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ON THE LIOUVILLE-TYPE TRANSFORMATION
FOR DIFFERENTIAL SYSTEMS

ONDREJ DOSLY

1. Introduction and preliminary results

Consider a linear differential equation of the second order

Y+ p(x)y =0, (1.1)

AN

where p(x) # 0 is a real function. It is known. <ee 20 T4 ~ 377 !
transform:tio: : .

This so-called Liouville transformation is a very useful tool for the investigation
of qualitative properties of solutions of (1.1), since many oscillations and
asymptotic critera for (1.1) are based on this transformation.

The aim of the present paper is to establish a similar transformation for the
differential systems

y"+ P(x)y =0, (1.3)

where P(x) is a symmetric n x n matrix, and also to show some applications of
this transformation.

Notation. As usually, C™(I) denotes the space of real functions having
continuous mth derivatives on an interval 1. If 4 is a symmetric n x n matrix
(ie. AT=4), A>0 (>0, <0, <0) means that 4 is positive (nonnegative,
negative, nonpositive) definite. The inequalities 4 > B (=, <, <) between two
symmetric matrices mean that (4 — B) > 0 (=0, <0, < 0). Further, |B| =
= (sup v"BTBv)'? denotes the spectral norm of any square matrix. The sym-

t l =
bols E and 0 denote the unit and the zero matrix of any dimension, respectlvely
Let A be a symmetric matrix. A'? denotes the (unique) symmetric positive
definite matrix for which 4'?24'2? = A, the powers A ~'2?, A*'% of 4 have a
similar meaning.

Simultaneously with (1.3) we shall consider the associated matrix system

Y+ P(x)Y =0, (1.4)
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where Y(x) is an n x n matrix. A function y: I - R" is said to be the solution of
(1.3) if y(x)e C*(I) and equation (1.3) is identically satisfied on 1. Solutions of
the matrix system (1.4) are defined analogously.

Now we recall some definitions and concepts which we shall use in the sequel.
Two points a, b in an interval I are said to be conjugate relative to a system

(F(x)y) + Gy =0, (1.5)

where F(x), G(x) are symmetric n X n matrices, F(x) > 0, if there exists a nontri-
vial solution y(x) of (1.5) for which y(a) = 0 = y(b). System (1.5) is said to be
disconjugate on [/ if no two distinct points of I are conjugate relative to (1.5). If
there exists a number ¢ such that (1.5) is disconjugate on [c, o), then this system

is said to be nonoscillatory. In the opposite case the system (1.5) is said to be
oscillatory.

At the end of this section we recall some properties of the so-called
trigonometric matrices. Consider a 2n-dimensional system of the first order

S’ = Q(x)C, C = —Q(x)S, (1.6)

where Q(x) is a symmetric nx n matrix, with the initial condition S(a) =0,
C(a) = E, ael. Then n x n matrices S(x), C(x) are called trigonometric matrices
since they have many of the properties of the sine and cosine functions; par-
ticularly, they satisfy the following identities

ST(x)S(x) + CT(x)C(x) = E, ST(x)C(x) = CT(x)S(x), 1.7
S(x)ST(x) + Cx)C'(x) = E, S(x)C"(x) = C(x)S"(x), '
see e.g. [1]. To emphasize that {S(x), C(x)} is a solution of (1.6) with a matrix
Q(x) and that the initial condition is given in x = a, we shall sometimes denote
this solution {S(x, Q, a), C(x, Q, a)}.
If the matrix Q(x) is nonsingular, system (1.5) can be rewritten as the
n-dimensional system of the second order
Q@7'®)YY+Q0x)Y=0 (1.8)

and it can be shown, see e.g. [6, p. 264], that the pair of matrices Y;(x) = S(x),
Y,(x) = C(x) form the base of the solution space of (1.8) in the sense that every

solution Y(x) of (1.8) can be expressed in the form Y(x) = Y, (x)C, + Y, (x)C,,
where C,, C, are constant n x n matrices.

2. The Liouville-type transformation

Theorem 1. Let P(x)e C*X(I), P(x) > 0, be a symmetric nx n matrix. There
exists a nonsingular n x n matrix H(x)e C*(I) for which
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HY(x)H(x) — H'(x)H'(x) = 0,
_ (2.1
H(x)H"(x) = P '"*(x)
such that the transformation y = H(x)u transforms the system (1.3) into the
system
(HT)H)u'Y + [H(x)H"(x) + (H'(x)H(x))"'Ju = 0. (2.2)

Proof. Let us denote K(x)= (P "(x))P~"(x) — P~ "(x)(P~"*(x)),
L(x) = K(x)P'"*(x) — P'"*(x)K(x) and M(x) be a solution of the matrix equa-
tion

P2(x)M(x) + M(x)P"*(x) = L(x). (2.3)
As the matrix P'"?(x) is positive definite, the matrix M(x) is determined by (2.3)
uniquely, see [2, p. 205]. From the symmetry of the matrices L(x) and P'?(x) it
follows that MT(x) also satisfies (2.3), hence M(x) = M7(x).

Let G(x) be the solution of

G’ =1P"(x)(K(x) + M(x))G, G(a)=E, ael. (2.4)

As P'*(K + M) + [P"(K + M)]" = P'?K + P'?M — KP'* + MP'? =
P'?M + MP'? — L = 0, the matrix G(x) is orthogonal on I (i.e. G~' = G"). If

we set
H(x) = P "(x)G(x), (2.5

we have HVH— H'H' = [(GVP~'"* + G™(P~'Y]lP "G — G"P~'*.
_[P—l/4G/ + (P—l/4)/G] — GT'P—I/ZG + GT[(P—1/4)/P—I/4 _ P_l/4(P_l/4)l]'
'G—GTP_I/ZG/ — %GT(M _ K)PI/ZP—I/ZG + GTKG . %GTP_lﬁPl/z'
K+ M)G =G"GM — LK + K — 1K — 1M)G = 0 and HH" =
— P—I/4GGTP—1/4 — P—l/4P—I/4 — P_]/Z.

Now, let y = H(x)u. Then H'(y" + Py) = H'(H'u + 2H'v' + Hu") +
+ H'PHu = H"(Hu'Y + HTH'v' + (H'"H” + H"P'?P'?H)u = (H"Hu')’ —
— HYHu + H'H'w' + (H'H" + HY(HH")""(HH")"'H)u = (H"Hu') +
+ (HTH" + (HTH)™")u. As the matrix H(x) is nonsingular, y(x) is a solution
of (1.3) if and only if u(x) = H™'(x)y(x) is a solution of (2.2). The proof is
complete.

Remark 1. If we replace the assumption “P(x) > 0" in Theorem 1 by
the weaker condition ““P(x) is nonsingular”, then we can also use the Liouville-
type transforination, but in a modified form, replacing in (2.1) the matrix
P~'2(x) by the matrix |P(x)| '/, where the matrix |P(x)| is constructed this way:
The matrix P(x) can be expressed in the form T7(x) diag{p;(x)} T(x), where
p.(x), i =1, ..., n, are the eigenvalues of P(x) and 7(x) is an orthogonal nxn
matrix. Now we set |P(x)| = T"(x) diag{|p,(x)|} T(x), i=1, ..., n.
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Remark 2. The matrix H(x) is by (2.1) determined uniquely up to a
right multiple by some orthogonal n x n matrix. Indeed, if we replace the initial
condition G(a) = E in (2.4) by G(a) = G,, where G, is an orthogonal nxn
matrix, the statement of Theorem | remains valid.

3. Oscillation criteria

In this section we use the established Liouville-type transformation to derive
several oscillation criteria for systems (1.3), which generalize the known oscilla-
tion criteria for scalar equations (1.1). In our considerations the following two
statements established by Etgen [3] and Morse [5] will play an important role.

Lemma 1 (Etgen). Let F(x) > 0, G(x) > 0 be symmetric nx n matrices and

J |F~'(x) — G(x)|| dx < 2. Then system (1.5) is oscillatorv if and only if

CilHId = v o). Lol B (Y), Gy (X) be symimetric nx n matrices for which
0 < F(x) < F(x), G,(x) = G(x) (0 < F(x) < F(x), G,(x) < G(x)) on some inter-
val [b, o). If the system (1.5) is oscillatory (nonoscillatory), then the system

(F(x)y) +Gi(x)y=0

is also oscillatory (nonoscillatory).

In the following statements we suppose that P(x) > 0 on some interval [b, o0).

Corollary 1. Let the matrig’c H(x) be given by (2.1), H'(x)H"(x) + (H"(x)-
“H(x))™' > 0 on[b, ©) andj ‘ | HT(x)H"(x)| dx < oo. Then (1.3) is oscillatory
if and only ifJ.L tr P'2(x) dx = 0.

Proof. As any matrix satisfying (2.1) is given by (2.5) we have

tr(H'H)' = tr (GTP~'*P~'*G)"' = tr (G'P'*G) = tr P' 2.

The statement follows now from Lemma 1 since n||H'H"| > tr(H"H") >
> —n|H'H"|.

Corollary 2. Let the matrix H(x) be given by (2.1). Iff1 tr P'?(x) dx = oo
and H'(x)H"(x) = 0 (Jd tr P'3(x) dx < oo and H'(x)H"(x) < 0) on some in-
terval [b, o), then (1.3) is oscillatory (nonoscillatory).
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Proof. If j tr P'2(x) dx = oo, then by Lemma 1 and Corollary 1 the

system (HT(x)H(x)u’)’ + (H"(x)H(x))"'u = 0 is oscillatory. As H"(x) H"(x) >
> 0, by Lemma 2 the system (2.2) is also oscillatory. The transformation from
Theorem 1 preserves the oscillation behaviour of differential systems, hence (1.3)
is also oscillatory. Similarly we prove nonoscillation of (1.3) under conditions
stated in brackets.

In order to use Corollaries 1 and 2 for detection oscillation or nonoscillation

of (1.3), we need to verify assumptions H'H” > 0 (< 0) or f |HTH"| dx <

< oo. However, we cannot do it directly, since the matrix G(x) in definition of
H(x) by (2.5) cannot be, in a general case, computed explicitly. The following
statement enables us to avoid this difficulty.

Theorem 2. Let P(x) = D"(x) diag{p,(x)} D(x), where p;(x), i =1, ..., n, are
the eigenvalues of P(x) and D(x) is an orthogonal n x n matrix. Denote R(x) =
= diag{p;""*(x)}, A(x) = R(x)D(x)DV(x)R™'(x), B(x) = R'(x)D'(x)D"(x)-
‘R(x) + R(x)D(x)D"(x)R"(x) and let M(x)= (my(x)), where m;(x)=
= —(8,(x) + a,(x)) (7)) + p"(0) " and (a,(x)) = A).

i) If | trP"»(x)dx = oo and the symmetric matrix M’ + MR *M +

+ MA" + AM + B + RR’ is nonnegative definite on some interval [b, o), then
(1.3) is oscillatory.

i) If JltrP”z(x)dx<oo and M’ + MR7M + MA™ + AM + B +

4+ RR" <0 on [b, o0), then (1.3) is nonoscillatory.
Proof. We shall prove only part i), the proof of ii) is similar. Denote
H(x) = D"(x)R(x)T(x), where T(x) is the solution of

T =(A"(x) + R2(X)M(x))T, T(a)=E, aelb, o).

AT + R72M + (AT + R*M)" = diag {p/} M + M diag {p*} + AT + 4 =
= 0 (see the definition of M). It implies that T(x) is orthogonal. Further
HVH — H'H’ = (T"RD + T'R'D + T'RD’)D'RT — T'RD(DVRT +
+ D'R'T + D'RT’) = T'[((MR™* + A)R> — R*(A™ + R’M)T + T"-
‘(R'R — RR)T + T'"R(D'D"™ — DD™)RT = T"(M + RDDVR — RD’-
DR — M + RD'D'R — RDDVR)T = 0 and HH" = D'RTT'RD =
= DTR’D = D" diag {p;/'*} D = (D" diag {p,"'*} D)'* = P~'?(x). Hence the
transformation y = H(x)u transforms (1.3) into (2.2). H'H” = (T'RD)-
«(D'RT)" = T'RD(D"RT + D'R'T + D"RT” + 2DVR'T + 2DVRT’ +
+ 2D'R'T’) = T'"RDD™RT + T'RR'T + T'R}(AT + R*M)T +
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+ 2T"RDDVR'T + 2T"RDDVR(A™ + R*M)T + 2T"RR'(A™ + R*M)T =

= TT[RDD™R + RR" + R*(R"'D'D'RY — 2R*R*R'M + R?R’M’ +

+ R*(AT + R™*M) (A" + R™>M) + 2RDDVR’ + 2RDDVRR'D'D'R +

+ 2RDDYR™'M + 2RR'R'D'D'R + 2RR’R_2M]T = T'[RDD"™R +

+ RR” — R'D'D'R + RD"D'R + RD'DVR + RD'D'R’ — 2R™'R'M +
+ M’ + R (R'D'D'R)(R™'D'D'R) + R R'D'D"RR™*M + MR™'D'D'R +
+ MR2M + 2RDDVR’ + 2RD'D'DDYR + 2RDDVR'M + 2R'D'D'R +
+ 2R™'R'M\T = T'[RDDYR + RR” — R'D'D"'R + RD"D'R + RD'D"-
‘R + RD'D'R” + M’ — RD'DVR + RD'D'R"'M + MR'D'D'R +
+ MR?M + 2RDDV'R’ + 2RD’'DVR — 2RD’'D"R™'M + 2R'D'D'RIT =
= TT[R(DD'Y'R + RR” + MR*M + M’ — RDDVR~'M + 2RDD"-
‘R™'M + MR'D'D'R + R'D'D"R + RDDVRIT = T"(M’ + MR™*M +
+ AM + MAT + B + RR")T, where the fact that D is orthogonal, i.e.
D’'DT + DD = 0, has been used. Hence, we can write system (2.2) in the form

(T"R*Tw’Y + T"(RR" + R+ M’ + MR’M + AM +

+ MA™ + B)Tu = 0. 3.1)

Now, consider the system
(T"R*Tu’Y + T'R*Tu = 0.

X

As f tr(T"R~*T) dx =J trR~2dx =J tr P2 dx = oo, this system is os-

cillatory, see Lemma 1. Since M’ + MR *M + AM + MA" + B+ RR" > 0,
the system (3.1) is oscillatory, see Lemma 2, and hence (1.3) is also oscillatory.

Remark 3. Consider a diagonal system y” + diag{p,(x)}y =0,i=1, ...,
..., n, and let this system be, e.g., oscillatory (i.e. at least one of the scalar
equations y; + p(x)y =0, i = 1, ..., n, is oscillatory). The set of all orthogonal
n x n matrices G(x)e C? [b, o) is by this system decomposed into two classes.
The first consists of the matrices G(x) for which the system y” + GT(x)-
-diag {p;(x)} G(x)y = 0 is oscillatory, the second consists of G(x) for which this
system is nonoscillatory. Theorem 2 gives a sufficient condition for G(x) to be
in one of these classes. It would be interesting to describe these classes in greater
detail, e.g., in the case when n =2, or to give some nontrivial condition on
p1(x), ..., p,(x) for one of these classes to be empty.

4. Asymptotic formulae

In this section we shall use the Liouville-type transformation to derive certain
asymptotic formulae for solutions of (1.4) involving trigonometric matrices.
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goTheorem 3. Let P(x) > 0; P(x)e C? [b, 0), be R, H(x) be given by (2.1) and
j | HT(x)H"(x)|l dx < co. Then a pair of linearly independent solutions Y, (x),

Y;(x) of (1.4) can be expressed in the form
Y(x) = H(x)[S(x, (H'(x)H(x))"', a) + o(1)]
Y,(x) = H(x)[C(x, (HT(x)H(x))~', a) + o(1)],

where the symbol o(1) denotes an nxn matrix tending to the zero matrix as

X — 00.
Proof. The transformation Y = H(x)U transforms (1.4) into the matrix

system
(HY(x)H(x)U'Y + [HT(x)H"(x) + (H"(x)H(x))"1U = 0. 4.1
Denote in this system Q(x) = (H"(x)H(x))™', W(x) = H"(x)H"(x), i.e. U(x) is
a solution of
Q@' X)UY + Q(x)U = —W(x)U.

As S(x, 0, a), C(x, Q, a) form the base of the solution space of the homogeneous
system (Q~'U’Y + QU = 0, using the standard method of variation of con-
stants a particular solution of (4.1) can be written in the form

Ux) = S(x, Q, a)Di(x) + C(x, @, a) D,(x),

where D,(x), D,(x) are nx n matrices for which

[S(x, Q,a) C(x,Q,a) ] [D;(x)] _[ o ]
C(x’ Q9 a) —S(x’ Q9 a) D;(.X) - L~ W(X)U ’
and according to (1.7) we have

[D;(x)]_[ST(x, 0,a) C'(x,Q, a)'[ 0 ]
Dyx)] T LCT(x, 0, a) —ST(x, 0, a)] L—W(x)UJ’

i.e.
Q0

D,(x) = f C'(t, Q, W) U(2) dt

0

D,(x) = —f ST, Q, W (U() dy,

X

(convergence of the last integrals will be proved later) and thus
U(x) =f S(x, @, nW(U(1) dt, 4.2)

where the identity S(x, Q, a)C"(¢t, 0, a) — C(x, Q, a)S™(t, Q, a) = S(x, Q, 1), see
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[6, p. 265], has been used. Using (4.2) we can now verify that the matrices
U (x) = S(x, 0, a) + V(x), Uy(x) = C(x, Q, a) + V(x) are solutions of (4.1) if
and only if V(x) is a fixed point of the integral operator

o

TV)(x) = J S(x, @, VW) (S, Q, a) + V() dt

RY

and it can also be proved that these solutions form a base of the solution space
of (4.1). Denote % = {U(x), U: [b, 00) » R", U(x) = O(1) for x — oo} and
define a norm on %, | U(x)|ly = sup ||[U(x)|. Then | |, is the Banache norm
on % and xelb. )

lim |T(U) (x)| = lim j S(x, Q, a)W()(S(t, Q, a+ U(t)) dt| <

< lim j IS(x, @, DI (IS Q, @) + NUM@D IW()i| de <

o

<k lim J |W()| dt =0,

k being a real constant, for U(x)e %, since || S(x, Q, t)|| < 1. Thus T'maps % into
itself. Further,

J (S(X, Q’ t)W(t)(Ul(t) -

IT(W) () = T(WU) ()l = sup_

— U,(1) dt SJ IS(x, @, DI W]

sup U0 = V0]l di < [U,() = Va9l f Iw@I dr,
hence T is a contraction mapping for sufficiently large x. By the Banach
contraction principle there exists V(x)e% such that V(x) = T(V)(x), hence
U, (x) = S(x, Q, a) + V(x) is a solution of (4.1) and Y;(x) = H(x)(S(x, Q, a) +
+ V(x)) is a solution of (1.7). Similarly we obtain the asymptotic formula
Y, (x) = H(x)(C(x, Q, a) + V(x)). The proof is complete.
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INMPEOBPA3OBAHME JIMYBWJUJIA OJI1 JUOPOEPEHLUAJIBHLIX CUCTEM

Ondfej'Dosly
Pe3omMme

B pa6oTe ycraHoBnuBaercs npeobpasoBanue JInyBHIIA Ui MHEHHBIX AuddepeHnnantbHBIX
CHCTEM BTOPOTO NOpSAAKa
y'+ P(x)y =0,
rae P(x) cuMMeTpHYeckass MaTpuua pa3mMepHocTH nx n. C MoMoLibio 3TOro npeobpa3oBaHus
0606111a10TCS U3BECTHBIE aCHMIITOTHYECKHE M KoseGaTelbHble KPUTEPHs [UIS CKAJISPHBIX ypas-
HeHuit Ha cayyait auddepeHIMaNbHBIX CHCTEM.
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