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CLASSIFICATION OF S-CUBES
IN THE DIMENSION n=3

JOZEF TVAROZEK

Introduction

Let I" be the n-dimensional cube. In [2] some special factor spaces of the cube I"
called s-cubes were introduced and a necessary and sufficient condition (called the
property “M”’) was given for an s-cube X to be a manifold.

In the present paper the full topological classification of those s-cubes of
dimension n =3, which are manifolds, is given.

1. Notation and basic definitions

Let n=1 be an integer. According to [2] we shall use the following notation:
N,={(1,2, .., n}
I" ={xeR": |x|=1, ieN,} is the n-dimensional cube
dI" is the boundary of I"

B"={xeR"; Vxi+x3+...+x2=1} is the n-dimensional ball

S" =3B"*! is the n-dimensional sphere, n=0

Jr ={x€edI";|x| =1} is the i-th double face of I"

sit I I, x> (x4, ..., Xic1, = Xiy Xit1, ...» X,) is the symmetry of I" with respect to
the hyperplane x; =0, i€ N,.

Let G be a subgroup of the group of all tranformations of I" generated by the set
{si;ieN,}. Since s,05;=s5;0 8 for every i, je N,, the group G is abelian and
G=2;. Each se G, s#id, is a product of mutually different transformations
Sis --+» S, and it can be uniquely written in the form

Sitiz...ix =38 0 Sp 0 ... 0 S, where 11<12<<lk

Further, the map t,: G— 2™, 7,(s4i,...) = {i1, b2, ..., i}, T.(id) =0, is a bijection.
Definition 1.1. Let u', ..., u"€ G. An s-cube X=1I"/(u', ..., u") is a factor
space 1"/ T, where T is the equivalence relation on I" defined as follows :

k
x Ty<x=y or there are integers i, ..., ik€ N, such that x, ye()J; and
j=1

x=u"ou2o...0 uy).
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The integer n is called the dimension of the s-cube X. The s-cube X can be
alternately written in the form X=1I"/(U;, ..., U,), where U, =rt,(u'), i€ N,.

Definition 1.2. An s-cube X=1I"/(u', ..., u") is called regular if for every
i, je Nu'=s; implies u' =s;. Regular cubes are called briefly r-cubes.

Definition 1.3. An r-cube X=1"/(u’, ..., u") has the property “M” if for each
nonempty subset P < N, such that

i) Vi,jeP: i#j>u'#u,
ii) VieP: card t,(u')+#1
we have
Pnr1, (n uf> +0
1eP

According to [2], Proposition 2.10, every s-cube is homeomorphic to some

r-cube. Further, an r-cube is a manifold if and only if it has the property “M” ([2],
Theorem 3.18).

Definition 1.4. An  r-cube I"/(U, ..., U, is called cube-fibrable
(briefly c-fibrable) if there is a set Q, & Q& N,, such that

) on( U u)=s,

jeN,—Q

ii) if U;= U, forsomei, je N,, theni, je Qori, je N,— Q. An r-cube which is
not c-fibrable is called c-nonfibrable.

2. Homeomorphism Theorem

Let X be a topological space, f: X— X a homeomorphism. The symbol
X x I/E; will always denote a quotient space of X X I which arises by the

identification of the pairs (x, —1), (f(x), 1), x € X, in the space XX I.

Lemma 2.1. Let X be a topological space and let f, g: X— X be isotopic
homeomorphisms. Then X X I/E;=~ X X I/E,.

Proof. Let H: (0, 1) X X— X be an isotopy such that H,= f and H, = g. Denote
F: XxI->XXI, (x,t)—(g0+H (x),1)
2
G: XxI->XXI, (x,t)~(H,_, - g7'(x), 1).
2

One easily verifies that F, G are homeomorphisms inverse to each other and
compatible with the equivalences E; and E,. This clearly implies that F and G
induce a homeomorphism between the spaces X X I/E; and X x I/E,.

Lemma 2.2. Let X=I"/(u',...,u") be an r-cube, ueG. Then the
homeomorphism u: I"—1I" induces a map i: X— X, [x]—[u(x)] which is
a homeomorphism.
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Proof. Let X=I"/T. Making use of Definition 1.1 it is not difficult to prove that
x T y<u(x) Tu(y)

for every x,yelI". Since the map u is a homeomorphism, the map i is
a homeomorphism.

Now we are going to prove that in some special cases an n-dimensional r-cube X
can be represented as a space Y X I/E;, where Y is an (n — 1)-dimensional r-cube
and f: Y- Y is a homeomorphism.

Lemma 2.3. Let X=1"/(U,, ..., U,) be an r-cube such that ne U,, n¢ U, for
ieN,_i. Denote Y=I""'/(U,, ..., U.—y), f=1.24(U.—{n}), f: I"'>I""'. Let
fi Y= Y be the map induced by f. Then X~ Y x I/E;.

Proof: Let X=1I"/T. We prove that for every x, y € I" we have
xT y¢>([(xl’ seey xn—l)]’ xn) Ef([(yla cee yn—l)]’ yn) (2)
We shall discus two cases:

a) x,y¢Js, b) x,yeln

In the case a) and in the case b) for x, =y, the condition (2) is satisfied. Now we
prove (2) in the case b) for x,=y,. Denote = (X1, ..., Xa-1)s ¥ =1 --+» Yn-1)-
Let x T y. Then there are integers i, ..., ir € N,, i1<i><...<i, =n such that

k
x,ye[ o x=u"ou2o...0 u(y).
i=1 '
Since 7,(u" o s,)N{n} =0, we have
X=U"o...oU1, (u" o S,,)()-’) =uUho...0lU* 1o f()-?)

Hence f(X)=u"o ... u*-(y), because G is commutative and s*=id for every

s € G. Then we have [f(X)] =[], flx]=[y] and finally ([%], x.) E;([J], y.)-
Let now ([x], x,) E/([], y.). Since x.#y., we can suppose f[%]=y. Then

- - . k
[f()]=[y] and there are integers i,, ..., i€ N,_, such that f(X), ye() J;™* and
j=1
f(X)=u"o...o u™(y). Then

X=u"o...oUko f(J)=uho...0 u*o (U" o $.)(¥)-

. k
Since  |x:| =|y.| =1, x.¥Yy,, we have x,yeltin (ﬂ J;;) and x =
. =1
Uo...ou*o u(y). Hence x Ty.

Homeomorphism Theorem. I et Xu=I/(U,, ..., U,), Xv=I"/(Vy, ..., V,) be
such r-culzfs that ne U,nV, and for every i€ N,_, there is U;= V, and n ¢ U,. Let
fo, fvr IS I fu=171(U, — {n}), fv=12,(Va—{n}) and let fu, fv: I/
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(U, ..., Uyy) - I"Y(U,, ..., U,_,) be the isotopic homeomorphisms induced
by fu, fv. Then Xusz.

Proof. Let Y=I"'/(U,.., U,.;). With regard to Lemma 2.3 we get
Xu=YXI/E,, Xy=YXI/E;,. Then by Lemma 2.1 we have Xy= Xy.

3. Classification in dimension 1 and 2

In the classification we can limit ourselves only to r-cubes because every s-cube is
homeomorphic to some r-cube.

There is only one r-cube with the property “M’’ in dimension 1, it is the r-cube
I/(s,)=S".

Let I?/(u', u?) be the 2-dimensional r-cube with the property “M”. There are
only three possibilities for u', u*; namely s,, sz, S12, and only 6 possibilities for
X: P/(sy, 51), PP/(s2, 52), I/(s4, 52), I?/ (81, $12), I/ (812, $2), I?/(512, $12). Making use
of [2], Proposition 1.3, we obtain

I/(sy, sl)zP/(sz, s2), P/(sy, 512)"312/(312» $2).
Let
Xl =P/(s1, S]), X2 Iz/(S1, Sz) X3 Iz/(sl, 512)

X4= 12/(812, 512). (3)
It is not difficult to see that

X1 = SZ’ Xz Sl X S1 X3 Kb X4 RP2 (4)

where Kb is the Klein bottle and RP? is the real projective plane.

Classification Theorem A. Let X be the n-dimensional s-cube which is
a manifold.

1) If n=1, then X=1I/(sy).
2) If n=2, then X is homeomorphic to one of the r-cubes X, ..., X, (see (3),
(4)). The r-cubes X, ..., X4 are mutually nonhomeomorphic.

4. Classification in dimension 3

Let X=P/(U,, U,, Us) be an r-cube with the property “M”. In the case when X
is c-nonfibrable, there is X=X, = P/(s,, 51, 51) or X=X, = P/(5123, S123, S123), S€€
[2], Proposition 3.13.

Now let us suppose that X is c-fibrable and consider the following two cases :

I. If X is c-fibrable with regard to a subset Q< N, then card Q=2.
II. X is c-fibrable with regard to a subset Q = N, with card Q=1.
First we shall discuss the case I, supposing without loss of generality

card U, =card U,=card Us. (5
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Our assumptions imply that X can be c-fibrable only with regard to Q={1, 2},
{1, 3} or {2, 3}. If there were Q={1, 2}, there would be, by Definition 1.4,
U,={3}, and therefore, by (5), card U,=card U,. This and the definitions
1.2—1.4 would, however, imply 3 ¢ U,uU,, and thus X would be c-fibrable with
regard to Q'={3}, which would be contrary to our assumption. Similarly for
Q={1, 3} we would obtain a contrary by showing X to be c-fibrable with regard to
Q' ={3} or {2}. Hence X is c-fibrable with regard to Q={2, 3} and, clearly,
U= {1}

Lemma 4.1. Under the assumptions I and (5) we have card U,>1 and card
U,>1.

Proof. Supposing card U, =card Us =1 we obtain that X is c-fibrable with regard
to Q' ={1}. Similarly the assumption card U,=1 and card U;>1 yields that X is
c-fibrable with regard to Q' ={3}.

Lemma 4.2. Under the assumptions 1 and (5) we have X = P/(s1, $123, S123).
Proof. By virtue of Lemma 4.1 we only need to show that there can be neither
card U, =card U; =2 nor 2=card U,<card U;=3. This is, however easily done
by considering all the possibilities and showing that each of them leads to a contrary
either to the assumption I or to the property “M”.

Now we shall continue with the case II. With regard to [2], Proposition 1.3, we
can take Q={3}. Since X has the property “M”, Y=I*/(U, U,) is the
2-dimensional r-cube with the property “M” ([2], Lemma 3.16). Hence there are
only four possibilities for the r-cube Y, namely I?/(s,, s1), I?/(s1, 82), I?/(81, 812),
P/(512, $12). :

Proposition 4.3. In the case II the r-cube X is homeomorphic to one of the
following r-cubes: X,=DP/(sy, 51, 83), Xs=DP/(s1, 81, 513), Xe=I?/(s1, $2, $3),
X = P/(Sl, $2, 513), Xz = P/(Sl, 82, 3123), Xo= P/(Sl, S12, 523), Xi0= P/(Sn, S12, 53)-

To prove Proposition 4.3, we shall need some lemmas.

Lemma 4.4, a) P/(sy, 51, 53)=DP/(s1, 81, $123), b) P/(s1, 81, 813) = P/(51, 81, $23).
Proof. Let Xu=DP/(s1, 51, 83), Xv=DP/(s1, 81, $123). Making use of the
Homeomorphism Theorem it is sufficient to prove that the maps fy, fv, induced by
the maps fy =id, fv = s1,, are isotopic. It is easy to see that identifying I?/(s,, 51)
with S? in a suitable way, we can view fy, fv as the homeomorphisms fy, fv: S?—
S? defined by fu(x)=x, fv(x)=(—x1, =X, x3). These homeomorphisms are,
however, wellknown to be isotopic. The assertion b) is proved in a similar way.

Lemma 4.5. a) P/(sy, 53, $13) =P/(s1, $2, $23),

b) P/(s1, 82, S13) = DP/(s1, 512, $3).
Proof. In [2], Proposition 1.3, it is sufficient to take f: N;— Ns, f(1)=2, f(2)=1,
f(3)=3 in the case a) and f(1)=1, f(2)=3, f(3)=2 in the case b).
Lemma 4.6. a) P/(s,, s12, 55)=D/(51, 812, $13),
b) P/(s1, S12, S23) = P/(51, $12, S123).
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Proof. a) We shall use the Homeomorphism Theorem. Let Xy = P/(sy, $12, S3),
Xy = P/(s1, 812, 513). We prove that the maps fy, fv: IP/(s1, $12)— I?/(s1, 512) are
isotopic. Let

H: (0, 1) X P/(Sl, slz)—) P/(s,, slz)
[(x, 2 4+28)] if 1—x=2t

H[(xb Xz)] ={[ _(xl, 2t-2 +x2)] if 1—x,=2¢t

We see that for every te(0,1) H, is a homeomorphism and H,= fu=ia,

H,= fv =3
b) It is sufficient to apply [2], Proposition 3.7, for k=2.
Lemma 4.7. a) P/(Slz, S12, 53)213/(512, S12, 3123),
b) P/(SIZ, S125 st)zp/(sn, S125 3123),
C) P/(slz, S12, Sls)zp/(su, S12, 5123)-
Proof. Let Xy=DP/(s12, 12, 53), Xv=D/(512, $12, $123). We shall use the

Homeomorphism Theorem. We prove that the maps fo=id, fv=35u, fu, fo:

P/(512, $12) — IP/(s12, $12) are isotopic. By suitable identification of the spaces
I?/(s12, 512) and B%/ Q (Q identifies the antipodal points on dB?) we can view fy, fv
as the homeomorphisms fy, fv: B¥Q— B*/Q, ful(x, V)] = [(x, y)], il(x, y)]
= [(=x, —y)]. It is not difficult to see that the homeomorphisms fu, fv are
isotopic. To prove assertions b), c) it is sufficient to take k=2, 1 in [2],
Proposition 3.7.

Proof of Proposition 4.3. Since 3 € U,, we have only four possibilities for Us,
namely {3}, {1, 3}, {2, 3}, {1, 2, 3}. Then for U,=U,={1} we have X=X, or
X=X, by Lemma 4.4, for U;={1}, U,={2} we have X=X 0or X=X, or X=X
by Lemma 4.5, for U, ={1}, U,={1, 2} we have X=X, or X=X, by Lemma 4.5
and Lemma 4.6 and finally for U, = U,={1, 2} we have X= X, by Lemma 4.7.

It was proved in [1] that on any given s-cube X it is possible to introduce
a structure of a CW space. In the case when the s-cube X is a manifold, one can
sometimes define a CW decomposition of X with a smaller number of cells than in
the general case (see [3]).

Let X be an r-cube from the set X, ..., Xj,. By standard computation making
use of the CW decomposition of X introduced in [1] or [3] one can compute the
following table of homology groups (over Z) of the r-cubes X, ..., X,.

With regard to the classification procedure, Lemma 4.2, Proposition 4.3 and
Table 1 we get

Classification Theorem B. Let X be a 3-dimensional s-cube which is a manifold.
Then X is homeomorphic to one of the r-cubes X,, ..., X, listed in Table 2. The
r-cubes X, ..., Xio are mutually nonhomeomorphic.
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Table 1

X H.(X) Hy(X) Hy(X) Hy(X) Hy(X)
n>3
X, =S? 0 VA 0 0 z
X,~RP? 0 VA 0 Z, VA
X 0 V4 0 Z; V4
X,=8*x §! 0 VA VA V4 VA
Xs 0 0 zZ, V4 z
Xo=S'x S'x S! 0 VA z? z? z
X,~Kbx S! 0 0 zZ+2, Z*+ 7, z
Xs 0 VA VA Z+Z: VA
X 0 0 Z, Z+ 273 z
Xio=RP*>x S* 0 0 zZ, Z+ 27, V4
Table 2

x1 =P/(S1, S1y Sl) XG =P/(sl’ §2, S;)

Xz = P/(8123, $123, $123) X7 =P/(s1, 52, $13)

X3 = P/(Sl, 8123, 5123) XB = P/(sly 82, 5123)

Xe=P/(s1, 51, $3) Xo =P/(s1, $12, $23)

X5 = P/(Sl, 81, S|3) xll)= P/(suy S12, 33)
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KIIACCUPUKALIMA s-KYBOB PABMEPHOCTH n=3

Jozef Tvarozek
Pe3ome

B cTaThe faHa MONHAs TOMONIOTHYECKas KiaccughuKaumus Tex s-kyGoB pa3MepHOCTH n = 3, KOTopble
SIBNISIIOTCS. MHOTOO6pa3usiMH.
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