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ABSTRACT. We prove that:

1. Every function can be expressed as a sum or product of two functions with
Cantor intermediate value property (CIV P) and the pointwise or transfinite limit
of functions with week Cantor intermediate value property (CIV P).

2. The maximal additive and multiplicative classes for the family CIV P are
equal to the family of all constant functions.

3. The uniform closure of the class CIV P is equal to UNWCIV P (where U
denotes the uniform closure of Darboux functions [Bruckner, A. M.—Ceder, J. G.
—Weiss, M.: Uniform limits of Darbouz function, Colloq. Math. 15 (1966),
65-77]).

1. Introduction

We shall consider only real functions of a real variable. We will use the fol-
lowing notations:
Const — the class of constant functions,
C — the class of all continuous functions,
D — the class of Darboux functions,
B, — the family of all functions of the first Baire class,

PR — the class of all functions having a bilateral perfect road at each
point of the domain [6] (cf. [2]),

CIVP — the class of functions f having the Cantor intermediate value

property, i.e., functions for which the following condition is satis-

fied: for every z,y € R and for each Cantor set K between f(z)

and f(y), there is a Cantor set C between z and y such that

f(C) C K ([4]),
AMS Subject Classification (1991): Primary 26A15.

Key words: CIV P property, WCIV P property, Darboux property, maximal additive family,
maximal multiplicative family, limits of functions.
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KRZYSZTOF BANASZEWSKI

WCIVP — the class of functions f having the weak Cantor intermediate value
property, i.e., functions for which the following condition is satis-
fied: for every z,y € R such that f(z) < f(y), there is a Cantor
set C between z and y such that f(C) C (f(z), f(y)) ([5]),

U, — the set of all functions f such that f(J) is dense in the interval
[irJlf f,sup f] for each interval J C R ([3]),
J

U — the class of all functions f such that for every interval J and
every set A of cardinality less than ¢ (¢ means the cardinality of
the reals), the set f(J\ A) is dense in the interval [inf f, sup f]

(13))- T
R.G. Gibson and F. Roush prove that CIVP C PR ([4]), and therefore
CIVP N B, = DB,. It is clear that CIVP is a proper subset of WCIVP.
R. G. Gibson [5] showed that D\ WCIVP # (. Let X be a class of real
functions. The family of functions M_(X) = {f € X; VgeX f+g € X}
is called the mazimal additive family for X . Similarly, we define M, (X), the

mazimal multiplicative family of X'.

We will use the fact that we can represent every Cantor sct C' as the un-

countable union of pairwise disjoint Cantor sets (J C, . Because there exists a
a<lc

homeomorphism ¢: C' — C x C, we can find such a family {C,} ...

Towards the end of this paper, we state that the symbols K= (f,z), K (f, z)
denote the cluster sets from the left-hand side and from the right-hand side of
the function f at a point z, respectively, and K(f,z) = K~ (f,z) N K*(f,z).
Denote by C(f) the set of all points of continuity of f, and D(f) = R\ C(f).

Let z be a real and A C R. Mark by 2+ A = {z +a; a € A} and
tA ={za; a € A}. A symbol such as [a, b] will always denote the interval with
endpoints a and b whether or not a < b.

2. Algebraic properties

We shall say that a function f is nowhere constant on a set J if fl([ n.J)

is constant for no interval I such that I NJ # 0. Denote by A; the set of all
points x € J for which there is an open interval I such that z € I, INJ # 0,
and fl(Iﬂ J) is constant. Then the set A, is open in J. Let {J,},cy be a

e8] —
scquence of open components of A ;. Denote by A7 the set J_ . Notice that
f n

n=1
R\ A/ is a G; set which is c-dense in itself, and for each open interval I such
that INJ # 0, I'\ A is a Baire spacc.
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FUNCTIONS WITH THE CANTOR INTERMEDIATE VALUE PROPERTY

REMARK 2.1. D\CIVP #0 and CIVP\D # 0.

Proof. Let {z,},.. be a transfinite sequence of all reals different from
zero, and {I,}5% , be a sequence of all open intervals having rational endpoints.
We can find a famlly of pairwise disjoint Cantor sets {C, }22, such that C, C I,
for n € N. Represent each Cantor set C, as a union of pa1rw1se disjoint Cantor

sets |J C,, for n € N. Let B be a Bernstein set in U C,,. Then for each

a<c
n € N the set BNC, is uncountable. Denote by ¢, a bljectlon between BNC,,
and R. Put
z, ifzeC, _, neN, a<e,
fioy={ 7o 1€ o
1 otherwise,

and
¢,(x) ifzeBNC,, n€N,
9(z) = .
0 otherwise.
Then f € CIVP\D and g€ D\ CIVP. O

LEMMA 2.1. Let f: R = R be a continuous non constant function, and I be
an open set such that I\ AY # 0. Then for each Cantor set K C R\ f(Af), for
any set P which is of the first category in I\ A, and for each real number y there
is a Cantor set C C I\ [A UP)] which is of the first category in I\[Af UP] and
such that (y+f(C))NK =0.If 0 ¢ K, there ezists a Cantor set C C I\[A/UP)
of first category in I\ [Af U P] for which (yf(C))NK =0.

Proof. Let g = f|(I\Af)' Then g is a continuous nowhere constant

function, (y+g)~1(K) is a closed and nowhere dense set in I\ Af. L = (I'\ A/)\
[PU(y+9)~"(K)] is a residual set in I\ A/. Since I\ A7 is a Baire space, L
is a non-cmpty Borel set in R. So we can find a Cantor set C C L of the first
category in I\ [Af U P]. Therefore C C I'\[AfUP] and CN(y+g) 1 (K) = 0.
Since y + f(C) =y +g(C), [y+ f(C)]n K =0.

If 0 ¢ K, then in the same way, we can prove that there is a Cantor set C
for which (yf(C))NK = 0. 0

LEMMA 2.2. Assume CH. Let f: R — R be a continuous non constant func-
tion, K C R\ f(A') be a Cantor set such that 0 ¢ K, and {y,},<,, be a net
of real numbers. Let {I }°° | be a sequence of all intervals having rational end-
points such that I \ Al # 0. We can choose an uncountable family of pairwise
disjoint Cantor sets {C N such that C, . C I, '\ A is of the first

an}a<whn6
category in I, \ AY for a < w;, n € N and (y, + f)(z) ¢ K for z € Comn
(ya/)@) ¢ K forzeC, ).

Proof. Assume that we can choose all Cantor sets C,, for 8 < a and

n € N. By CH and by Lemma 2.1, P = |J U Cy,, is of the first category
B<aneN
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in I\ Af for all n € N. Moreover, by that lemma, there exist Cantor sets
Con €L\ (PUATU U C,,) such that (v, + /)(Con) N K =0 for n € N.
m<n

The proof that there exists a family of Cantor sets {C,, ,; a <w;, n €N}
for which (y,f)(z) ¢ K for z € C, is analogous. w]

THEOREM 2.1. Assume CH. For each non constant function f € CIV P there

exists a function g € CIVP such that f+g¢ CIVP and f+g¢D.If f €D,
then ge DNCIVP.

Proof.
(1) Let f € CIVP\C, and z, be a point at which f is discontinuous from

the right (if f is a discontinuous function from the left, the proof is similar). By
[1; Lemma, 3.2], there exists a finite number ¢ € K+ (f,z,) \ {f(z,)}- Put

O

~f(z) if x>z,

We can easily see that g € CIVP, (f+g)(z,) = f(zo)—c # 0 and (f+g)(z) =0
for z > x,. This implies that f+g ¢ CIVP and f+g ¢ D. Moreover, if f € D,
then g € D.

(2) Assume that f € C\ Const. Denote by K C (R\ f(4;)) N (0,1) a
Cantor set, and by {I,},cy the family of all intervals having rational endpoints
for which I, \ A7 # 0. Let {y_}, <w, b€ an uncountable sequence of all real
numbers. By Lemma 2.2, we can find a family {C, .} ey a<w, Of Cantor sets
such that C, , C I, and (y, + f)(z) ¢ K for z € C, ,,. Let 5 € R\ A7. Then
z, is a point of bilateral accumulation of R\ Af. Let ¢ = f(z,) — 1, and put

Yoo fzeC,,,
g(z)=¢ —c if z =z,
—f(z) otherwise.
We shall prove that g € CIVP.

Let g(z) # g(y), and let C C (g(m),g(y)) be an arbitrary Cantor set. Denote
by z some point from C. Notice that z and y do not belong to the same
component of Af. Thus there exists an interval I C (z,y) suchthat I \Af # 0,
and a Cantor set C, , C I,, for which g(C,,)={z} C C.

In the same way, we can prove that g € D.

Now we prove that (f+g) ¢ CIVP.Letz; e R\ U U C,, and z, < z,.

a<w) neN

Then (f+9)(zo) =1, (f+9)(z;) =0,and K C ((f+9)(z,), (f+9)(z,)) . Since
(f+9)(z) ¢ K for any = € R, f(C) ¢ K for each Cantor set C C (zg,x,). It
is clear that f+ g ¢ D. a
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THEOREM 2.2. Assume CH. For each non constant function f € CIVP there
erists a function g € CIVP such that fg ¢ CIVP and fg ¢ D. Moreover, if
f€D, then ge DNCIVP.

Proof.

(1) Assume that f is continuous and non constant.

Denote by K C (R f(Af)) N (0,1) some Cantor set, and by {I.},y the
family of all intervals having rational endpoints for which I, \ A7 # 0. Let
{Ya}acw, be a sequence of all real numbers. By Lemma 2.2, we can find a
family {C, .} en a<w, Of Cantor sets such that C, , C I, and (y,f)(z) ¢ K
forze€C, . Let 2, € R\ A/. Put

Y ifzeC,,,
o) = | V@ @ A0 md g U g; Coms
0 if (f(a:)=0 and z ¢ U ijayn) or T =21,.
a<lw) n=1

We shall prove that g € CIVPND.

Let g(z) # g(y), and let C C (g(z), g(y)) be an arbitrary Cantor set. Denote
by z some point from C. Notice that z and y do not belong to the same
component of A7. Thus there is an interval I, C (z,y) such that I, \ AY #0,
and we can find a Cantor set C,, , C I, for which g(C, ) = {z} C C. Now we
prove that (fg) ¢ CIVP. Let

z, € (R\ U U ca,n) N (4, 00) -

a<w; neEN

Then (fg)(z,) = 0, (fg)(z;) = 1, and K C ((f9)(z,), (fg)(x,)). Since
(fg)(z) ¢ K for any z € R, f(C) ¢ K for each Cantor set C C (x,,z,;).
In the same way, we can prove that fg ¢ D.

(2) Suppose that f € CIVP\C. By (1), we can assume that if I is a closed
interval and f l I is continuous, then f | I is constant.

We shall prove that there is a point x, € D(f) for which f(z,) # 0.
Assume that f(D(f)) = {0}. Then there exists a point z, of continuity of f
at which f(z,) # 0, and an interval J such that z, € J and f| J is continuous.

Therefore we have that f | J is constant. Let a = inf {x; f l[z 2] is continuous}

and b= sup{x; f|[z z] is continuous}. Because f ¢ C, (a,b) # R . Assume
0

that a # —oco. So f is discontinuous at a and f(a) # 0. This is impossible
because we assume that f(D(f)) = {0}. Therefore we can assume that f is
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discontinuous at z, from the right, and a = f(z,) # 0 (if f is discontinuous at
z, from the left, the proof is similar).
We shall consider two cases.
(a) There exists a sequence {z,}°°,; such that =, \, z, and f(z,) =0.
Define g: R — R by

2a for z <z,
g9(z) =
2a — f(z) for z>z,.
According to [1; Lemma 3.3 and Theorem 3.5], g € CIVP, and if f € D, then
g € D. On the other hand, fg ¢ CIVP and fg ¢ D since fg(z,) = 2a?, and
for z >z,
f9(z) = (2a ~ f(2)) f(z) < a® < 2a°.

(b) There exists d > 0 for which f(z) # 0 for z € (zy,z, + d]. Let ¢ ¢
{£f(z,),0} be a point from K*(f,z,). By [1; Lemma 3.2], such a point exists.
Then we define

1/]|¢| for x <z,
g9(z) = < 1/|f(z)] for z € (zy, 7y +d],
1/|f(zq+d)| for z>z,+d.
By [1; Lemma 3.3 and Theorems 3.4, 3.5], g € CIVP. Notice that fg(z,) =
f(zg)/le] # %1, and fg(z) = *1 for = € (zy,z, +d]. Thus fg ¢ CIVP and
fg¢D. 0

COROLLARY 2.1. M (CIVP) = M, (CIVP) = M (D n CIVP) =
M, (DN CIVP)=_Const.

THEOREM 2.3. Assume CH. Let {f,},.,, be a class of real functions. Then
there is a function f € CIVPND such that f4 f, € CIVPND forall a <c.

Proof. Let {I,}22, be a sequence of all intervals having rational end-
points. Let {C, ; ,: n €N, i=1,2, a<c} be a class of Cantor sets which

fulfils the conditions:

Cn,i,a n Cm,j,ﬁ :/7é @ for (naia a) 7& (majaﬂ)

and
Criia C 1 where neN, i=1,2, a<c.
Let {z,},. be a sequence of all real numbers. Put
T, ~ fo(z) forzeC, ,,,
f(@) =1 z, forzeC,,,, neN, a<c,
0 otherwise.y Y
Then f, f+f, € CIVPND. =)
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COROLLARY 2.2. Every f: R — R can be expressed as the union of two
CIV P functions.

THEOREM 2.4. Let f: R — R. Then there exist CIV P functions g,h: R - R
such that f = gh.

Proof. Let {1}, beasequence of all open intervals whose endpoints are
rationals. Then we can find families of pairwise disjoint Cantor sets {C ,}32,
and {Cj ,}%2, such that C) , C I, for each k € N, n =1,2. We can represent
cach set Cy ,, k € N, n = 1,2, as the union pairwise disjoint Cantor sets
U Cyna- Let {r,},c. be anet of all real numbers different from zero. Put
a<c

Ty ifzeCy,,, kEN, a<c,
g(z) =4 f(x)/r, fz€C,,, kEN, a<ec,
f(z) otherwise,
and
f@)/r, ifzeC,,, kEN, a<ec,
h(z) =< r, fzeCy,,, kEN, a<ec,
1 otherwise.
We can easily see that gh = f and f,g€ CIVP. a

If {f,},cs is an arbitrary class of real functions, then f =0=0f, € CIVP
for all ¢ € 7. Let us ask whether Theorem 2.3 is true if a sum becomes a

composition and assume that f # 0. The answer is negative, even if the family
f, contains only one function.

REMARK 2.2. There exists a function f such that fg ¢ CIVP for each
function g € CIVP \ {0}.

Proof. Denote by A a Bernstein set. Put
0 ifzeAd,
f(“")“{1 if z€R\A.

Assume that there exists a function g € CIV P \ {0} such that fg € CIVP.
Then we can find a point ¥y € R\ A such that g(y) # 0. Choose an = €

AN (—o00,y). Then does not exist a Cantor set C C (z,y) such that fg(C) C
(0, f9(y)). O

EXAMPLE 2.1. There ezists a family F C B, with card(F) = ¢ such that for
each function g: R - R if fg€ CIVP for each f € F, then g =0.

Proof. Let {z,},.. be anet of all reals. Put

ful) = {

1 ifr=2z,,
0 if x#zx,,
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If g #0, then there exists a point a such that g(a) # 0. We can find an « < ¢
such that a =z, and we have gf = g(a)f, ¢ CIVP. O

THEOREM 2.5. Assume CH. Let {f, }%>, be a countable family of Lebesgue
measurable functions. There exists a Lebesgue measurable function fe€ CIV PND
such that f # 0 and ff, € CIVPND for all k € N. Moreover, if for each

k € N, f, 1is with the Baire property, then f can be taken with the Baire
property, too.

Proof. Let [f, = 0] = {z € R; f,(z) =0} and [f, # 0] = {z € R;
z) # 0} for k € N. Denote for each £k € N by S, (P,) the set of all
points = € [f, # 0] (z € [f, = 0]) for which there exists ¢ > 0 such that
(x - 6 z +¢e)N[f, 7é 0] ((z — €,z +¢) N[f, = 0]) has measure zero, and let

U S,, P= U P,.Fix a k € N. If [f, = 0] has positive measure, then

let A, C [fr = 0] \ P be a Borel set c-dense in itself such that the measuire of
f, = 0] \ A, is zero. Otherwise, let A, = 0. If [f, # 0] has positive measure,
then let B, C [f), # 0]\ S be a Borel set c-dense in itself such that the measure
of [f, # 0]\ By is zero. Otherwise, let B, = 0. Let {I }°°, be a family of
all open intervals having rational endpoints. By [7; Lemma 2], there exists a
family of pairwisc disjoint sets {C} ., K} }y ey Such that C, C I N4,
K,,cIl, NB,,

{ is a Cantor set if I, N A, #0,
Ckn:

0 ifI,NnA, =0,
and ‘ )
K _{1saCantor set if I, "B, #0,
S ) if I NB, = @
We can represent each Cantor set K, , as the union U U Kj. na Of pair-
” i=1a<c
wise disjoint Cantor sets for k,n € N. Similarly, let C, = U Cy , ., where
’ a<c Y

{Cr n.ata<c is anct of pairwise disjoint Cantor sets. Let {z,}

atace De a transfi-
nite sequence of all reals. Put

T, ifzeCy, UK, .,
fl@)=1q z,/fi(z) ifz€K;, ,, kneN, a<ec,
0 otherwise.
Then f € CIVPND is a Lebesgue measurable function, and
z, f(x) ifreK; .,
T ifze K2 |
ffz)=q ° o
zof (@) fi(z) if z€ K, ., keN\{s},
0 otherwise
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for s € N. Let = < y, and assume that ff (z) < ff,(y). Choose a Cantor set
K C (ff,(z),ff,(y)), and denote by z some point belonging to I . Then there
is an interval I, C (z,y) such that B, NI, # 0, z =z, for some a < ¢, and
ff(K2, ) ={z} C K. Similarly, we can prove that ff, € D.

If the functions f, have the Baire property, then we can easy sce that f has
the Baire property. a

3. Uniform limits of CIV P functions

THEOREM 3.1. CIVPCU.
Proof. Fix an open set U C [iIJlff, supf] = [m,M], f € CIVP, and
J

J = [a, ] C R. Let A be a set of cardinality less then ¢, and (a,b) be an
interval whose closure is contained in U. Then there are numbers o ,8, € J
such that

m< f(a) Sa<bs< f(B)< M.

Let I€ C (a,b) be a Cantor set. Then there exists a Cantor set C' C (ay, ;)
such that f(C) C K C (a,b). Because C\ A #0, 0 # f(C\ A) C (a,b) CU.
d

THEOREM 3.2. In the class of all Borel measurable functions, U is a proper
subset WCIV P.

Proof. Fix a Borel measurable function f € U and points a,b € R such
that f(a) < f(b). Assume that a < b. Then B = f~1((f(a), f(b)) N (a,b) is a
Borel set whose cardinality is equal to the continuum, and we can find a Cantor
set C C B. 1t is easy to observe that f(C) C (f(a), f(b)).

To prove that U # WCIV P, we consider a function

@) ={

T if x>0,
—1 otherwise.

(]
REMARK 3.1. In the class of all Borel measurable functions, U\ CIVP # 0.

Proof. Let {I,}2, be a family of all open intervals having rational end-

points, and let {C,,, }° _, be a sequence of pairwise disjoint Cantor sets such

that C, , C I, . Denote by {g,,}5_; an enumeration of all rationals. Define
q. ifzxze€ C,my MmEN,
fl@y=q¢"" e
0  otherwise.
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Then f(J\ A) =R for cach interval J, for each a set A of cardinality less then
c,s0 feU.Let K C R\ Q be a Cantor set. Then f(C)N K = ( for cach a
Cantor set C'. So we have f ¢ CIVP. |

THEOREM 3.3. UNWCIVP =U,NWCIVP.

Proof. For the proof, we must show that if f € UyNWCIV P, then f € U.
Assume that a < b, f(a) < f(b). Put by J = [a,b]. Denote by U C (f(a), f(b))
some open interval and by A arbitrary set for which card A < c¢. Because f(.J)
is dense in U, then there exist points z,,z, € J and y,,y, € U such that
Yy # Yo, f(zy) =9y, and f(z,) = y,. We can find a Cantor set C C (z,,z,)
with f(C) C (y;,y,). Since C'\ A is non-empty, then there exists z € C \ A
and f(z)eU. a

REMARK 3.2. U,NCIVP is a proper subset of Uy N WCIVP.

Proof. We need only prove that the inclusion is proper. Let {1 }2°; be a
sequence of all open intervals having rational endpoints. Choose a net of pairwise
disjoint Cantor sets {C, ,},en ace With C, , C I,,. Let K be a Cantor set,

and {r,} be a net of all points of R\ K. Define

r ifaceooC , a<c,
f(IE)_{ « nL=Jl n,a

a<c

0 otherwise.
Then f € (U,NWCIVP)\ (U,NCIVP). O
REMARK 3.3. WCIVP is not uniformly closed.

Proof. Put
-1 ifz<0,

fo(z)=4q x/n if z€(0,1),
1/n  otherwise
for n € N. Then f, € WCIV P, f, is uniformly convergent to
(2) = -1 if <0,
TE =0 ite>o,
and f ¢ WCIVP. O

THEOREM 3.4. If f is the uniform limit of a sequence {f,}5>, of CIVP
functions, then f € UyNWCIVP.

Proof. Let J = [a,b]. Without loss of generality, we can assume f(a) <
f(b). Let U be an open interval whose closure is contained in (f(a), f(D)).
Express U as (y—e¢,y+¢). Then there exists an n € N such that |f, (z) — f(2)]
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<¢/4 for x € J, and f,(a) < y—¢€ and f, (b) > y+¢€. Since f, € CIVP,
there exists a Cantor set C' C (a,b) such that f (C) C (y —e/4,y + €/4).
Then f(C) C (y —€/2,y +¢/2) C U, and this implies that f € WCIVP.
Because CIVP C U and U is closed under the operation of uniform limit ([3]),
feucu,. O
LEMMA 3.1. Let J = (a,b), f €eUyNnWCIVP, A= f~1(J), and denote by
{I,,}5°_, the set of all intervals having rational endpoints for which I ,NA # 0.
If A# 0, then there exists a sequence of-pairwise disjoint Cantor sets {C,,}%°_,
such that C,, C ANI_, for m € N.

Proof. Denote by {I,}5°_, the set of all open intervals having rational
endpoints for which I N A # 0. First we shall prove that if f’(I N A) is

constant, then I C A.

Assume that fl(] N A) is constant, z € I \ A and f(I,,NA) = {z}. Then
f(z) ¢ (a,b). Suppogg that f(z) > b. Let U = (2,b). Because f(I,)NU =0,
then f ¢ U.

Choose an m € N. If f’(I N A) is constant, then we can find a Cantor
set K, C I NA. Otherwise,mthere exist points z,,,y,, € I, N A such that
f(z,,) < f(y,,)- Then there is a Cantor set K, C (z,,,¥,,), and f(K,) C
(f(@), f(,)) - Thus K,, € f71(f(K,,)) C f71(J) = A. By [7; Lemma 2],
we can find a sequence of pairwise disjoint Cantor sets {C, }o°_; such that
C,CK, cI nA foreach meN. O

THEOREM 3.5. If f € U, N WCIV P, then f is the uniform limit of some
sequence of CIVP ND functions.

Proof. Choose an € > 0. It is enough to prove that there exists a function
g € CIVPND with ||f —g|| < e.If f is constant, then we can put g = f. If
g is not constant, we can assume without loss of generality that the closure of
range of f is R. Now decompose R into disjoint half open intervals {J }°
cach of length /2. Put A, = f~!(int(J,)). Choose an n € N. Denote by
{1, m}oe_, the family of all open intervals having rational endpoints for which
I,..NA, #0.By Lemma 3.1, there exists a sequence {C,, ,, }70_; of pairwise
disjoint Cantor sets such that Chm C 1, nNA, . We may decompress each Crm
into pairwise disjoint Cantor sets {C,, . . },.- Denote by {r, ,},. the net of

all points of _J: Now define the function

o0
r,o. forze U C,,. ., neN, a<ec,
glz)=9 m=1

f(z) otherwise.
It is obvious that [|f — gl| < €. To show that g € CIV P, we suppcse that

a < b and g(a) < g(b). Choose a Cantor set K C (9(a),g(b)). Then there
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exists a point 7, , € K NJ, for some n € N and a < ¢, and a Cantor set
Chrma CA,N(a,b) for which g(C,, . ,) ={r, .} C K. Similarly, we can prove

that g € D. O
According to Theorems 3.4 and 3.5, we can prove the following Theorem.

THEOREM 3.6. The uniform closure of CIVP is Uy N WCIVP.Y

4. Pointwise and transfinite limits

THEOREM 4.1. FEvery real function of real variable f is a pointwise limit of
CIVPND functions f,. If f is measurable or has the Baire property, then f,
can be measurable or have the Baire property, too.

Proof. Let {I,}32, be a sequence of all open intervals having rational
endpoints. We can find a family {Ck,n}z?n::l of pairwise disjoint Cantor sets
such that €,  C I, for k,n € N. Represent each C , as the union (J C

a<c
of pairwise disjoint perfect sets. Let (z,),., be a transfinite sequence of all

reals. Put

An,a

o)
Dn,cx = U Ck,n,a
k=1

and

T, ifzeD,,,
) ={ '

f(z) otherwise

a<c,

for n € N. Then f, € CIVP ND. We shall show that
f(z) = lim f,(z). (1)

n—oo

Choosean zeR. If z ¢ I U D

n=1a<c

(1) holds. Otherwise, z € D, , for some ny € N, a < ¢, and since z ¢ D,, ,
for n > ny, a <ec,so f (z) = f(z) for n > ny, which completes the proof. If
f is mecasurable or has the Baire property, then f,, are measurable or have the
Baire property. a

then f (z) = f(z) for each n € N, and

n,a’

Recall that a function f is the limit of a transfinite sequence (f,),,, of
functions if and only if for each positive € > 0 and = € R there exists an o < w,
such that |f(z) — fz(z)| < e for all B> a.

1) Note that Uy " WCIVP =UNWCIVP =UNPR.
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THEOREM 4.2. FEvery function f: R — R is the limit of a transfinite sequence
(fa)a<w, of CIVP functions with the Darbouz property. Moreover, if f is mea-
surable or has the Baire property, then each f, can be measurable or have the
Baire property.

Proof. Let (I,)52; be a sequence of all open intervals with rational end-
points. We shall use the fact that in each interval I, , we can choose a Cantor
set C, such that C, N C, = 0 for n < k. Represent each C, as a union

U U Cy 4 of pairwise disjoint closed sets. Let (z4) be a net of all reals.

B<c
a<w) B<c
Put -~
Do = Cran
k=1
and

fa(:r){xﬁ ifxepa’ﬂ,ﬂ<c,
f(z) otherwise
for @ < w,. Then each function f, € CIVP ND. We shall show that

flz) = Jim f,(@). 2)
Choose an z € R. Then either z ¢ U U D, 4, s0 f,(z) = f(z) for each
a<w; f<c
a<w.lfzeD, ; forsome f<c,thenz¢ D, fory>p,so0 f,(z)=f(z)
for v > . O
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