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ON ISOPART PARAMETERS OF COMPLETE
BIPARTITE GRAPHS AND n-CUBES

RICHARD M. DAVITT—JOHN FREDERICK FINK—MICHAEL S. JACOBSON

Introduction

If H is a graph and H,, H,, ..., H, (n>2) are non-empty, pairwise edge-disjoint
subgraphs of H having the property that

E(H)= QE(H.-),

then we say that H is the edge sum of H,, H,, ..., H, and write

H=H®H®..®H,.

In such a case we also say that H can be decomposed into the subgraphs
H,, H,, ..., H,. If there is a graph G that is isomorphic to each of the subgraphs
H,, H,, ..., H,, then we have a G-decomposition of H. The graph H is said to be
G-decomposable, and G is an isopart of H. See [1] for undefined terms.

Most investigators (e.g. K6nig [5], Petersen [6], Reiss [7]) of decompositions
of a given graph H require that H be a regular graph. For example, Reiss [7]
showed that, when p is even, the complete graph K, can be decomposed into
spanning l-regular subgraphs called I-factors. Wilson [8], Fink [2], and Fink and
Ruiz [4] have shown, in different ways, that every nonempty graph G is an isopart
of infinitely many connected regular graphs H.

With the results of [8], [2], and [4] in mind, Fink [3] introduced and investigated
three “isopart parameters”, po(G), ro(G), and fo(G). The numbers po(G) and
ro(G) are respectively the minimum order and minimum degree of regularity
among all connected, regular, G-decomposable graphs. The parameter fo(G) is the
smallest number ¢ (=2) for which there exists a connected regular graph H
decomposable into ¢ copies of G. We write r,, po and fo rather than ro(G), po(G)
and fo(G) when the graph G is clear. In [3], Fink determines r,, po and f, for K,, C,
and K, .. In this paper we find ro(K..,.), po(Kn,») and fo(K., ) for all positive
integers m and n. Also, we determine the isopart parameters for K., the
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complete m-partite graph with n vertices in each partite set. We end the paper by
finding po(Q.), ro(Q.) and fo(Q,) where Q, is the n-dimensional cube.
Main results. We begin by stating Fink’s results for stars.

Theorem A ([3]) If n=2, then

ro(Ki,.)=n,
pO(Kl,n) = 2n and
fO(Kl‘n) =n.

We now give the upper bounds for the isofactor parameters for complete
bipartite graphs K,. ., when m+ n.

Theorem 1. If m<n and [ =lcm (m, n), then

ro(K,,. ,,)<l
Po(Kom.n) < 21 and

oK)

Proof. Let m and n be distinct positive integers and [ =Ilcm (m, n). Let
G =K, and denote by A ={u,, u,, ..., w} and B = {v,, v,, ..., v} the partite sets

of G. Let A ={ui-n.lk=1,2,...,n} for i=1,2,...,;l and B, =
I/n I'm

{v(i_,),,.+,~|j=l,2,...,m}fori=1,2,...,Zl.Clearly,A=UA,«andB=UB,~.F0r
i=1 i=1

1<z<l and 1<]<i define H; ={(a,UB;). Clearly, H;=K,, . and thus this
n m

defines a K., ,-decomposition of G. Hence it follows that ro(K,,.,,.) </, po(Kn,») <
) :
21 and fo(K.n, ,.)<l—

We proceed by showing ro(K.,..)=lcm(m, n).

Theorem 2. If m<n and | =lecm(m, n), then ry(K.,.. .)=1.

Proof. Let m and n be distinct positive integers and [ =lcm(m, n). To show
ro=1, we need only to show that ro=1! since we showed ro<! in Theorem 1.
Assume, to the contrary, that for some r <I, there exists an r-regular connected
graph H which is K,, ,-decomposable. Clearly, since vertices of K., . are of degree
m or n, r=am+ bn for some non-negative integers a and b. This is a unique
representation, since if there exist non-negative integers ¢ and d with am + bn =
cm + dn =r<l, then it follows that a —c =d — b =0. Hence it follows that in any
K....-decomposition of H every vertex must be a vertex of degree m in a copies of
K.... and a vertex of degree n in b copies of K. .. If p is of the order of H, and
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. . . b .
there are ¢ copies of K., in the decomposition, then i t =%. Hence it follows

that am = bn. But this implies that [ divides r and r =1, which is a contradiction.
Hence it follows that ro=1.

Lemma 3. Let H be a connected r-regular K,, ,-decomposable graph of order p.
If r>ro(Kn.)=1, then p>2I.

Proof. Let H be a connected r-regular, K., .-decomposable graph of order p.
Clearly, if r=2I, then p>2I. Thus assume that |<r<2l. As we saw in the
previous proof, if r can be written uniquely as r = am + bn for some non-negative
integers a and b, then [ must divide r. But since | <r <21, it follows that r can be
written in at least two distinct ways as a linear combination of m and n over the
positive integers. A straightforward arithmetic argument reveals that r can be

r—am
)n and r=

written in precisely two ways. Namely, r=am+(

r—bn

(a +Zl> m+ (%’) n or alternatively, r= ( ) m+bn and r=

(r_—bL')mJ,(Hl)n where q=l=bn=l ,_r-am-l 4 ,=
n n n n

am+bn+1. Note that since r>I, at least one of a or b is non-zero. For
convenience, we will refer to a vertex of degree d in an isopart as a d-vertex. Let
A={ue V(H)|u occurs as an m-vertex in a different isoparts, K....} and B =

{v e V(H)|v occurs as an m-vertex in a +é different isoparts, K, .}. If |A|=p,

and |B| = p,, then clearly

pitp.=p. ¢))
If we consider the m-vertices in the :2% copies of K., ., it follows that
l
ap1+(a+-n7) pz=‘2L,[;‘ ) )

since each isopart contains n m-vertices. Equations (1) and (2) give p.=
r—2am 2l+2am—r 2l+2am—r

( ] ) p and p,= (T) p. Consequently, p; = (m) Da.
Consider now the maximum number of edges in (A ). Since each edge in (A ) is

an edge of some K., ,, it joins an m-vertex to an n-vertex. Since each vertexin (A )

is an m-vertex of am edges, it follows that there are at most p,am edges in (A ).

Hence it follows that there must be a vertex u in A adjacent to at most am vertices

in A and thus adjacent to at least r —am vertices in B.

2l+2am—r :- _2;:;"_ r) (r —am), which implies that

Therefore p,=r—am and p,= <
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p1=21+2am —r and consequently p = p, + p, =2l + am. A symmetrical argument
gives py=r—bn, p,=21+2b—r and p=2l+ bn. It now follows that p >2l.

Theorem 4. If m<n and | =lcm(m, n), then po(K.,. .)=2l.

Furthermore, the only connected regular K, .-decomposable graph of order 21
is Ki ;. ’

Proof. Let m and n be distinct positive integers and | =lcm(m, n). Let H be
a connected r-regular K, .-decomposable graph of order p,. Clearly, from
Lemma 3 it follows that H is an [-regular graph and from Theorems 1 and 2 that
po=<2l.

Since m# n, there are precisely two distinct ways that / can be written as a linear
combination of m and n, namely [ = (;l) n= (#) m. Let A be the subset of V(H)

whose vertices are m-vertices in some isopart and B be the set of vertices that are
n-vertices in some K., .. Clearly, V(H) = A uB and it follows that both sets, A and
B, are independent. Since each vertex of A and B has degree [ it must be the case
that |A|=! and |B|=1.
~ Consequently, it follows that p,=2! and thus p,=2l. Therefore |A|=1, |B| =1,
each vertex of A is adjacent to every vertex of B, and H=K, ,.
2

Theorem 5. If m<n and | =lcm (m, n), then fo(K""")=7111; s

Proof. Let m and n be distinct positive integers and ! =lcm(m, n). Let H be
a connected r-regular K,, .-decomposable graph of order p containing precisely f,
copies of K, .. It follows that

r Y I?
fo= TP ToPo _ ° ,
2mn~ 2mn  mn
and the proof is complete.

We get as a corollary of these results, Theorem A.

Corollary 6. If n=2, then

rO(Kl.n) =n,
po(Kl_,.)=2n and
fO(Kl,n) =n.

The only case that remains for complete bipartite graphs is when the partite sets
are of the same order. For convenience we denote by K, the complete n-partite
graph, with partite sets each of order m. We prove the following:

Theorem 7. If m, n are positive integers (n=2), then
ro(K,.[,,,] = 2m(n - 1),

+1
pD(Kn[m])= m (n 2 ) and
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fo(Kuam)=n+1.

Proof. First, we show that there exists a regular graph G which can be
decomposed into Kam’s, which gives the desired upper bounds. Let F; be a family
n+ 1) Let
2 )

(20
V(G)= UIF Clearly, |V(G)|=m (";1)-

of m distinct vertices for i=1, 2, ..., (

n+1

Consider the following ordered classes of families; C,={F, F>, ..., F,}, G =
{the i™" family of C,.; m=1,2, ..., i}u{the next n —i families}, (Ex., C,={F,
Fn+l’ Fn+27 seey FZn—l} and C3= {FZ’ Fn+1, FZn, F2n+l, ey FJn—S})a l= 1’ 2’ ceey n. It
follows that there are n + 1 classes of families with the properties that every family
is in exactly two classes and any pair of families is in at most one common class. Let
xy € E(G) iff x e F; and y € F; with i# j and both F; and F; € C; for some k. Hence
(G)Y=K,mforj=1,2,...,n+1,with E((G))nE({C;))=@for i#j. Also by the
above observation, each family, and thus each vertex, is in 2 classes. So each vertex
is in two K.m’s and has degree 2m(n —1). Therefore, ro(Knpm)<2m(n-—1),
po(K,.[m]) m (n -2"— 1) ’ and fo(K,.[m]) <n-+1.

Since any K,;mj-decomposable connected graph G must contain at least 2K,m)’s,
it follows that ro(K,m)=2m(n —1) and consequently ro(K.im)=2m(n—1).

Finally, suppose G is an r-regular K,;.;-decomposable graph. Let C; be one
copy of K, with partite sets A;, A, .../ A,. It follows that x, in A; must be
contained in a second copy of K., C.. Also, C; can contain at most m vertices of
C,, which implies that G contains at least (n — 1)m additional vertices. For x, in
C,— C;, x, must be in a third copy of K., Cs. Again C; can contain at most m
vertices of C; and m vertices of C,, which implies G contains at least (n —2)m
additional vertices. By continuing this argument, we conclude that

n+1

2 ) "
and that G contains at least n + 1 copies of K. Therefore the result follows. For
completeness we state the following:

—

|V(G)|>nm+(n—1)m+(n—2)m+...+1m=(

Theorem 8. Let m, n be positive integer with | =lcm(m, n). If n<n, then
12
ro(Km_,,)=l, po(Km_n)=21 and fO(Km.n)=

mn
Po(Km,m) =3m and fo(Kpn,m) =3.

Finally, we determine the isofactor parameters for another class of bipartite
graphs, the n-dimensional cubes, Q,. Since Q, and Q, are isomorphic to K;,; and
K, ,, respectively, the isofactor parameters for these graphs are easily calculated
using Theorem 8. Thus we only need to find ro(Q.), po(Q.) and fo(Q.) when n =3.

. If m=n, then ro(Knm,m)=2m,
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Theorem 9. If n=3, then ro(Q,)=2n, po(Q.)=2" and fo(Q,)=2.

Proof. The n-cube, Q, is an n-regular bipartite graph of order 2" with 2"~*
vertices in each of its partite sets. Let U and V denote these partite sets. Since Q. is
a proper subgraph of K+ 1 ;»-1 and n =3, there is a perfect matching from U to V
in the complement Q,. Thus, since U and V induce complete graphs in Q,, it
follows that K,--1 X Q; is a subgraph of Q.. Hence Q,=Q,_, X Q, < Q,. Conse-
quently, by identifying the two edge disjoint copies of Q., it follows that
ro(Q,) <2n, po(Q.)<2" and fo(Q.) <2. However, equality follows since there are
at least 2 copies of Q., at least 2" vertices, and, clearly, regularity at least 2n in any
connected regular Q,-decomposable graph.

Conclusion. There appear to be a number of feasible questions that these
parameters present. Two key problems would be to determine r,, po and f, for any
bipartite graph and subsequently for any n-partite graph.

The authors are (currently) preparing an article on the dependence and
independence of the parameters on one another.
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O MMAPAMETPAX U30YACTEU IOJIHBIX IBYOOJIbHBIX TPA®OB U n-KYBOB
Richard M. Davitt—John Frederick Fink—Michael S. Jacobson
Pes3ome

IMycre H-rpad ¢ H=H,, H,, ..., H,. Ecou G=H; pna Bcakoro i, i=1,2,...,n, Torna H
pa3naraetcs Ha G, a G sBiasercs u3ovactbio H.

Iloka3aHo, 4TO Kaxablii He mycroit rpad G sBIsSEeTCS M304YaCThIO GECKOHEYHOro MHOXECTBa
CBA3HBbIX OOBIYHBIX rpacdoB H.

Yucna po(G) n ro(G) — 3TO0 MUHMMAJIbHBIE MOPSAOK M CTENEHb PEryIsipHOCTH (COOTBETCTBEHHO)
CPEnM BcexX CBSI3HBIX OOBIYHBIX pa3naraeMbix Ha G rpacos.

IMapameTp fo(G) — HauMeHbulee YMcno ¢ (t =2), 11 KOTOPOrO CYLIECTBYET CBSI3HbI OGBIYHBIMA
rpad H, pa3naraemMblii Ha ¢t u3oMopdHbIXx Konuit G.

Lens 31O paGOTHI ONMpPENENHTL MapaMeTpbl 3THX M304acTei Ui BCEX MOJBHBIX ABYROJBHBIX
rpacoB n n-kKy6oB.
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