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Math. Slovaca 37, 1987, No. 4, 341—349 

ON THE LIOUVILLE-TYPE TRANSFORMATION 
FOR DIFFERENTIAL SYSTEMS 

ONDREJ DOSLY 

1. Introduction and preliminary results 

Consider a linear differential equation of the second order 

y"+P(x)y = 0, (1.1) 

where p(x) ^ 0 is a real function. It is known, see e <? r j " "? '" 1 

transfornr'.i.v 

This so-called Liouville transformation is a very useful tool for the investigation 
of qualitative properties of solutions of (1.1), since many oscillations and 
asymptotic critera for (1.1) are based on this transformation. 

The aim of the present paper is to establish a similar transformation for the 
differential systems 

/ ' + P(x)y = 0, (1.3) 

where P(x) is a symmetric n x n matrix, and also to show some applications of 
this transformation. 

N o t a t i o n . As usually, Cm(I) denotes the space of real functions having 
continuous mth derivatives on an interval L If A is a symmetric nxn matrix 
(i.e. AT = A), A > 0 (^ 0, < 0 , ^ 0 ) means that A is positive (nonnegative, 
negative, nonpositive) definite. The inequalities A > B ( ^ , < , ^ ) between two 
symmetric matrices mean that (A — B) > 0 (> 0, < 0, < 0). Further, \\B\\ = 
= (sup vTBTBv)! 2 denotes the spectral norm of any square matrix. The sym-

VTV = 1 

bols E and 0 denote the unit and the zero matrix of any dimension, respectively. 
Let A be a symmetric matrix. Ax;1 denotes the (unique) symmetric positive 
definite matrix for which AX;2AV'2 = A, the powers _4~12, A±];4 of A have a 
similar meaning. 

Simultaneously with (1.3) we shall consider the associated matrix system 

Y" + P(jc)Y=0, (1.4) 
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where Y(x) is an n x n matrix. A function y: I-> Rn is said to be the solution of 
(1.3) if y(x)eC2(I) and equation (1.3) is identically satisfied on I. Solutions of 
the matrix system (1.4) are defined analogously. 

Now we recall some definitions and concepts which we shall use in the sequel. 
Two points a, b in an interval I are said to be conjugate relative to a system 

(F(x)yJ + G(x)y = 0, (1.5) 

where F(x), G(x) are symmetric nxn matrices, F(x) > 0, if there exists a nontri-
vial solution y(x) of (1.5) for which y(a) = 0 = y(b). System (1.5) is said to be 
disconjugate on I if no two distinct points of I are conjugate relative to (1.5). If 
there exists a number c such that (1.5) is disconjugate on [c, oo), then this system 
is said to be nonoscillatory. In the opposite case the system (1.5) is said to be 
oscillatory. 

At the end of this section we recall some properties of the so-called 
trigonometric matrices. Consider a 2rz-dimensional system of the first order 

S' = Q(x)C, C'=-Q(x)S, (1.6) 

where Q(jc) is a symmetric nxn matrix, with the initial condition S(a) = 0, 
C(a) = E,ael. Then nxn matrices S(x), C(x) are called trigonometric matrices 
since they have many of the properties of the sine and cosine functions; par­
ticularly, they satisfy the following identities 

ST(JC)5(JC) + CT(JC)C(JC) = F, ST(JC)C(JC) = CT(JC)S(JC), 

S(JC)ST(JC) + C(JC)CT(JC) = F, 5(JC)CT(X) = C(JC)5T(JC), 

see e.g. [1]. To emphasize that {S(x), C(x)} is a solution of (1.6) with a matrix 
Q(x) and that the initial condition is given in x = a, we shall sometimes denote 
this solution {S(x, Q, a), C(x, Q, a)}. 

If the matrix Q(x) is nonsingular, system (1.5) can be rewritten as the 
^-dimensional system of the second order 

(Q-\x)Y')' + Q(x)Y=0 (1.8) 

and it can be shown, see e.g. [6, p. 264], that the pair of matrices yj(jc) = -S(JC), 

Y2(x) = C(x) form the base of the solution space of (1.8) in the sense that every 
solution Y(jc) of (1.8) can be expressed in the form Y(jc) = Yx(x)Cx + Y2(x)C2, 
where C,, C2 are constant nxn matrices. 

2. The Liouville-type transformation 

Theorem 1. Let P(x)eC2(I), P(x) > 0, be a symmetric nxn matrix. There 
exists a nonsingular nxn matrix H(x)eC2(I) for which 
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HT'(x)H(x) - HT(x)H'(x) = 0, 

H(x)HT(x) = P-]/2(X)
 { ' 

such that the transformation y = H(x)u transforms the system (1.3) into the 
system 

(HT(x)H(x)u')' + [HT(x)Hff(x) + (HT(x)H(x))~]]u = 0. (2.2) 

Proof. Let us denote K(x) = (P-]/4(x))'P-]/4(x) - p-]/4(x)(P~]/4(x))\ 
L(x) = K(x)P]/2(x) - P]/2(x)K(x) and M(x) be a solution of the matrix equa­
tion 

P]2(x)M(x) + M(x)P]/2(x) = L(x). (2.3) 

As the matrix P1/2(x) is positive definite, the matrix M(x) is determined by (2.3) 
uniquely, see [2, p. 205]. From the symmetry of the matrices L(x) and P1/2(x) it 
follows that MT(x) also satisfies (2.3), hence M(x) = MT(x). 

Let G(x) be the solution of 

G' = \P ]/2(x) (K(x) + M(x))G, G(a) = E, asl. (2.4) 

As P12(K + M) + [P1/2(K + M)]T = P1/2K + P]/2M-KP]/1 + MP]/1 = 
P]2M + MP]1 - L = 0, the matrix G(x) is orthogonal on /(i.e. G] = GT). If 
we set 

H(x) = P~]/4(x)G(x\ (2.5) 

we have HT'H-HTH' = [(GT'P~]/4 + GT(P-]/4y]P~]/4G - GTP"1/4. 
.[P-]/4C + (p-]/4)'G] = GT'P]/2G + GT[(p-]/4yp-]/4 - P-1/4(P-1/4y]. 
.G-GTP]/2G' = \GT(M - K)P]/2P]/2G + GTKG - \GTP~]/2P]/2 • 
• (K + M)G = GT(\M - \K + K - \K - \M)G = 0 and HHT = 
— P~]/4GGTp-]/4 = p-]4p]4 — P12. 

Now, let y = H(x)u. Then HT(y,f + Py) = HT(Hnu + 2H'u' + Hu") + 
+ HTPHu = HT(Hu')' + HTH'uf + (HTHn + HTP]/2P]/2H)u = (HTHuJ -
- HT'Hu + HTH'u' + (HTH'f + HT(HHT)~] (HHT)~]H)u = (HTHuJ + 
+ (HTH" + (HTH)~])u. As the matrix H(x) is nonsingular, y(x) is a solution 
of (1.3) if and only if u(x) = H~](x)y(x) is a solution of (2.2). The proof is 
complete. 

Remark 1. If we replace the assumption "P(x) > 0" in Theorem 1 by 
the weaker condition "P(x) is nonsingular", then we can also use the Liouville-
type transforrnation, but in a modified form, replacing in (2.1) the matrix 
P~1/2(x) by the matrix |P(x)|_1/2, where the matrix |P(x)| is constructed this way: 
The matrix P(x) can be expressed in the form TT(x) diag{p/(x)} T(x), where 
Pi(x), i = 1, ..,, n, are the eigenvalues of P(x) and T(x) is an orthogonal nxn 
matrix. Now we set |P(x)| - TT(x) diag{|p,(x)|} T(x), i= 1, ...,n. 
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Remark 2. The matrix H(x) is by (2.1) determined uniquely up to a 
right multiple by some orthogonal nxn matrix. Indeed, if we replace the initial 
condition G(a) = E in (2.4) by G(a) = G0, where G0 is an orthogonal nxn 
matrix, the statement of Theorem 1 remains valid. 

3. Oscillation criteria 

In this section we use the established Liouville-type transformation to derive 
several oscillation criteria for systems (1.3), which generalize the known oscilla­
tion criteria for scalar equations (1.1). In our considerations the following two 
statements established by Etgen [3] and Morse [5] will play an important role. 

Lemma 1 (Etgen). Let F(x) > 0, G(x) > 0 be symmetric nxn matrices and 

\\F~](x) — G(x)\\ dx < oo. Then system (\.5) is oscillatory if and only if 

..cir.ina _ iivjuisc). Let Jiixj, G,(.Y) be symmetric nxn matrices for which 
0 < F}(x) < F(x), G,(x) > G(x) (0 < F(x) < FJ(x), G,(x) < G(x)) on some inter­
val [b, oo). If the system (1.5) is oscillatory (nonoscillatory), then the system 

(F}(x)yJ + G,(x)y = 0 

is also oscillatory (nonoscillatory). 
In the following statements we suppose that P(x) > 0 on some interval [b, oo). 

Corollary 1. Let the matrix H(x) be given by (2.1), HT(x)H"(x) + (HT(x)-

• H(x))~] >0on [b, oo) and \\ HT(x)H"(x)\\ dx < oo. Then (1.3) is oscillatory 
/-X J 

if and only if trP12(x) dx = oo. 

Proof. As any matrix satisfying (2.1) is given by (2.5) we have 

tr (HTH)~] = tv(GTp-]4P~]4G)-] = tr(GTP]2G) = tr P]2. 

The statement follows now from Lemma 1 since n \\HTH"\\ ^tr(HTH")^ 
> -n\\HTH"\\. 

Corollary 2. Let the matrix H(x) be given by (2.1). If trP1/2(x) dx = oo 

and HT(x)H"(x) > 0 I trP1 2(JC) dx < oo and HT(x)H"(x) < OJ on some in­

terval [b, oo), then (1.3) is oscillatory (nonoscillatory). 
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/•OO 

Proof. If trPl/2(x)dx= oo, then by Lemma 1 and Corollary 1 the 

system (HT(x)H(x)uJ + (HT(x)H(x))~lu = 0 is oscillatory. As HT(x)H"(x) > 
> 0, by Lemma 2 the system (2.2) is also oscillatory. The transformation from 
Theorem 1 preserves the oscillation behaviour of differential systems, hence (1.3) 
is also oscillatory. Similarly we prove nonoscillation of (1.3) under conditions 
stated in brackets. 

In order to use Corollaries 1 and 2 for detection oscillation or nonoscillation 

< 

/•OO 

of (1.3), we need to verify assumptions HTH" > 0 (< 0) or \\HTH"\\ dx 

< oo. However, we cannot do it directly, since the matrix G(x) in definition of 
H(x) by (2.5) cannot be, in a general case, computed explicitly. The following 
statement enables us to avoid this difficulty. 

Theorem 2. Let P(x) = DT(x) diag{pt(x)}D(x)9 where pt(x), i = 1, ..., n, are 
the eigenvalues of P(x) andD(x) is an orthogonal nxn matrix. Denote R(x) = 
= diag{p"1/4(x)}, A(x) = R(x)D(x)DT'(x)R~l(xl B(x) = R'(x)D'(x)DT(x)-
R(x) +R(x)D(x)DT'(x)RT'(x) and let M(x) = (m^x)), where m^x) = 

= -(atj(x) + a^xyHpFW+pJHx))-1 and(aij(x)) = A(x). 
/•OO 

i) If tvP]/2(x) dx = co and the symmetric matrix M' + MR~2M + 

+ MAT + AM + B + RR" is nonnegative definite on some interval [b, oo), then 
(1.3) is oscillatory. 

/•oo 

ii) / / trP]'2(x) dx < oo and M' + MR~2M + MAT + AM + B + 

+ RR" < 0 on [b, oo), then (1.3) is nonoscillatory. 
Proof. We shall prove only part i), the proof of ii) is similar. Denote 

H(x) = DT(x)R(x)T(x), where T(x) is the solution of 

r = (A T(x) + R -\x)M(x)) T, T(a) = E, a e [b, oo). 

AT + R~2M + (AT + R~2M)T = diag(A1/2}M + M diag {pj12} + AT + A = 
= 0 (see the definition of M). It implies that T(x) is orthogonal. Further 
HT'H - HTH' = (TT'RD + TTR'D + TTRD')DTRT - TTRD(DT'RT + 
+ DTR'T + DTRT) = TT[(MR~2 + A)R2 - R2(AT + R~2M)]T + TT• 
(R'R - RR')T + TTR(D'DT - DDT')RT = TT(M + RDDT'R - RD'• 

•DTR - M + RD'DTR - RDDT'R)T = 0 and HHT = DTRTTTRD = 
= DTR2D = DT diag {p~m}D = (DT diag {/>f ,/2}I>)l/2 = P~m(x). Hence the 
transformation y = H(x)u transforms (1.3) into (2.2). HTH" = (TTRD)-
(DTRT)" = TTRD(DT"RT + DTR"T + DTRT" + 2DT'R'T + 2DT'RT + 

+ 2DTR'T) = TTRDDT"RT + TTRR"T + TTR2[(AT + R~2M)T\' + 
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+ 2TTRDDT'R'T + 2TTRDDT'R(AT + R~2M)T + 2TTRR'(AT + R~2M)T = 
= TT[RDDT"R + RR" + R2(R~X D'DT R)' - 2R2R~3R'M + R2R~2M' + 
+ R2(AT + R~2M) (AT + R~2M) + 2RDDT'R' + 2RDDT'RR-XD'DTR + 
+ 2RDDT'R~XM + 2RR'RXD'DTR + 2RR'R~2M]T = TT[RDDT"R + 
+ RR" - R'D'DTR + RD"DTR + RD'DT'R + RD'DTR' - 2R~XR'M + 
+ M' + R2(R-XD'DTR)(R-XD'DTR) + R2R-XD'DTRR~2M + MR~XD'DTR + 
+ MR~2M + 2RDDT'R' + 2RD'DTDDT'R + 2RDDT'R~XM + 2R'D'DTR + 
+ 2R-lR'M]T = TT[RDDT"R + RR" - R'D'DTR + RD"DTR + RD'DT-
•R + RD'DTR' + M' - RD'DT'R + RD'DTR~XM + MR~XD'DTR + 
+ MR~2M + 2RDDT'R' + 2RD'DT'R - 2RD'DTR~XM + 2R'D'DTR]T = 
= TT[R(DDT)"R + RR" + MR2M + M' - RDDT'R~XM + 2RDDT-
•R-XM + MR~XD'DTR + R'D'DTR + RDDT'R']T = TT(M' + MR~2M + 
+ AM + MAT + B + RR")T, where the fact that D is orthogonal, i.e. 
D'DT + DDT' = 0, has been used. Hence, we can write system (2.2) in the form 

(TTR2Tu')' + TT(RR" + R'2 + M' + MR~2M + AM + 
(3D 

+ MAT + B)Tu = 0. K ' ' 

Now, consider the system 

(TTR2Tu')' + TTR~2Tu = 0. 

/• X / « X /* X 

As tr(TTR~2T) dx = trR~2 dx = trP , /2 dx = oo, this system is os­
cillatory, see Lemma 1. Since Mf + MR~2M + AM + MAT + B + RR" ^ 0, 
the system (3.1) is oscillatory, see Lemma 2, and hence (1.3) is also oscillatory. 

Remark 3. Consider a diagonal system y" + diag{p,(x)}y = 0, / = 1, ..., 
..., AZ, and let this system be, e.g., oscillatory (i.e. at least one of the scalar 
equations y" + pt(x)y = 0, / = 1, . . . ,«, is oscillatory). The set of all orthogonal 
nxn matrices G(x)eC2 [b9 oo) is by this system decomposed into two classes. 
The first consists of the matrices G(x) for which the system y" + GT(jc)-
•diag{p;(.x)}G(.xXy = 0 is oscillatory, the second consists of G(x) for which this 
system is nonoscillatory. Theorem 2 gives a sufficient condition for G(x) to be 
in one of these classes. It would be interesting to describe these classes in greater 
detail, e.g., in the case when n = 2, or to give some nontrivial condition on 
Pi(x), ..., pn(x) for one of these classes to be empty. 

4. Asymptotic formulae 

In this section we shall use the Liouville-type transformation to derive certain 
asymptotic formulae for solutions of (1.4) involving trigonometric matrices. 
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í 
Theorem 3. Let P(x) > 0; P(x)e C2 [b, oo), beR, H(x) be given by (2.1) and 
> 

| |#T(x)# , /(x)|| dx < oo. Then a pair of linearly independent solutions Yt(x), 

Y2(x) 0/(1.4) can be expressed in the form 

Y(x) = H(x)[S(x, (HT(x)H(x))-\ a) + o(l)] 

Y2(x) = H(x)[C(x, (HT(x)H(x))-\ a) + o(\)], 
where the symbol o(\) denotes an nxn matrix tending to the zero matrix as 
x-+ oo. 

Proof. The transformation Y = H(x)U transforms (1.4) into the matrix 
system 

(HT(x)H(x)U')' + [HT(x)Hft(x) + (HT(x)H(x))~]]U= 0. (4.1) 

Denote in this system Q(x) = (HT(x)H(x))~], W(x) = HT(x)H"(x), i.e. U(x) is 
a solution of 

(Q-](x)U')' + Q(x)U= - W(x)U. 

As S(x, Q, a), C(x, Q, a) form the base of the solution space of the homogeneous 
system (Q~]U')' + QU = 0, using the standard method of variation of con­
stants a particular solution of (4.1) can be written in the form 

U(x) = S(x, Q, a)Dx(x) + C(x, Q, a)D2(x), 

where Dx(x), D2(x) are nxn matrices for which 

\S(x, Q, a) C(x, Q, a) ] \D\(x)] \ 0 1 . 
lC(x, Q, a) -S(x, Q, a)\ lD'2(x)\ l~ W(x)U\' 

and according to (1.7) we have 

\D\ (X)1 _ \ST(X, Q, a) CT(x, Q, a) 1 I" 0 1 
lD'2(x)\ \cT(x, Q, a) - ST(x, Q, a)\ |_- W(x)u\' 

ì.e. 
/%00 

Cт(t, Q, a)W(t)U(t)dt />,(*) = £ 
/%00 

D2(x) = - J sT(/, Q, a) W(t)U(t) dt, 

(convergence of the last integrals will be proved later) and thus 

i oo 

S(x, Q, t)W(t)U(t) dt, (4.2) 

where the identity S(x, Q, a)CT(t, Q, a) - C(x, Q, a)ST(t, Q, a) = S(x, Q, t), see 
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[6, p. 265], has been used. Using (4.2) we can now verify that the matrices 
£/,(*) = S(x, Q, a) + V(x), U2(x) = C(x, Q, a) + V(x) are solutions of (4.1) if 
and only if V(x) is a fixed point of the integral operator 

T(V)( * )=í s(x, Q, t)W(t)(S(t, Q, a) + V(t)) àt 

and it can also be proved that these solutions form a base of the solution space 
of (4.1). Denote *U = {U(x), U: [b, oo) - IT2, U(x) = 0(1) for x-> oo} and 
define a norm on (JU, || U(x)\\% = sup || U(x)\\. Then || ||# is the Banache norm 

„ - xe[b, oo) 

on % and 
lim \T(U)(x)\ = X\m f S(x, Q, a)W(t)(S(t, Q,a+ U(t)) &t 

I Jx 

< lim [ \\S(x, Q, Oil (\\S(t, Q, <7)|| + || U(OII) II mOW dt < 
x-+co Jx 

/ •X 

<k lim ||»^(OII dt = 0, 
-V-00 Jv 

k being a real constant, for U(x)e ^ , since ||S(x, Q,t)\\ < 1. Thus Tmaps Ql into 
itself. Further, 

| r (o , )W-r ( í l2)WL= sup 
;ce[/>, x ) f 

í/2(/)) àt < f 
(s(x, g , 0 ^ ( 0 ( l f(0 -

5(x, 2,01111 (̂011-

sup ||U,(0 - U2(t)\\ dt < || U,(x) - U2(x)\U [ II W(t)\\ dt, 
te[b, x ) J.v 

hence T is a contraction mapping for sufficiently large x. By the Banach 
contraction principle there exists V(x)e°U such that V(x) = T(V)(x), hence 
U}(x) = S(x, Q, a) + V(x) is a solution of (4.1) and Yx(x) = H(x)(S(x, Q, a) + 
+ V(x)) is a solution of (1.7). Similarly we obtain the asymptotic formula 
Y2(x) = H(x)(C(x, Q, a) + V(x)). The proof is complete. 
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ПРЕОБРАЗОВАНИЕ ЛИУВИЛЛЯ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ 

Опдге] Оо§1у 

Резюме 

В работе установливается преобразование Лиувилля для линейных дифференциальных 
систем второго порядка 

у" + Р(х)у = 0, 

где Р(х) симметрическая матрица размерности пхп. С помощью этого преобразования 
обобщаются известные асимптотические и колебательные критерия для скалярных урав­
нений на случай дифференциальных систем. 
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