Mathematic Slovaca

Tadeusz Wesołowski

Subdirectly irreducible decomposition of some algebras having the semilattice structure

Mathematica Slovaca, Vol. 40 (1990), No. 1, 31--35

Persistent URL: http://dml.cz/dmlcz/129532

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SUBDIRECTLY IRREDUCIBLE DECOMPOSITION OF SOME ALGEBRAS HAVING THE SEMILATTICE STRUCTURE

TADEUSZ WESOŁOWSKI

0. In this paper we consider algebras of type $\tau:\{+, \cdot\} \rightarrow \mathbb{N}$, where $\tau(+)=\tau(\cdot)=2$. Denote by \boldsymbol{D} the variety of all distributive lattices of type τ and by S_{0} the variety of all algebras of type τ satisfying the following identities:
(1) $x \cdot y=z \cdot t$;
(2) $x+(x \cdot y)=x$;
(3) identities which define +- semilattices.

In [5] algebras from the join $D \vee S_{0}$ of varieties D and S_{0} were studied. In particular, the following facts were proved there:
(i) identities (2), (3) and the following identities (4) - (7):
(4) $x \cdot y=y \cdot x$;
(5) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$;
(6) $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$;
(7) $(x \cdot x) \cdot y=x \cdot y$,
form an equational base of $D \vee S_{0}$;
(ii) if $\mathscr{A}=(A ;+, \cdot) \in D \vee S_{0}$, then the mapping $h: A \rightarrow A$ defined by the formula:

$$
h(x)=x \cdot x \quad \text { for } \quad x \in A
$$

is a retraction of \mathscr{A} such that $(h(A) ;+, \cdot)$ is a distributive lattice, $h(x) \leq x$ and $x \cdot y=h(x) \cdot h(y)$ for all $x, y \in A$.
In this paper we describe all subdirectly irreducible algebras from $D \vee \boldsymbol{S}_{0}$. In order to attain this we shall use the notion of a disjunctive lattice, which was introduced in [4] as an utilization of the notion of a disjunctive poset for lattices (cf in [1], [3]).

Let us recall that a lattice $\mathscr{L}=(L ;+, \cdot)$ with the least element $0 \in L$ is called disjunctive if for all $a, b \in L$ the following condition holds:
(iii) if $a<b$, then there exists $c \in L \backslash\{0\}$ such that $c \leq b$ and $a \cdot c=0$.

Lemma 1. Let $\mathscr{L}=(L ;+, \cdot)$ be a distributive lattice with the least element $0 \in L$. Then \mathscr{L} is disjunctive iff for each nontrivial congruence Θ of \mathscr{L} there exists $c \in L \backslash\{0\}$ such that $c \equiv 0(\Theta)$.

Proof. (\Rightarrow). It was proved in [4].
(\leftarrow). Let $a<b$ for $a, b \in L$. Then the principial congruence $\Theta(a, b)$ of \mathscr{L} is not trivial, so $c \equiv 0(\Theta(a, b))$ for some $c \in L \backslash\{0\}$. Using the G. Gratzer-E. T. Schmidt theorem (cf [2], p. 74) we have $a \cdot c=a \cdot 0=0$ and $b+c=$ $=b+0=b$.

1. It is known that each nondegenerated subdirectly irreducible member of \boldsymbol{D} is isomorphic to the two-element lattice $\mathbf{2}=(\{0,1\} ;+, \cdot)$, where $a+b=$ $=\max \{a, b\}$ and $a \cdot b=\min \{a, b\}$ for $a, b \in\{0,1\}$. Similarly, each nondegenerated subdirectly irreducible member of S_{0} is isomorphic to the algebra $\mathbf{2}=(\{0,1\} ;+, \cdot)$, in which $a+b=\max \{a, b\}$ and $a \cdot b=0$ for $a, b \in\{0,1\}$. In fact, if $\mathscr{A}=(A ;+, \cdot) \in S_{0}$, then the reduct $(A ;+)$ of \mathscr{A} is a semilattice and congruences of $(A ;+)$ and \mathscr{A} coincide.

Of course, algebras $\mathbf{2}$ and $\mathbf{2}$ are examples of subdirectly irreducible members of $\boldsymbol{D} \vee \boldsymbol{S}_{0}$. For another example let us consider a distributive disjunctive lattice $\mathscr{L}=(L ; \oplus, \odot)$ with the least element $0 \in L$ and let us put $L_{e}=L \cup\{e\}$, where $e \notin L$. Now we define on L_{e} two binary operations + and \cdot as follows. If $a, b \in L$, then $a+b=a \oplus b$ and $a \cdot b=a \odot b$. If $a \in L_{e} \backslash\{0\}$, then $a+e=e+a=a$. Finally we put $0+e=e+0=e$ and $a \cdot e=e \cdot a=0$ for each $a \in L_{\mathrm{e}}$. It is easy to check that the algebra $\mathscr{L}_{e}=\left(L_{e} ;+, \cdot\right)$ satisfies identities (2) - (7), so by (i), $\mathscr{L}_{e} \in \boldsymbol{D} \vee S_{0}$. Observe that L is a subalgebra of \mathscr{L}_{e} and $L=h\left(L_{e}\right)$, where h is a retraction of \mathscr{L}_{e} defined in (ii). Indeed, for $x \in L_{e}$ we have $h(x)=x$ for $x \in L$ and $h(e)=0$. Below, the operations \oplus and \odot will be denoted by + and \cdot, respectively.

Theorem 1. If $\mathscr{L}=(L ;+, \cdot)$ is a distributive disjunctive lattice and $e \notin L$, then the algebra \mathscr{L}_{e} is subdirectly irreducible.

Proof. Let \sim be the kernel of h. We have $[0]_{\sim}=\{0, e\}$ and $[a]_{\sim}=\{a\}$ for each $a \in L \backslash\{0, e\}$. It means that \sim is an atom in the lattice of all congruences of \mathscr{L}_{e}. If \mathscr{L}_{e} is subdirectly reducible, then there exists a nontrivial congruence Θ of \mathscr{L}_{e} such that $\sim \cap \Theta=\omega_{L_{e}}$. Hence $0 \not \equiv e(\Theta)$ and the restriction Θ_{1} of Θ to the subalgebra L of \mathscr{L}_{e} is a nontrivial congruence of \mathscr{L}. Therefore, by Lemma 1 there exists $c \in L \backslash\{0\}$ such that $c \equiv 0\left(\Theta_{1}\right)$. Then $c \equiv 0(\Theta)$ and consequently $c=c+e \equiv 0+e=e(\Theta)$. Thus $e \equiv 0(\Theta)-$ a contradiction.

Note that the algebra $\mathbf{2}$ is of the form $\mathbf{1}_{e}$, where $\mathbf{1}=(\{0\} ;+, \cdot)$ is the one-element disjunctive lattice and $e=1$.
2. For an algebra $\mathscr{A}=(A ;+, \cdot) \in D \vee S_{0}$ denote by h the retraction of \mathscr{A} defined in (ii). Let \mathscr{L}^{h} denote the distributive lattice $(h(A) ;+, \cdot)$ and let \sim be the kernel of h. Assume that 0 is the least element of \mathscr{A}.

Lemma 2. (a). If $u \in A$, then $[u]_{\sim}$ is a subalgebra of \mathscr{A} and $\left([u]_{\sim} ;+, \cdot\right) \in S_{0}$; (b) Each congruence Θ of $\left([0]_{\sim} ;+, \cdot\right)$ can be extended to some congruence Θ^{*} of \mathscr{A};
(c). If $x \in h(A)$, then the relation $\varrho_{x} \subseteq A \times A$ defined as follows:

$$
a \varrho_{x} b \quad \text { iff } \quad a+x=b+x
$$

is a congruence of \mathscr{A}. Moreover, ϱ_{x} is trivial iff $x=0$.
Proof. (a). Since $\left(A ;+\right.$) is a semilattice, $[u]_{\sim}$ is closed under the operation +. Further, if $x, y \in[u]_{\sim}$, then $h(x \cdot y)=h(x) \cdot h(y)=h(u) \cdot h(u)=h(u)$ and $x \cdot y=h(x) \cdot h(y)=h(u)$. Thus $x \cdot y \in[u]_{\sim}$ and the algebra $\left([u]_{\sim} ;+, \cdot\right)$ satisfies (1).
(b). For a congruence Θ of $\left([0]_{\sim} ;+, \cdot\right)$ we define a relation $\Theta^{*} \subseteq A \times A$ putting

$$
x \equiv y\left(\Theta^{*}\right) \quad \text { iff } \quad x \sim y \quad \text { and } \quad x \equiv y(\Theta) \quad \text { if } \quad x, y \in[0]_{\sim} .
$$

We see that Θ^{*} is an equivalence on A. Let $a \equiv b\left(\Theta^{*}\right)$ and $c \equiv d\left(\Theta^{*}\right)$. Then $a \cdot c=h(a) \cdot h(c)=h(b) \cdot h(d)=b \cdot d$, so $a \cdot c \equiv b \cdot d\left(\Theta^{*}\right)$. Now observe that if $h(x+y)=0$, then $h(x)=0$ and $h(y)=0$. Therefore, if $a, b \notin[0]_{\sim}$ or $c, d \notin[0]_{\sim}$, then $a+c \notin[0]_{\sim}$ and $b+d \notin[0]_{\sim}$. Hence $a+c \equiv b+d\left(\Theta^{*}\right)_{\text {. If }} a, b, c, d \in[0]_{\sim}$, then $a \equiv b(\Theta)$ and $c \equiv d(\Theta)$, so $a+c \equiv b+d(\Theta)$ and consequently $a+c \equiv$ $\equiv b+d\left(\Theta^{*}\right)$.
(c). Let $x \in h(A)$. Obviously ϱ_{x} is an equivalence on A. Let $a \equiv b\left(\varrho_{x}\right)$ and $c \equiv d\left(\varrho_{x}\right)$. Then $a+c \equiv b+d\left(\varrho_{x}\right)$ and $(a \cdot c)+x=(h(a) \cdot h(c))+h(x)=$ $=(h(a)+h(x)) \cdot(h(c)+h(x))=h((a+x) \cdot(c+x))=h((b+x) \cdot(d+x))=$ $=(b \cdot d)+x$. Thus $a \cdot c \equiv b \cdot d\left(\varrho_{x}\right)$. If $x=0$, then $\varrho_{x}=\omega_{A}$. On the other hand we have $a+x \equiv a\left(\varrho_{x}\right)$ for each $a \in A$. Therefore, if $\varrho_{x}=\omega_{A}$, then $a+x=a$, so $x=0$.

Lemma 3. If an algebra $\mathscr{A}=(A ;+, \cdot) \in D \vee S_{0}$ is subdirectly irreducible and $\sim \neq \omega_{A}$, then the lattice \mathscr{L}^{h} is disjunctive and there exists $e \in A \backslash h(A)$ such that $\mathscr{A}=\mathscr{L}_{e}^{h}$.

Proof. Observe that the lattice \mathscr{L}^{h} has the least element $0 \in A$. Indeed, otherwise all relations $\varrho_{x}, x \in h(A)$ from Lemma 2(c) are nontrivial congruences of \mathscr{A}. If $a \equiv b\left(\bigcap\left\{\varrho_{x}: x \in h(A)\right\}\right)$ for $a, b \in A$, then $a \equiv b\left(\varrho_{a \cdot b}\right)$ since $a \circ b \in h(A)$. Hence $a=a+(a \cdot b)=b+(a \cdot b)=b-\mathrm{a}$ contradiction.

Put $B=\left\{x \in A \backslash[0]_{\sim}:\left|[x]_{\sim}\right|>1\right\}$ and $\mathscr{F}=\left\{\varrho_{h(x)}: x \in B\right\}$. For each congruence Θ of the algebra ($[0]_{\sim} ;+, \cdot$) denote by Θ^{*} the extension of Θ from Lemma 2(b). Let $\mathscr{D}^{*}=\left\{\Theta^{*}: \Theta \in \mathscr{D}\right\}$, where \mathscr{D} is the family of all congruences of $\left([0]_{\sim} ;+, \cdot\right)$.

We see that if $B \neq \emptyset$, then families \mathscr{F} and \mathscr{D}^{*} are not empty and $\sim \in \mathscr{D}^{*}$, since \sim is the extension of $[0]_{\sim} \times[0]_{\sim} \in \mathscr{D}$. Further, all congruences from the family $\mathscr{H}=\mathscr{F} \cup \mathscr{D}^{*}$ are not trivial. Let $a \equiv b(\bigcap \mathscr{H})$ and $a \neq b$ for $a, b \in A$. Then $a \sim b$, i.e. $h(a)=h(b)$. If $h(a)=h(b) \neq 0$, then $a, b \in B$ and $a \equiv b\left(\varrho_{h(a)}\right)$. Hence $a=$ $=a+h(a)=b+h(a)=b+h(b)=b-$ a contradiction. If $h(a)=h(b)=0$, then $a, b \in[0]_{\sim}$ and $a \equiv b\left(\Theta^{*}\right)$ for each $\Theta \in \mathscr{D}$. In particular, $a \equiv b\left(\omega_{0 \rho_{\sim}}^{*}\right)$, so $a \equiv b\left(\omega_{[0] \sim}\right)$ - a contradiction.

We have proved $B=\emptyset$. It can be easily verified that the algebra $\left([0]_{\sim} ;+, \cdot\right) \in S_{0}$ is subdirectly irreducible. Therefore, $\left|[0]_{\sim}\right|=2$. Hence $A \backslash h(A)=\{e\}$ for some $e \in A$. It means that the set $\{0, e\}$ is the only one nondegenerated congruence class of \sim, so \sim is the atom in the lattice of all congruences of \mathscr{A}. We have:

$$
\begin{equation*}
a \cdot e=0 \text { for all } a \in A \tag{iv}
\end{equation*}
$$

since $a \cdot e=h(a) \cdot h(e)=h(a) \cdot 0=0$. Further,

$$
\begin{equation*}
a+e=a \text { for all } a \in A \backslash\{0\} . \tag{v}
\end{equation*}
$$

In fact, $e+e=e$ and $a \in h(A)$ for $a \in A \backslash\{0, e\}$. Hence the congruence ϱ_{a} of \mathscr{A}. is not trivial, so $\sim \subseteq \varrho_{a}$. Thus $0 \equiv e\left(\varrho_{a}\right)$, which gives (v).

It follows from (iv) and (v) that $\mathscr{A}=\mathscr{L}_{e}^{h}$. To prove that the lattice \mathscr{L}^{h} is disjunctive we use Lemma 1. Of course, if \mathscr{L}^{h} has exactly one element, then it is disjunctive. Let $|h(A)|>1$ and Θ be a nontrivial congruence of \mathscr{L}^{h}. Let us assume that $[0]_{\Theta}=\{0\}$. Then the relation $\Theta_{e}=\Theta \cup\{\langle e, e\rangle\}$ is a congruence of \mathscr{A}. Indeed, let $a \equiv b\left(\Theta_{e}\right)$ and $c \equiv d\left(\Theta_{e}\right)$ for $a, b, c, d \in A$. If $\langle a, b\rangle \in \Theta$ and $\langle c, d\rangle \in \Theta$ or $\langle a, b\rangle=\langle c, d\rangle=\langle e, e\rangle$, then obviously $a \cdot c \equiv b \cdot d\left(\Theta_{e}\right)$ and $a+c \equiv b+d\left(\Theta_{e}\right)$. If $\langle a, b\rangle \in \Theta$ and $c=d=e$, then by (iv) we have: $a \cdot c=a \circ e=0=b \cdot e=b \circ d$, so $a \circ c \equiv b \circ d\left(\Theta_{e}\right)$. If $a=0$, then also $b=0$ and $a+c \equiv b+d\left(\Theta_{e}\right)$. For $a \neq 0$ we have $b \neq 0$ and by (v), $a+c=a+e=a$ and $b+d=b+e=b$. Hence $a+c \equiv b+d\left(\Theta_{e}\right)$. Then congruence Θ_{e} is not trivial, so $\sim \subseteq \Theta_{e}$. Thus $0 \equiv e\left(\Theta_{e}\right)$ - a contradiction. Therefore $\left|[0]_{e}\right|>1$, which ends the proof of the Lemma.

Theorem 2. If an algebra $\mathscr{A}=(A ;+, \cdot) \in D \vee S_{0}$ is subdirectly irreducible and $|A|>1$, then $\mathscr{A} \cong \mathbf{2}$ or there exists a distributive disjunctive lattice $\mathscr{L}=(L ;+$, -) and an element $e \notin L$ such that $\mathscr{A}=\mathscr{L}_{e}$.

Proof. If $\sim=\omega_{A}$, then $h(A)=A$. Hence $\mathscr{A} \in D$ and $\mathscr{A} \cong 2$. If $\sim \neq \omega_{A}$, we use Lemma 3.

It was proved in [5] that the varieties $D \vee S_{0}, D, S_{0}$ and the trivial variety T of type τ are the only subvarieties of $D \vee S_{0}$. Therefore we have

Corollary. If e is not a member of $\mathbf{2}$, then the algebra $\mathbf{2}_{e}$ generates the variety $D \vee S_{0}$.

Proof. Obviously, the lattice 2 is disjunctive, so $\mathbf{2}_{e}$ is a subdirectly irreducible member of $D \vee \boldsymbol{S}_{0}$. Let $K=\operatorname{HSP}\left(\mathbf{2}_{e}\right)$. Then $K \subseteq D \vee \boldsymbol{S}_{0}$. But $K \neq D$ since $\mathbf{2}_{e} \notin D$ and $K \neq \boldsymbol{S}_{0}$ since $\mathbf{2}_{e} \notin \boldsymbol{S}_{0}$. Thus $K=D \vee \boldsymbol{S}_{0}$.

REFERENCES

[1] BÜCHI, J. R.: Die Boole'sche Partialordnung und die Paarung von Gefügen. Portugalie Mathematica 7 1948, 119-180.
[2] GRÄTZER, G.: General Lattice Theory. Akademie -- Verlag, Berlin 1978.
[3] SIKORSKI, R.: On dense subsets of Boolean algebras. Colloq. Math. 10(2), 1963, 189-192.
[4] WESOŁOWSKI, T.: Subdirectly irreducible locally Booole'an algebras. Studia Scientiarum Math. Hungarica 22 1987, pp. 146-149.
[5] WESOŁOWSKI, T.: On the join of some varieties of algebras having the semilattice structure. Proceedings of the V'th Symposium on Universal Algebra and Applications, Turawa, May 3-7, 1988, in print.

Received February 1, 1988
Wyższa Szkola Pedagogiczna im. Powstañców Ślaskich skrytka pocztowa nr 313 PL-45-951 OPOLE 1 POLAND

ПОДПРЯМО НЕРАЗЛОЖИМОЕ РАЗБИТИЕ НЕКОТОРЫХ АЛГЕБР С ПОЛУРЕШЁТОЧНОЙ СТРУКТУРОЙ

Tadeusz Wesołowski

Резюме

В работе исследуется объединение двух многообразий алгебр с полурешёточной структурой. Получено описание всех подпрямо неразложимых алгебр из рассматриваевого класса и доказано, что он порождается трёхэлементной алгеброй.

