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ON AN APPLICATION 
OF A NEWTON-LIKE METHOD TO THE 

APPROXIMATION OF IMPLICIT FUNCTIONS 

IOANNIS K. ARGYROS 

ABSTRACT. We use a Newton-like method to approximate implicit functions 
in Banach spaces . The nonlinear equations involved contain a nondifferentiable 
term . Our hypotheses are more general than C h e n - Y a m a m o t o ' s [3], in this 
case. 

I. Introduction 

Let E, A be Banach spaces and denote by U(x°, R) the closed ball with 
center x° G E and of radius R in E. We will use the same symbol for the norm 
|| || in both spaces. Suppose that the nonlinear operators F(x, A), G(x, A) and 
the linear operator A(x, A)(-) with values in E denned for x G U(x°, R) and 
A E U(A0, 5) are such that F is Frechet differentiable there, A(x°, Ao)"1 exists 
and 

11.40-°, A o ) - 1 ^ * , A) - A(x°, A))|| < v,(\\x - x°\\) + b, (I) 

\\A(x°, \0)-
1(A(x°, A) - A(x°, A0))|| < h(s)\\X - A0||, (2) 

||A(x°, Ao)"1 [F'(x + t(y - x), A) - A(x, A)] || 

< u,.(||x - x°|| + t\\y - x\\) - vs(\\x - x°||) + c (3) 

for all t G [0,1] and 

11.40°, Aor^oO, A) - G(y, A))|| < e.(r)||x - y\\, (4) 

for all x, y G U0°, r) C U(x°, R) and A G U(A0, s) C U(A0, S), where 
wa(r + t) — v,(r), t > 0, ki(s) and e,(r) are nondecreasing non-negative 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 47D15, 47H17. Secondary 65J15, 65B05. 
K e y w o r d s : Implicit function, Banach space. 
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functions with tvo(O) = v0(0) = e0(0) = k\(0) = 0, vs(r) is differentiable, 
v's(r) > 0 at every point of [0, R], and the constants b,c satisfy b > 0, c > 0 
and b + c < 1. We need to define the functions 

a. = k(s)\\A(x°, \0)-
1(F(x°, A0) + G(x°,A 0 ) ) | | , (s = 0 if A = A0), 

S 

k2(s)= fki(t)dt, k(s) = (1 -k^s))'1 provided that k2(S) < 1, 

o 
r 

<Ps(r) = as-r + k(s) I ws(t) dt, 

o 
r 

Mr) = Hs)Je3(t)dt, 
o 

X.s(r) = ^a(r) + %j)a(r) + fc(s)(6 + c)r 

and the iterations 

XQ = x , 

x„+1(A) = x„(A) - .4(x„(A), A) - 1 (F(xn(A), A) + G(x„(A), A ) ) , n > 0 

(5) 

and 

j / 0 e U ( x 0 , i ? ) , 
yB+1(A) = y„(A) - A(y„(A), A) _ I (F(y„(A), A) + G(y„(A), A ) ) , n > 0. 

(6) 

By XQ, yo, x°, we mean XQ(X), yo(X), x°(X), that is, e.g., XQ depends on 
the A used in (5). We use the iterations given by (5) and (6) to approximate a 
solution x*(\) of the equation 

F(x, X) + G(x, X) = 0 in U(x°, R), (7) 

under the hypotheses ( l ) - ( 4 ) . 

Our assumptions (1)-(4) generalize the ones made by C h e n - Y a m a m o -
t o (for F(x, X) = F(x) and G(x, X) = G(x)) [3], Z a b r e j k o - N g u e n [12], 
Y a m a m o t o [11] and P o t r a - P t a k (in [7] for G = 0). Moreover, several 
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authors have treated the case when G = 0 provided that ks and k\ are con­
stants (or not) [1], [2], [5], [6], [8], [9], [10], Note that conditions of the form 
(3) are variants of the usual Lipschitz condition with the constant depending 
on the radius of the ball. Such conditions have also been considered in [12] and 
[3], as well as in [1], [4], [6], [7] and [9]. Several applications and justifications 
for the use of conditions like (3) can also be found in the above references. 
One can also claim that for certain choices of the functions ws, v3 and the 
parameter c the right-hand side of (3) does not depend on the radius of the 
ball. Choose for example ws such that for all i , t / G U(x°} r) and t G [0,1], 
ivs(||x — x°\\ -f t\\y — x\\) = vs(\\x — x°\\) + tq\\x — y\\ for some constant q (in­
dependent of r ) with q E (0,1), and c = 0 in (3). Then the right-hand side of 
(3) is independent of the radius of the ball and constitutes the usual Lipschitz 
condition for the operator F'(x, A). 

We provide sufficient conditions for the convergence of iterations (5) and (6) 
to a locally unique solution x*(\) of equation (7) as well as several error bounds 
on the distances | |xn+i(A) - xn(\)\\, ||xn(A) - x*(\)\\, | |yn+i(A) - yn(\)\\ and 
| |y n (A)-x*(A) | | . 

II. Convergence results 

Let us define the numerical sequence 

r 0 e [ 0 , i ? ] , r n + M = r n + 1 = rn + ^ 4 > n ^ ° ' (8) 
ws(rn) 

where u3(r) = xs(r) — a* and ws(r) = 1 — k(s)(v3(r) -f b) , w3(r) = k(s)ws(r) . 
Here a* = a* denotes the minimal value of Xa(r) in [0, R]. Let us denote the 
minimal point by r* = r* . If Xs(R) < 0, then tps(r) has a unique zero t* = t* 
in (0,r*] , since x«(r) is strictly convex. Moreover, it is a simple calculus to 
show as in Lemma 1 in [3, p. 40] that the sequence { r n } , k > 0 is strictly 
monotonically increasing and converges to the unique zero of us(r) in [0,r*], 
r* for any ro G [0,r*). 

Furthermore, let us define the sets 

u = u = i ^ (x°'R)' if XsiR) < ° or Xs{R) = ° and t'==R 

\u°(x°,R), if x.(B) = 0 and t*<R, 

n, = Sl= [J \yeU(x\r)/\\A(y,\)-1(F(y,\) + G(y,\))\\<^±\ 
r e [ 0 , r ' ) 1 *K ' ' 
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for y G Q, 

R,,. = Ry = { r e [0,r*)/||A(y, A ) " 1 ^ , A) + G(y, A))|| < ^ , 

||y-x°|| <rj 

and the numerical sequence {/>„} , n > 0, by 

l>0 = 0 , pn+1,3 = Pn+l = Pn + J , "x , n > 0 . (9) 

wa(Do) 

We can now formulate the main result: 

THEOREM 1. Suppose that Xs(R) < 0. 

Then 

(a) <he equation (7) /las a solution x*(A) in U(.r°, £*), which is unique 

in U ; 
(b) for any j/o 6 ft, the iterations (5) and (6) are well defined for all 

n > 0, remain in U°(.r°, r*) and satisfy the estimates 
||yn+i(A) - yn(A)|| < r n + 1 - rn , n > 0, (10) 

| | y » ( A ) - * ' ( A ) | | < r * - r n , n > 0 , (11) 

||x„+i(A) - x„(A)|| < p n + 1 - D„, n > 0 (12) 

and 
I M A ) - x * ( A ) | | < r ' - p B , n > 0 , (13) 

provided that ro G -Rj,0 . 

P r o o f . We will only show that the estimate (10) is true for all n > 0. The 
estimates (11)-(13) will then follow immediately (note that x° G ft). 

For n = 0 we must show ||yi(A) — y0|| < n — r0 . Let r0 G Ryo for yo G ft, 
then 

| | y o - z 0 | | < r 0 < r * 

and 

||y,(A) - yo|| = ||.4(yo, A)-1(F(y0 , A) + G(y0, A))|| < ^ \ = r, - r0 . 

Hence 
| | y . ( A ) - x ° | | < r 1 . 
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We will show that ||yn(A) — x° \\ < rn , n > 0, which we showed to be true above 
for n = 0. Let 

l|yn(A) - yn_i(A)|| < rn - rn_i and ||yn - z°|| < r n 

hold for all n < k. 

The inverse of the linear operator A(x, A), x G U(x°, R), A G U(Ao, S) 
exists if the right-hand side of 

A(x,\y1A(x°,\0) 

= [7 + .A(;r0, A ) - 1 ^ * , A) - A(x°, A ) ) ] " 1 ^ * 0 , A ) - 1 ^ * 0 , A0) 

exists. But, A(x°, A) 1 exists, since 

A(x°, A ) " 1 ^ * 0 , A0) = [/ + A(x°, Ao)"1 (A(x°, A) - A(x°, A0))] 

exists. Moreover, by (l)-(8) we get that A(x, A) - 1 exists, 

||yL(y*(A), A) - 1^(x°, A0)|| < * ( * K ( r t ) _ 1 

- 1 

and 

| |y f c + 1(A)-y t(A)| | = ||.4(yt(A), \)~* (F(yk(\), A) +G(yk(\), A))| | 

<\\A(yk(\), A)_1A(x°, Ao)||||A(x°, A0)"1{JF(yfc(A), A) + G(yk(\), \) 

-A(yk-1(\), \)(yk(\)-yk-1(\))-F(yk-1(\), A)-G(yfc_1(A), A)}|| 

< ^ K Í r O - 1 1 j\\A(x°, Ao)"1 (^(yfc-^A) + ť(y*(A) - y*_,(A))) 

-A(yn-1(\),\))\\\\yk(\)-yk-1(\)\\dt 

+ \\A(x°, Ao)"1 (G(yt(A), A) - G(y*_,(A). A) ) | | 1 < 
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(As in [3, p. 42 relation (13)], and [12, Proposition 1], we get) 

< k(s)wa(rk)-
1 J y(t_.(| |y__,(A) - _° | | + t||y t(A) - y„-i(A)||) 

-va(\\yk.1(X)-x0\\))\\yk(X)-yk.1(X)\\dt 

+ c | | y t _ 1 (A) -y t (A) | |+ J ea(t)dt\ 

rk-i ' 

< Ws^k)'1 (u,(rk) - u3(rk-i) + Ws(rk-i)(rk - rk-i)) 

= Ws^k^Us^k) = rfc+1 - rk . 

Moreover, we have 

||y*+i(A) - x°\\ < ||yt+i(A) - yft(A)|| + ||yfc(A) - x°|| < rfc+1 . 

That is, (10) is true for all n > 0 and yn(X) E U°(x°, r n ) C U°(x°, r*). Hence, 
the sequence {yn(A)} is a Cauchy sequence in U(x°, r*) and converges to a 
solution x*(X) G U°(x°, r*) of equation (7). 

The proof of the theorem will be complete if we show that x*(X) is the unique 
solution of equation (7) in U. Let y*(A) be any solution in U. Then we have 

| | y * ( A ) - _ ° | | - a . < | | y * ( A ) - _ 1 ( A ) | | 

1 ll»*(A)-x°|| 

<y* t i ; . (< | | y* (A) - - 0 | | +c ) | | y* (A) -_ 0 | | c l i+ J ea(t)dt. 

0 0 

The above inequality shows x_(||y*(A) - x°||) > 0 . Hence, ||y*(A) - x°|| < t* . 

We can show 

| | y * ( A ) - _ „ ( A ) | | < r ' - p B , n>0. (14) 

For n = 0, the above inequality is trivially true. Suppose that it is true for all 
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n < k, then 

||y*(A) - .cfc+1(A)|| = ||y*(A) - xk(\) + A(xk(\), A ) - 1 (F(xk(\), A) 

+ G(xk(X), \))-A(xk(\), \)-'(F(y*(\), \) + G(y*(\), \))\\ 

< •H.-Ktpt)-11 J\\A(x°, A0)-
1F'(xfc(A) + t(y*(\) - xk(\)) 

- A(xk(\), \))\\\\y*(\) - xk(\)\\dt 

+ ||.4(x°, Ao)"1(o(y*(A), A) - G(xk(\), A) ) | | | 

< fc^K^fc)"11 J(w,(t) + e3(t))dt + (b + c - l)(r* - pk) + wa(pk)(r* - pk)\ 

= ws(pk)~
1 (x,(r*) - Xs(Pk)) +r* -pk = r* - pk+i . 

Hence, (14) is true for all n > 0. By taking the limit in (14) as n —> oo we 
get **(A) = y*(A). 

That completes the proof of the theorem. 

We will now generalize the function X*(r) • Let V £ -̂  a r-d choose ry £ Ry 

(fixed) and set 

aSyy = ay = k(s)\\A(y(\), A)"1 (F(y(A), A)+G(y(A), A) ) | | , 

f k(s), if y = x° and ry = 0 
dmm, = i3}У — dy — < 

v s \ i y 

and 

*" (ry)
 l , otherwise 

Xsyy(r) = Xy(r) = ay + dy 
k(y)f f(wа(ry +t) + eя(ry +t))dt + b + c)-r 

1 o 

Moreover, let us define the numerical iteration {qn} > n > 0, by 

gn+1,3 = gn+i = qn + , * y , r , g o = 0 , y 0 = y , n > 0 . 
dyws(ry + qn) 

Then exactly as in Proposition 1 and Theorem 2 in [3, p. 45] we can show 
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THEOREM 2. Suppose that the hypotheses of Theorem 1 are true. 
Then 

(a) the ball u(x°, - ^ - i j C Ü; 

(b) the equation Xy(r) has a unique zero q* = q* in [0, r* — ry] and 
Xy(r*-ry)<0. 

(c) Moreover, the following estimates are true 

| | y n + i ( A ) - yn(A) | | < an+i - qn, n > 0 

and 

||yn(A) - x*(A)|| < <l* " qn < r* - ry , n > 0. 

R a i l in [8] and R h e i n b o l d t in [10] showed convergence of (5) to x*(X) 
in a closed ball centered at x* when G = 0, F(x, A) = F(x) and vs , to., are 
constants if F'(x*)_1 exists. 
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