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Z-SUBGROUPS OF ORDERED GROUPS 

JIRI RACHUNEK 

In this paper the concept of a z -subgroup of a lattice-ordered group is 
generalized for an ordered group (henceforth a po -group). Properties of z-subg
roups are investigated for the case of a 2-isolated regular po -group with the 
property (II). 

A po-group G = (G, + , = ) will be called 2-isolated if the holds: If aeG 
satisfies a = — a, then a = 0 . A po-group G is said to be regular if the existence of 
inf (a, b) in G+ implies the existence of inf (a, b) in G for a, b e G+. Way say that 
a po-group G has the property (II) if for each aeG there exists av—a 
= supG (a, —a). (See also [3].) 

We shall denote the set of all directed convex subgroups of a po-group G by 
r(G), the set of all convex subsemigroups with 0 of G+ by f(G). In [2, Theorems 
2.1, 2.2, 2.3] it is proved that r(G), f(G) ordered by the inclusion form 
isomorphic complete lattices and that the infimum in f(G) is determined by the 
intersection. 

Let G be a po-group, au ..., an e G. We denote U(au ..., an) = {x e G; a, =x 
for all / = 1, ..., n), L(au ..., an) = {y eG; y=at for all / = 1, ..., n). For any 
element xeG we write |JC| = U(x, —x).x,yeG will be called disjoint (notation 
xdy) if there exist j ^ e |JC|, yxe \y\ such that JCi Ay! = 0. (jCiA^! means infG (xu yx).) 
For <£-£ A c G we denote A6 = {xeG; adx for all a e A } For JC e G we write 
x6 = {JC}6. If A6± <P, then A6 will be called a 5-polar of the set A . (See [3].) A66 

means (A6)6. If A6± <P, then A c= A66, A6 = A666. For A6± 0>, B6±<P, A c B 
implies B6 cz A6. By [3, Proposition 2.5], any 6-polar of a 2-isolated po-group with 
the property (II) is an element of r(G). Moreover, the set of all <5-polars of 
a 2-isolated regular po-group with the property (II) ordered by the inclusion is 
a complete Boolean algebra and the infimum is formed by the intersection. ([3, 
Theorem 2.6].) 

Finally, if G is a po-group, then M e r(G) will be called a r-subgroup of G if for 
any a eM, b eG, a6 = b6 implies b eM. (For an /-group see e.g. [1].) 
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Theorem 1. Let G be a 2-isolated regular po-group with the property (II), 

MeT(G). Then the z-subgroup generated by M is M= V a66-
a e M 

Proof. Let MeT(G), x, y eM. Then by [3, Lemma of Proposition 2.8] there 
exist elements a, beM+ such that xea66, yeb66, hence x-yea^vb33 

= (a + b)33, therefore x—y eM, and so M is a subgroup of G. 
Let a eM( i . e . aeb33, where b eM), \x\^\a\. Then* v —x ^ av —a, and thus 

x3=>a3, hence x33^a33. Therefore xex33 cz a66 cz b33 holds, and this means 
xeM. Hence, by [3, Lemma 2 of Proposition 2.5], we obtain M e r ( G ) . 

Now, let x eM, y e G, x6 = y3. Then there exists aeM such that x e a66, thus 
y ey33 = x33 cz a33 holds, and consequently y eM. Therefore M is a z-subgroup 
of G. 

Let us show that M is the smallest z-subgroup of G containing M. Let us 
suppose that for a z-subgroup Z of G there holds MczZ . If O ^ a e M , O^xea 1 ^ 
(i.e. x eM+), then by [3, Proposition 2.8] (x + a)3 = x3na3 = a3, hence x + aeZ. 
Consequently O^x^x + a, x +a eZ, therefore by the convexity of Z we obtain 
xeZ. This implies M + c z Z + , thus also M c Z . 

Let G be a po-group. Then S ef(G) will be called a z-subsemigroup of G+ if 
xb =y* implies y eS for each x eS,y e G+. We denote the set of all z-subsemigr-
oups of G+ by &(G), the set of all z-subgroups of G by %(G). 

In [2, Theorem 2.1] it is proved that the mapping cp\ F(G) —> f(G) given by 
Acp=A+ for each A eT(G) is an isomorphism between the sets F(G) and f(G) 
ordered by the inclusion and that Scp~l = (S) for each S e f(G), where (S) is the 
subgroup of G generated by S. 

Theorem 2. Let G be a 2-isolated regular po-group with the property (II). If 
Me%(G), then Mcpe&(G) and if S e£(G), then Sep'1 e%(G). 

Proof, a) Let MeZ£(G), xeM+, yeG+, x6=y\ Then yeM nG+ = M+, 
therefore Mcp e 2,(G). 

b) Let SeS(G), ue ( S ) , veG, u6 = vs. Then (u v - u f = (v v -v)6. Hereby 
uv —u e (S)+ = S, vv — v eG+, thus u v —v eS. And since — (v v — v) ^ v ^ 
v v — v, there holds (by the convexity of (S ) ) v e ( S ) . Therefore Sqp-1 e^(G). 

Theorem 3. If G is a 2-isolated regular po-group with the property (II), then 
3£(G) andS(G) form isomorphic complete lattices that are closed A-subsemilat-
tices of r(G) and f(G), respectively. 

Proof. Let S, e&(G) (iel), S=n S,. If x e ( S ) , then x63 cz (S,) for each iel, 
iel 

and since x33 and (S.) belong to F(G), ( 0 + c z S , f o r e a c h / e F Hence (x<v>)+czS. 
But this means that x33 cz ( S ) , thus (S) e&(G). Therefore S e£(G). And since 
G+ e££(G), then S(G) is a complete lattice. The rest is evident. 
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In [3, Corollary 1 of Proposition 1.2] it is proved that for each positive element a 
of a 2-isolated po -group G, the smallest directed convex subgroup of G containing 
a is C(a) = {x e G; \x\ ^ \na\ for a positive integer n}. If G has also the property 
(II) and if b is an arbitrary element of G, then each directed convex subgroup B of 
G containing b contains bv —b, too, therefore B 3 C(b v — b). It follows that the 

smallest directed convex subgroup C(b) containing b is equal to C(bv —b). 

Theorem 4. Let Gbea 2-isolated regular po-group with the property (II). Then 
the following are equivalent: 

(1) r(G) = 2£(G). 
(2) C(a) = a66 for each a e G. 
(3) C(a) = C(b) if and only if a66 = b66 for each a,beG. 

Proof. 1 => 2 : Let a e G. By the assumption C(a)e2t(G), hence a66 c C ( a ) . 
And since a66 eT(G), C(a)^a66always holds. 

2 - ^ 3 : Trivial. 
3 => 1: Let MeT(G), aeM, beG, a6 = b6. Then a66 = 66 6 , thus beC(b) 

= C(a)c=M. 
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2.-ПОДГРУППЫ УПОРЯДОЧЕННЫХ ГРУПП 

Йиржи Рахунек 

Резюме 

В статье обобщено понятие г -подгруппы из теории решёточно упорядоченных групп для 
любых упорядоченных групп. В частности, здесь показаны некоторые основные свойства 
I -подгрупп в случае 2-изолированных регулярных упорядоченных групп, в которых существует 
вир (ау —а) для длюбого элемента а. 
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