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ON MEAN VALUES 
OF SUBADDITIVE PROCESSES 

RADKO MESIAR 

During the last decade the theory of subadditive processes has developed and 
deepend. The existence of the mean value of a subadditive process plays a key role 
in this theory. 

Definition. Let T be a subset of the real line closed under addition, with the 
property: ifs,teT,s<t, then also t — seT. A subadditive process on Tis a family 
(Xs,,; s, teT, s<t) of random variables satisfying the following conditions: 
SI . Whenever s<t<u, XS.U^XS., + X,.U. 
S 2. For all ueT, the joint distributions of (Xs+U.t+U) are the same as those of 

(*,.)• 
S 3. For all positive teT, the expectation E(X0,,) exists and satisfies E(X0.,)^ 

—At for some constant A > 0. 

Assertion. (Kingman, [1, assertion 1.4.1.]) Let (X,,) be a subadditive process on 
T. Then the finite limit 

y = lim E(Xo.,)/r = inf E(X0.,)/t 
<€T , e T 

exists. 
The finite limit y is called the mean value of a subadditive process. 
Example. Let T=Q* be the set of all nonnegative rational numbers. Let 

g(m/n) = log2n for natural m, n, GCD(m, n) = l.Then Xs., = g(t — 5) for s, te T, 
s < t, is a subadditive process (on every probability space). This subadditive process 
has no mean value y, i.e. the finite limit 

lim E(X0.,)lt 
<eT 

does not exist. 
Proof. As the process (X>,,)"is degenerate, E(XS.,) = XS.„ the condition S 2 is 

satisfied. As log2 n for natural n is nonnegative, the condition S 3 is satisfied with 
A = 0. The subadditivity condition S 1 will be satisfied, if the function g is 
subadditive, i.e. if g(p + r) ^ g(p) + g(r) for all p, reQ+ — {0}. Let p = m/n, 

305 



r = ilj for natural m, n, i, j , GCD(m, n) = \, GCD(i, j) = \. Then 
p + r = (mj + ni)ljn = kid for k, d natural, GCD(k, d) = \. Of course jn ^ d, so 
that g(p + r) = log2 d s£ log! jn = logj- j + log2 n = g(p) + g(r). This proves the 
fact that (X,.,) is a subadditive process. 

Let t„ = n = nl\ for n = \,2, .... Then E(Xo.,„) = 0, 

lim E(Xo.,„)/r„=0 
n — > C D 

Let s„=(n2" + \)/2n for n = \,2, .... Then E(X0.s„) = n, so that 

limE(Xo.I„)/5„ = l. 
n—»oo 

As we have two subsequences with different limits, the mean value of this process 
cannot exist. 

As our example contradicts the assertion of Kingman, a subadditive process with 
a mean value necessarily satisfies stronger conditions than S 1, S 2, S 3. If T is the 
set of all integers or of all nonnegative integers, the conditions S 1, S 2, S 3 are 
strong enough to guarantee the existence of a mean value y [2, Theorem 1.1.]. The 
folloving theorem solves the general case. 

Theorem. Let (Xs.,) be a subadditive process on T satisfying the folloving 
condition: 

there exists reT, r>0 such that 

B = sup E(Xo.,)<oo. 
, « T 

0 < , * r 

Then the finite limit 

y = limE(Xo.,)// 

exists. 
Proof. As (X,.,) is a subadditive process, it satisfies the condition S 2. So we 

have E(Xo.,) = E(Xu .u+() for all u, teT, t>0. Let r from the condition in our 
theorem be given. From the condition S 1 it follows that 

•^0. , ^ X o . nr + Xnr. , 

for teT, f > 0 , where n is the integer part of tlr (X,,,=^0). Then E(X0.,) ^ 

E(X0.nr) + B. Since lim tlnr = 1, and the condition S 3 implies —Ar^B, we get 
/—»oo 

r e T 

lim E(Xo.,)//s£rim E(X0.ar)/nr=Yr. 
t—*•• n—•*> 
teT 
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The existence of the finite limit yr follows from [2, Theorem 1.1.], since (X„r.mr), 
where n, m are nonnegative integers, n < m, is a subadditive process with discrete 
parameters. 

Similarly 

Ao,(n+l)r ^ An, , + Xi,in + l)r, 
so that 

yr^\im E(X0.,)/t. 
I—»QO 

This proves our theorem. Moreover, we have y = yr. 

R e m a r k . For every reQ+, r>0, we have sup g(t) = <*>, where g is the 
leO 

0 < , * r 

function from our example. So the subadditive process from our example does not 
satisfy the condition from our theorem. The assertion 1.4.1. in [1] about existence 
of a finite mean value y for every subadditive process is not correct. Of course, the 
condition imposed in Theorem 4 of [1] (namely 1.4.7.) is strong enough to 
eliminate the difficulty, but it si much stronger than the condition of our theorem. 
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О СРЕДНИХ СУБАДДИТИВНЫХ ПРОЦЕССОВ 

Радко Месьяр 

Резюме 

В предлагаемой работе исследуются средние субаддитивных процессов с общими парамет­
рами. Пример показывает, что утверждение 1.4.1. в [1] неверно. 

307 


		webmaster@dml.cz
	2012-07-31T23:54:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




