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Z-SUBGROUPS OF ORDERED GROUPS
JIRI RACHUNEK

In this paper the concept of a z-subgroup of a lattice-ordered group is
generalized for an ordered group (henceforth a po-group). Properties of z-subg-
.roups are investigated for the case of a 2-isolated regular po-group with the
property (II).

A po-group G=(G, +, =) will be called 2-isolated if the holds: If ae G
satisfies a = —a, then a =0. A po-group G is said to be regular if the existence of
inf (a, b) in G* implies the existence of inf (a, b) in G for a, b € G*. Way say that
a po-group G has the property (II) if for each ae G there exists av —a
= supg (a, —a). (See also [3].)

We shall denote the set of all directed convex subgroups of a po-group G by
I'(G), the set of all convex subsemigroups with 0 of G* by I'(G). In [2, Theorems
2.1, 2.2, 2.3] it is proved that I'(G), I'(G) ordered by the inclusion form
isomorphic complete lattices and that the infimum in I'(G) is determined by the
intersection.

Let G be a po-group, ay, ..., a, € G. We denote U(a,, ..., a,) = {xeG; a=x
forall i=1, ...,n}, L(ay, ...,a,) = {yeG; y=a, forall i=1, ..., n}. For any
element x € G we write |x|=U(x, —x).x, y € G will be called disjoint (notation
x8y) if there exist x, € |x|, y, € |y| such that x, Ay, =0. (x,Ay, means infg (x,, y,).)
For @+ A cG we denote A°={xeG; adx for all ae A} For x e G we write
x®={x)°. If A°+ @, then A°® will be called a §-polar of the set A. (See [3].) A*
means (A°)°. If A°+®, then AcA*®, A® = A*®. For A°+®, B°+®, AcB
implies B® = A°. By [3, Proposition 2.5], any d-polar of a 2-isolated po-group with
the property (II) is an element of I'(G). Moreover, the set of all §-polars of
a 2-isolated regular po-group with the property (II) ordered by the inclusion is
a complete Boolean algebra and the infimum is formed by the intersection. ([3,
Theorem 2.6].)

Finally, if G is a po-group, then M € I'(G) will be called a r-subgroup of G if for
any aeM, b eG, a®=b° implies b € M. (For an [-group see e.g. [1].)
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Theorem 1. Let G be a 2-isolated regular po-group with the property (II),
M eI'(G). Then the z-subgroup generated by M is M= \/ a*

aeM

Proof. Let MeI'(G), x, y € M. Then by [3, Lemma of Proposition 2.8] there

exist elements a, beM™* such that xea®, yeb®, hence x —yea®vb®
= (a+b)*, therefore x —y e M, and so M is a subgroup of G.

LetaeM (ie. a eb“" where b e M), |x| lal. Thenxv —x = av —a, and thus
x*2a®, hence x> ca®. Therefore x ex® < a* < b holds, and this means
x € M. Hence, by [3, Lemma 2 of Proposition 2.5], we obtain M eI'(G).

Now, let x e M, y € G, x® =y°. Then there exists a € M such that x € a®, thus
yey>® = x*® > holds, and consequently y € M. Therefore M is a z-subgroup
of G.

Let us show that M is the smallest z-subgroup of G containing M. Let us
suppose that for a z-subgroup Z of G there holds McZ. If 0<aeM, 0=xea™
(i.e. x e M), then by [3, Proposition 2.8] (x +a)® = x°na®=a°,hencex +aeZ.
Consequently 0=x =x +a, x +a € Z, therefore by the convexity of Z we obtain
x € Z. This implies M*c Z*, thus also Mc Z.

Let G be a po-group. Then S € I'(G) will be called a z-subsemigroup of G* if
x®=y° implies y € S for each x € S, y € G*. We denote the set of all z-subsemigr-
oups of G* by Z(G), the set of all z-subgroups of G by Z(G).

In [2, Theorem 2.1] it is proved that the mapping ¢: I'(G) — I'(G) given by
Aq@=A" for each A eI'(G) is an isomorphism between the sets I'(G) and I'(G)
ordered by the inclusion and that Sp ="' = (S) for each S e ['(G), where (S) is the
subgroup of G generated by S.

Theorem 2. Let G be a 2-isolated regular po-group with the property (1I). If
M e %(G), then Mg € #(G) and if S e %(G), then S¢ '€ 4(G).

Proof. a) Let MeZ(G), xeM™*, yeG™*, x° —y Then yeM n G*=M",
therefore Mg € Z(G).

b) Let Se Z(G), ue (S),veG, u®=v°. Then (uv —u)* = (vv —v)°. Hereby
uv—ue(S) =S, vv—-veG* thusvv—veS. Andsince —(vv—-v) =v =

vV —v, there holds (by the convexity of (S)) ve(S). Therefore S~ '€ Z(G).

Theorem 3. If G is a 2-isolated regular po-group with the property (II), then
%(G) and Z(G) form isomorphic complete lattices that are closed A-subsemilat-
tices of I'(G) and I'(G), respectively.

Proof. Let S, e #(G) (iel),S=nS.. If xe(S), then x> < (S) foreachiel,

iel
and since x* and (S;) belong to I'(G), (x*)* = S; for each i e I. Hence (x*)* cS.
But this means that x** = (S), thus (S) € Z(G). Therefore S € Z(G). And since
G*e%(G), then Z(G) is a complete lattice. The rest is evident.
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In [3, Corollary 1 of Proposition 1.2] it is proved that for each positive element a
of a 2-isolated po-group G, the smallest directed convex subgroup of G containing
ais C(a) = {x € G; |x| 2|na| for a positive integer n}. If G has also the property
(IT) and if b is an arbitrary element of G, then each directed convex subgroup B of

G containing b contains b v — b, too, therefore B o C(b v —b). It follows that the
smallest directed convex subgroup C(b) containing b is equal to C(bv —b).

Theorem 4. Let G be a 2-isolated regular po-group with the property (II). Then
the following are equivalent :

(1) I'(G)=Z(G).

(2) C(a)=a® for each aeG.

(3) C(a)=C(b) if and only if a® =b* for each a, b eG.

Proof. 1 = 2: Let a € G. By the assumption C(a) € Z(G), hence a*® < C(a).
And since a® eI'(G), C(a) ca*always holds.

2 = 3: Trivial.

3> 1: Let MeI'(G), aeM, beG, a®=>b®. Then a* =b*, thus b e C(b)
= C(a)cM.
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Z-oAreynImnbl YINOPAOOYEHHBIX I'PYIIIT
Mupxu PaxyHex

Pe3oMe

B crathe 0606LIEHO MOHATHE Z-TIOATPYNNBLI U3 TEOPMH PELIETOYHO YNOPSAMOYEHHBIX TPYNN IS
MOObIX yNOPANOYEHHBIX Tpynn. B 4acTHOCTHM, 34ech MOKa3aHbI HEKOTOPbIE OCHOBHBIE CBOMCTBA
Z-TIOArpyNM B Cllyyae 2-U30JMPOBAHHBIX PETYISPHBIX YIIOPANOYEHHBIX IPYII, B KOTOPBIX CYLIECTBYET
sup (a, —a) ans QIO60ro 3JeMeHTa a.
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