can find a sequence of pair wise disjoint Cantor sets {Cm}m=1 such that 
Cm C Km C Im n A for each m G N. • 

7/& 7/6 77 c-

THEOREM 3.5. If f e U0n WCIVP. ^ e n / i$ tte uniform limit of some 
sequence of CIVP n X> functions. 

P r o o f . Choose an e > 0. It is enough to prove that there exists a function 
g G CIVP n V with | | / - g\\ < e. If / is constant, then we can put g = / . If 
g is not constant, we can assume without loss of generality that the closure of 
range of / is R. Now decompose HI into disjoint half open intervals {Jn}^=l 

each of length e/2. Put An = f~l ( i n t ( J J ) . Choose an n G N. Denote by 
{In m } ^ = 1 the family of all open intervals having rational endpoints for which 
K m n An 7-- 0. By Lemma 3.1, there exists a sequence {Cnm}m=1 of pairwise 
disjoint Cantor sets such that C C InjTnnAn . We may decompress each Cnm 

into pairwise disjoint Cantor sets {Cnmcc}Ci<c. Denote by {rna}a<c the net of 
all points of Jn. Now define the function 

{ oo 
rn,a f o r x e U C n G N , a < c , 

m = l 

/ ( x ) otherwise. 
It is obvious that | | / - g\\ < e. To show that g G C 7 V P , we suppose that 
a < b and g(a) < g(&). Choose a Cantor set IT C (g(a),g(b)). Then there 
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exists a point rnOL G K H Jn for some n G N and a < c, and a Cantor set 
cn,m,a

 c Ann(a>b) f o r w h i c h ^(Cn,m,a) = {Tn,*} c K' Similarly, we can prove 
that g G V. • 

According to Theorems 3.4 and 3.5, we can prove the following Theorem, 

THEOREM 3.6. The uniform closure of CIVP is U0 n WCIVP .1} 

4. Pointwise and transfinite limits 

THEOREM 4 . 1 . Every real function of real variable f is a pointwise limit of 
CIVP n V functions fn. If f is measurable or has the Baire property, then fn 

can be measurable or have the Baire property, too. 

P r o o f . Let {Ik}^=1 be a sequence of all open intervals having rational 
endpoints. We can find a family {Ckn}^?n=l of pairwise disjoint Cantor sets 
such that Ckn C Ik for k, n G N. Represent each Ck n as the union [J C U f t 

a<c 

of pairwise disjoint perfect sets. Let (xa)a<c be a transfinite sequence of all 
reals. Put 

oo 

ro.a \J k,n,a 

k=l 

and 

f <X) = !X° 'liX€Dn,«> a<C' 

I f(x) otherwise 

for n G N. Then fn G CIVP n V. We shall show that 
/ ( x ) = lim fn(x). (1) 

n—>oo 

oo 
Choose an x G R. If a; ^ |J |J D n a , then /n(-c) = / (x ) for each n G N, and 

n=la<c 

(1) holds. Otherwise, x G D for some n0 G N, a < c, and since x £ Dna 

for n > n 0 , a < c, so / n (x ) = / (x ) for n > n 0 , which completes the proof. If 
/ is measurable or has the Baire property, then fn are measurable or have the 
Baire property. • 

Recall that a function / is the limit of a transfinite sequence (fa)a<UJ of 
functions if and only if for each positive e > 0 and x E t there exists an a < u1 

such that \f(x) - fp(x)\ < e for all j3 > a. 

-) Note that U0 H WCIVP = UH WCIVP = UnVIZ. 

184 



FUNCTIONS WITH THE CANTOR INTERMEDIATE VALUE PROPERTY 

THEOREM 4.2. Every function / : R —» M is the limit of a transfinite sequence 
(fa)a<u °f CIVP functions with the Darboux property. Moreover, if f is mea­
surable or has the Baire property, then each fQ can be measurable or have the 
Baire property. 

P r o o f . Let (Ik)^-i be a sequence of all open intervals with rational end-
points. We shall use the fact that in each interval Ik, we can choose a Cantor 
set Ck such that Ck n Cn = 0 for n < k. Represent each Ck as a union 

U U Ck a Q of pairwise disjoint closed sets. Let (xp)a<c be a net of all reals. 
c*<u;i ß<c 
Put 

and 

Dcc,ß — U ^Л.a./З 

ш 
k=l 

if I Є Ű a,ß , ß<c, 
f(x) otherwise 

for a < UJ1 . Then each function fa G CIVP f l D . W e shall show that 
/ ( * ) = lim fa(x). (2) 

a—>u;i 

Choose an x G R. Then either x £ (J IJ Dap, so fa(x) = f(x) for each 
a<u\ (3<c 

a < LJ1 . If x e Da p for some (3 < c, then x £ D for 7 > /?, so / a ( x ) -= / (x ) 
for 7 > 0. ' D 
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