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LINEAR ELLIPTIC BOUNDARY VALUE
PROBLEMS AND WEIGHTED SOBOLEV SPACES:
A MODIFIED APPROACH

ALOIS KUFNER, JIRf RAKOSNIK

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday

0. Introduction

0.1. The aim of this paper is to describe a method which makes it possible to
solve elliptic boundary value problems in weighted Sobolev spaces. Let us illustrate
our approach on the Dirichlet problem

—Au+u=f on Q, (0.1)
ula=g, 0.2)
where Q is a domain in R" with boundary 3Q.
0.2. A function u e W'?(Q) is called a weak solution of the problem (0.1), (0.2)
if
u—§jewy(Q) (0.3)
and if the identity
a(u, v)=(f,v) (0.4)

holds for every v € C;(). Here § is a function from W"2() such that j|se =g,
a(u, v) is the bilinear form

= _— 5
a(u, v) .ZL 3% Bx. dx+j‘2 uv dx (0.5)
and f is a functional from the dual space (Wy?(2))* (the most usual case is

{f,v) =L fv dx with fe L*(Q)).

Thus the concept of a weak solution in the Sobolev space W"?(Q) is meaningful
if the following conditions are satisfied:

ge W'"2(3Q), fe(Wiyi(Q))*. (0.6)
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The existence of a (uniquely determined) weak solution can be proved by the
L.ax—Milgram Lemma, since the form a(u, v) is bounded:

[aCu, )| =clull||v]] for every wu,ve Wi’ (Q), (0.7)
and Wi '(Q)-elliptic:
a(u, u)Zcllul]” for every wue W, (Q). (0.8)

0.3. We can ask whether the problem (0.1), (0.2) is solvable in a weighted
Sobolev space W' *(Q; ). Besides the natural effort to extend the theory of weak
solutions to weighted spaces, the motivation of that question may be found in the
fact that the given [, g need not satisfy the conditions (0.6); e.g., the function ¢ in
the boundary condition (0.2) can be so “misbehaving” that there is no function
g e W"(Q) such that j|;o =g, and the W' '(L)-theory cannot be applied. Then
we can try to seek a weight function /i so that these difficulties might be avoided if
we replace the space W' () by the weighted Sobolev space W'*(Q; h).

0.4. One way how to proceed is to introduce formally the weight h into the
integral identity (0.4), i.e. in the bilinear form a(u, v):

N
a(u, ”):.E, , % h' s—;; ht’ dr+L uh' vh ' dx.

Then this bilinear form can be considered on the cartesian product W4 (€ ; h) x
Wo(2; h '). The existence of the weak solution in W'"'(Q; h) — i.e. of
a function ue W'*(82; h) such that u—ge Wy (2 h) with e W"*(22; h) and
that the identity (0.4) holds for every v e C;(£2) with fe (W3 (2; h '))* — can
then be proved (only for certain weights /1, of course!) by using a generalized
version of the Lax—Milgram Lemma and starting with the “ordinary” (=
non-weighted) boundedness (0.7) and ellipticity (0.8). This approach is described
in detail in [3], Chapter 6, and [1], Section 13.

0.5. Our aim is to describe another method. We change a little the definition of
the weak solution to the problem (0.1), (0.2) in order to facilitate the use of the
“classical” Lax—Milgram Lemma, to simplify the calculations and to obtain
generally a larger scale of admissible weights:

The function ue W'*(; I) will be called an h-weak solution of the Dirichlet
problem (0.1), (0.2) if u—ge Wy (2; h) (with e W"(; h) such that
dlse = g) and if the integral identity

x Qu 3(vh)
r 1 Je ax, ax,

dx +J uvh dx —f foh dx (0.9)
(%] Q

holds for every v e C; (). The left hand side of (0.9) is a bilinear form b(u, v)
which is connected with the form a(u, v) by the formula

b(u, v)=a(u, vh). (0.10)
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Hence we see that the difference between the weak solution from Section 0.2 and
the h-weak solution is in the fact that in the latter case we work with test functions
of the form vh with v e C;(€). Since the form a(u, v) can be obtained from (0.1)
by multiplying this equation by v € Ci(£2), integrating over £ and using Green's
formula, we easily see that the identity (0.9) corresponds to the equation

—hAu+hu=hf on Q,

which is equivalent with (0.1) almost everywhere in Q since the weight function h
is supposed to be positive a.e. in .

1. Notation and assumptions

1.1. The domain Q. We shall suppose troughout this paper that Q is a domain in
R"™ with locally lipschitzian boundary 3. For a precise description see e.g. [3], [2].

1.2. The weighted Sobolev spaces. (i) A function h = h(x) defined on Q is called
a weight if it is measurable and positive a.e. on . We shall work with weights h
which fulfil the condition

heLi(R2), h™'eL.(Q). (1.1
Later we shall deal with special weights of the type
h(x)=diu(x) or h(x)=exp (edu(x)), €€R, (1.2)

where du(x)=dist (x, M) and M c3Q is an m-dimensional manifold, 0=m=
N — 1. The weights (1.2) obviously fulfil the conditions (1.1).

(ii) Let h be a weight. We denote by L*(Q; h) the set of functions u measurable
on € with a finite norm

1/2
lulle= ([ 1u@) o) dx) (13)
Q2
Let us denote
3 .
D=3, i=1..N,

and let ho, h, be weights. We denote by
W"3(; hy, h))

the set of functions u € L*(£2; ho) such that Diue L*(Q; h)),i=1, ..., N, equipped
with the norm '

N 172
el = (lulli+ D) (1.4)
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Further, we denote by
W(llA:(Q; II(H hl)

the closure of the set Ciy(€) with respect to the norm (1.4).

[The first condition in (1.1) guarantees that Ci(Q2)c W' (2 ha, h); the
second implies that the spaces W'*(2; ho, b)) and W, *(L; ha, h\) are complete
Hilbert spaces.|

It ho=h=h. we shall write W"(Q; h) and W{§%(Q; h) instead of
W' (Q: h, h) and W§A(Q; h, h), respectively. The norm (1.4) will then be
denoted by |u|v. -

For lty=h, =1 we obtain the classical Sobolev spaces W' *(Q) and W, (). The
norm in thesc spaces will be denoted by |[u]|,.

(ii1) We shall say that a weight h satisfies condition P, if there exists a weight /1,
and constants 1, =n,(h, hy)>0, n.=n.(h, hy) =0 so that

N 12
Nullw=mn (E”Dll“;) forevery ue W\ (Q;h) (1.5)
[

and

[VA()| h '(x)=n3ho(x) forae. xeQ. (1.6)

We shall say that a weight I satisfies condition P if there exists a constant
n:=1:(h)=0 such that

[Vh(x)|=n:h(x) forae. xeQ. (1.7)

1.3. Remarks. (i) The inequality (1.7) is a special case of the inequality (1.6)
with ho="h, n.=n..

(ii) For h = dy and hy= di °, € € R, the condition (1.6) is satisfied with n- = |¢]. It
follows from the imbedding theorems for weighted Sobolev spaces (see [1], [4])
that the estimate (1.5) holds with

2¢,

n.=|?:l—| for e#1 (1.8)
or
2¢,

— — G
m e FN=—m—2] for e#m+2-N, (1.9)

where ¢, =¢, (2. M), i=1,2, are positive constants. Consequently the weight
h = d fulfils condition P,.

(iii) The weight hi(x)=exp (edrm(x)) satisfies condition P. with the constant
n.=|e|. Weights of this type are suitable for unbounded domains Q.

1.4. Differential operators. For the sake of simplicity we shall deal with
differential operators of the second order. The extension of all the results to
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operators of order 2k, k > 1, is straightforward (except only for some difficulties of
technical character).
Let

(Lu)(x)E»i (—1) Di(aij(x) Du(x)) with a,e L’ (L), (1.10)

i1—0

i,j=0,1, ..., N,and with Dyu = u. Let a(u, v) be the corresponding bilincar form

N

a(u,v)= >, f a; Dju Dv dx. (r.11)
o= JQ

We shall suppose that the operator L is elliptic in W, *(£2), which means that there

exists a constant A >0 such that

a(u, )ZA||lullf forevery ue W, (Q). (1.12)

1.5. Remark. A sufficient condition for (1.12) is the algebraic condition

N

2 ai(x)EE Z A& ’ (1.13)

i j=0
fora.e. xeQ andforevery EeR™".

The condition (1.13) can be weakened in various ways.

1.6. The bilinear form b. Let h be a weight on £ satisfying the condition P, or
P,. We associate with the operator L from (1.10) a bilinear form b(u, v) defined
by the formula

N

b(u,v)= > | ai(x) Dju(x) D;[v(x)h(x)] dx. (1.14)

Obviously, -
b(u, v)=a(u, vh)

with a(u, v) from (1.11). We shall show that the form b(u, v) is defined (and,
moreover, bounded) on W"?(Q; h)x W"*(Q; h):
Let us denote

i

N . :
b.(u, U)= 2 f a;; D,'u D.‘U h dx,
=0 JQ
N N
ba(u, v)=Y > J a; Dju v D;h dx.
Q

i=1j=0

For u, ve W"*(Q; h) we have by Holder’s inequality

N
bi(e, w)|= S j la,| |Dyu|h?|Div | R dx =
j Q

i j=0
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N
= 2 laill-IDwlllDwll = esllalliallvlls-

icj—

If h satisfies condition P, we have similarly

N N
ba(u, V)=, D J la;|IDu|h'?|v||Dhlh™" 2 dx =
=0 JQ

=1 j=
N N

12
=3 SllallIDalls ([ 1o DaPn *dx) =

=1 j=0

= ullulliomellvll, = pemillullcallvllis

if h satisfies condition P, then simply

N N
bx(u, V)= D J la; Duv||Dh| dx = pmsllullcallvlli.
iz ic0 Ja

Consequently, we have

ba(u, v)[ S pnllullinllvllien (1.15)
with
nz{n.ng if h satisfies P, (1.16)
ns if h satisfies P-.

Since
b(u, v)=b\(u, v) + bx(u, v), (1.17)

we have
[b(u, v)|= (ca+um)lullinllvllin, (1.18)

i.e. the form b is bounded on W"*(Q; h) x W"*(Q; h).

2. The Dirichlet boundary value problem

2.1. Definition. Let h be a weight function on €2 satisfying condition P, or P.. Let
L be the differential operator from (1.10). Let fe(Wy*(Q; h))* and
ge W"3(Q; h).

We shall say that a function ue W"?(£2; h) is an h-weak solution of the
Dirichlet problem (L, f, g), if

u—ge W<I)'2(Q; h)’
b(u,v)=(f,v) forevery veCy(Q). (2.1)

2.2. Some estimates. Our aim is to prove the existence of an h-weak solution by
means of the Lax—Milgram Lemma. Since in Section 1.6 we have proved
boundedness of the form b(u, v), we need the Wi ?(Q; h)-ellipticity of this form,
i.e. an estimate
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b(u, u)Zcllulli.. forevery ueWi(Q;h).
Let ue Wi (2; h) and let us write
b(u, u)=a(uh'’, uh'>)+ R(u, h). (2.2)
The ellipticity of L — see (1.12) — implies
a(uh'?, uh'?)Z Al|luh'”||5.

Analogously as in deriving the estimate (1.15) we obtain

= [ fulh dx +z [ 1Dt axz

;uu”f,+i f IDulh dx—’il f D] [u] D] dix —

—iﬁf,,lullethZh" dx Z||ull}.. (l—n—%z)

and consequently, we have

2

aCuh'?, uh')Z A (1=n =) lulli... (2.3)

Further, by an analogous argument,

—R(u, h)y=a(uh'?, uh'*)— b(u, u)=

= i f a; [D;(uh'?) D;(uh'?) —D;u D;(uh)] dx =

ij=0
N

N N N
=155 [ wDuDhdx-33 5 [ o DA Dudx+
=1 JQ

i=0j =1 j=0 JQ

N 2
+}1 > | au’Dh Dhh™! dxé(n +%> wllullf.

ig=1 Ja

Hence, (2.2) in view of (2.3) yields the estimate
2 2
b(u, wZ[M1=n=2)=u (n+5) [ lull, (2.4)

and the multiplicative constant in square brackets ( = the ellipticity constant for the
bilinear form b) is positive if only if

n<2( ET:—I), (2.5)

191



where » = A .
u
2.3. Remarks. (i) If we use the algebraic ellipticity condition (1.13), we obtain
by(u, W)ZAl|ulli. ..
Together with the estimate (1.15) we derive from

b(u, w)Zb,(u, u) —|b:(u, u)|
the estimate

b(u’ u);(l—un)”u”%h (26)
Consequently, for operators L which fulfil the (more restrictive) condition (1.13),
we obtain that the bilinear form b(u, v) is W2 Q; h)-clliptic.
A
<n=—. 2.7
n<x=_ (2.7)

This estimate for n is better than the estimate (2.5); this fact shows that the
stronger ellipticity condition (1.13) enables us to deal with a generally larger scale
of weights.

(ii) From the previous considerations it is clear that the constant u plays an
important role. Let us note that all the estimates can be obtained for

)
p=( 2 llal:)
[}

but usually it is possible to choose u in a better way, by using special properties of
the particular operator L. See the following example.

2.4. Example. For the operator Lu= —Au+u from (0.1) we can take
A =u=x=1. Obviously, the choice u=1 is essentially better than the choice

t2
)

= ("i”ua,,ni)' VNI

2.5. Theorem. Let L be the differential operator from (1.10), which is elliptic in
the sense of (1.12). Then there exists 1,>0 such that for every weight h which
satisfies condition P, or P, with n<mn,, n given by (1.16), and for every
fe (W53 (Q; h))* and ge W"*(2; h) there exists one and only one h-weak
solution of the Dirichlet problem (L, f, g). The h-weak solution ue W'*(2; h)
satisfies the estimate

Nullicn = cllfll=+ Ngllin) (2.8)

where ¢ >0 is independent of f and ¢.

Proof: Let us put w=u—¢g. Then the identity (2.1) can be rewritten in the

form
b(w, v)=(f,v) +b(g, v). (2.9)
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It follows from (1.18) that the right hand side is the value (F, v) of a continuous
linear functional F on W{?(Q; h). The same formula implies that b(w, v) is
bounded on Wy ?(2; h)x Wy?(L2; h). The estimate (2.4) shows that b(u, v) is

o 2(82; h)-elliptic for every n satisfying (2.5) (for n, we take the right hand side
in (2.5)). Now, it follows from the Lax—Milgram Lemma that there exists
a uniquely determined w such that (2.9) holds for every ve W, *(Q; h) (and, a
fortiori, for  every veCy(Q)) and that Iwlli.n = ci]|Fl|x=
c(llfllx+ (ca+un)llglli.n). The function u=w+ g is the h-weak solution and
satisfies (2.8).

2.6. A weak solution in W' *(Q; h,, h). Let us suppose that the weight h satisfies
condition P,. Then it follows from the estimate (1.5) that

Nulli:n =@ +n)llullln forevery ueCi(R),
which means that the space Wi (L2 ; ho, h) is larger and that the imbedding
(I).Z(Q; h)C Wy 2(9; ho, h)

holds. Therefore, it is meaningful to consider (ho, h)-weak solutions of the
Dirichlet problem (L, f, g). The definition of such a solution literally follows
Definition 2.1, replacing the spaces W"?(Q; h) and W\ *(Q; h) by the space
W"(; hy, h) and Wi *(Q; ho, h), respectively.

If we suppose in addition that the weight h is such that the expression

il = (SDas)”

is a norm on Wy *(Q; h) which is equivalent to the norm ||u/|,.,, then an existence
and uniqueness theorem analogous to Theorem 2.5 holds. The formulation and
proof is left to the reader; let us only point out that the analogue of the estimate
(2.6) will have the form

A 5
b(u, u)Z[ 2—11712] [fullF: o ne

1+ni

3. Power-type weights

3.1. Now we shall apply the results of Section 2 to the case of power-type weights
di(x) introduced in Section 1.2 (i). For h = d}, we have h,=d} ?, and Remark 1.3 -
(ii) implies that the constant n from (1.16) has the form

_ . C C>
n=2le] min (|£—1|’ |5+N—m—2|> G.1
(see (1.8) and (1.9)).
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We shall write shortly W"(Q; €) instead of W"*(Q; dy) and W"*(Q; ¢, € —2)
instead of W'(Q; diu, dii?).
From Theorem 2.5 and Remark 2.3 (i) we conclude

3.2. Proposition. Let L be the differential operator from (1.10) which is elliptic
in the sense of (1.13). Then there exist numbers s,, s,, s, <0<s,, with the following
property: For every €e€(si,s,) and for every fe(Wy*(L2;e))* and
g e W"(Q; ¢£), there exists one and only one di-weak solution ue W"'*(Q; €) of
the Dirichlet problem (L, f, g), which satisfies the estimate (2.7).
c—ca(N—-m-=2)

Proof: Letus denote 7= . Then for n given by (3.1) we have

C2+C|
2¢ |e] -
le—1| for e=rt,
n:
2Cﬂ— for e>1
[e+N-m—2] © '

By Theorem 2.5 and Remark 2.3 (i), the parameter n must satisfy the inequality
(2.7). This means that we can put (s, s;)=I,ul,, where

—#(N—-m-=2) x(N—m—Z))

I.=(1:,+oo)m< 2c,+ % ’ 2¢c,—

X X
Iz_(_w’r>m<_2c.—x’2c,+x)'

We have I,=(—1, ) and it can be easily verified that 0€ (s, s.).

5.3. Remark. An analogous proposition can be formulated and proved for
weak solutions in W"?(Q; ¢, e —2) — see Section 2.6.

3.4.Example. Let Q=(0, )", 0=m=N-1,M={xeQ,x,=0fori=m+1,
m+2,...,N}. Then Mc3Q, dim M =m and

N

€/2
din(x) = ( D x?) .
i=m+1

Further, let us consider the operator Lu = —Au + u ; then L satisfies the condition
(1.13) with A =1 and we can take u =1 (see Example 2.4). Hence the inequality
(2.7) has the form n < 1. Let us show for which values of € this condition is fulfilled.
We extend the function u € C5(L) by zero for x;=1,i=m+1, ..., N. Using the
generalized cylindrical coordinates (xi, ..., Xm, %, ..., Ovem-1, ) =(x', &, r), we

have du(x)=r and

o
”M”? ZZJ’ dx’f 'u(x" 19, r)IZrE—ZrN—m ‘dr.
0. n™ ©, w2)N-m v Jo
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Applying the Hardy inequality (see e.g. [1]) to the inner integral under the
assumption £¢# m + 2 — N and passing again to the cartesian coordinates we obtain

Qu|? . 4 )
du dx—l +N_m_2lzllu“1:f-

S ey | [
EEIN—m 2]

That means c.=1 (cf. (3.1)).
Analogously, for e# —1 we have the estimate

”u”; Z_IE |z Cl””“l P

where

20°Y(N-=m)™'"? for €=0,
c.={2”2(N—m)_”2 for 0<e=2,
2(N-=m)™"? for £>2
(see [1], [4]). '
A more detailed discussion gives the following values for s,, s; from Prop-
osition 3.2 as well as the values of ¢, t which define the corresponding interval

(11, t2) for the case of the space Wy *(Q; €, € —2) — see Remark 3.3:

Table 1
N—m Y] S2 t t;
1 -0,48 0,26 -0,13 0,09
2 -0,78 0,33 -0,30 0,15
3 -1,04 1 -0,39 0,30
4 -1,30 2 -0,48 0,63
5 -1,54 3 -0,56 0,78

3.5. Remark. The intervals (s, s2), (¢, t;) defined by values of Table 1 give,
naturally, only the sufficient conditions for the existence of the h-weak solution to
the problem (L, f, g) in question.

4. Concluding remarks

4.1. A comparison with the approach mentioned in Section 0.4 shows that the
above-described method generally gives a larger class of admissible weights. In
fact, investigating the Wi *(€2; h)-ellipticity, i.e. the inequality

b(u, u)=a(u, uh) ZA||ullt..,

we obtain restrictive conditions on the weight h. However, for the approach from
Section 0.4, we have to prove in addition that the inequality
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a(uh ', W)Zilulli..

holds, and this eventually generates further restrictions on /.

4.2. Other boundary value problems. The main tools for establishing the
existence and uniqueness of an h-weak solution of the Dirichlet problem (L, f, g)
were the boundedness and Wy *(Q; h)-ellipticity of the bilinear form b(u, v), i.e.
the validity of estimates of the type

[b(u, V)= csllullvilv]lv, (4.1
b(u, W) Zcollully (4.2)

for every u, ve V=W§i(Q; h).
For other boundary value problems, we have to derive analogous estimates, but
now for functions u, v € V, where V is a larger space,

Wi(Q; h)c Ve W (Q; h)

(e.g., we have V= W"*(Q; h) for the Neumann problem). Moreover, terms of the
types :

J uvh dS, J guvdS, I'c3Q,
r r

can appear in the bilinear form b(u, v) and on the right hand side of the identity
(2.1), respectively. This fact requires a more detailed knowledge of the properties
of traces of functions from weighted spaces.

Therefore, let us give only two examples:

(i) The weak analogue of the (mixed) boundary value problem

Lu=fon Q, u=g, on 'cdQ, gs=gz on 3Q-T
makes sense and a weak solution exists in the space V = V(¢) for the same values
of € as mentioned in Table 1, if we choose V as the closure of the subset of all
functions ue C*(L) such that supp unl'=@ in the norm of W"*(Q, ¢) with
h=dy and McT.

(ii) If we consider the weak solution of the Neumann problem for power-type
weights, we have to check that (4.2) holds for V= W"*(Q; £). A comparison of
the interval of those &’s for which the imbedding theorems for this space hold, with
the intervals from Table 1 shows that

(a) in the case m =N —1, these intervals are disjoint and so the Neumann
problem is not (weakly) solvable (by our method!);

(b) in the case m=N—2, the Neumann problem is weakly solvable in
W"(Q, ¢) for €€(0, s,) and in W"*(Q; e, e —2) for e€(0, t,);
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(c¢) in the case m=N-—3, the Neumann problem is weakly solvable in
W' (Q;¢) and W"*(Q; €, £—-2) for the same values of £ as the Dirichlet
problem.
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JIMHEWHBIE 3JUIMIITUYECKUE KPAEBBIE 3AJAYN
" BECOBBIE ITPOCTPAHCTBA C.JI. COBOJIEBA:
MOOU®ULIMPOBAHHBIN MOOXON

Alois Kufner, Jifi Rakosnik
Pesome
B pa6ore yka3aHO, Kak MpH MOMOILUM HEKOTOPOTO BHIOM3MEHEHUS MOHATUSA €aboro peueHus
KpaeBo# 3aa4 MOXHO pellaTh 3TH 3aayu B BecoBbix mpocTpaHcTBax C.JI. CoboneBa. ITOT MeTOR
NO3BOJISET PACIUMPUThL KJIACC KPAaeBbIX 3afay, pellaeMbIX MeTogaMu (bYHKLHMOHAJIBLHOrO aHaiu3a.

I'naBHbIMHU cpeacTBaMH SBASAIOTCS JlemMa Jlakca 1 MunbrpaMa u CBOMCTBa BECOBBIX MPOCTPAHCTB. Bee
noapo6GHO yKa3aHO Ha npumepe 3afauu lupuxie AN ypaBHEHUS BTOPOrO MOpsiaKa.
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