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ALMOST UNIFORM CONVERGENCE
FOR CONTINUOUS PARAMETERS

TIBOR NEUBRUNN

1

Various papers deal with Jegoroff’s theorem of almost uniform convergence. The
classical version proved in [3] (see e.g. [2] p. 88) concerns sequences of functions. It
is well known that it fails if instead of sequences a system {f'} (¢ € T) of functions is
considered. More precisely, a function f(x, t) on X X T is given and by means of
this function the collection {f'} (¢ € T) where f* are ¢ — sections of ¢ is considered.
The counterexamples were given in [11], [12] (see also [10]). If the notion of the
almost uniform convergence is weakened, then a weaker analogy of Jegoroff’s
theorem may be obtained also for continuous parameters. Such results were proved
in [13] and [14]. .

On the other hand, there is a possibility to obtain also for a continuous parameter
the classical version of Jegoroff’s theorem, if certain assumption on f(x, t) as
a function of two variables are given. Thus, e.g., the Borel measurability of f as
a function of two real variables is sufficient, as was proved by Tolstoff [11], using
the properties of the analytic sets in the plane. In the present paper we give two
theorems of this kind covering the cases when X and T are sufficiently general
spaces. Of course the proofs will differ from those of Tolstoff.

2

Definition 1. Let (X, ¥, u) be a measure space (in the sense of [2]) and
T a topological space. Let F: X X T— R be a function and t,e T a point. A system
{f'} (teT), where f'(x)=f(x, t) for x € X is said to be almost uniformly conver-
gent to a function @ defined on X, if to any € >0 there exists a set E € ¥ such that
u(E)<eand the system {f'} converges uniformly to @ on X — E as t tends to t,.

Obur first result concerning the almost uniform convergence uses the notion of the
quasicontinuity.

Definition 2. If X, Y are topological spaces and g : X — Y a mapping, then g is
said to be quasicontinuous x, € X if for every two open sets U, V such that x,e U,
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g(x0)e V, there exists G open, G¥0, Gc U and g(G)c V. It is said to be
quasicontinuous on X if it is quasicontinuous at any x,€ X..

Remark 1. The notion of quasicontinuity was used already in [4]. The
relations between quasicontinuity continuity and other types of continuities was
discussed in [6], [7], [8] and elsewhere. The characterization of discontinuity points
of a quasicontinuous function was given in [5].

It seems to be worth mentioning that there exists a quasicontinuous function
which is not Lebesgue measurable (see [6]).

Lemma 1. If g : X— Y is a quasicontinuous function on X, then the following is
true: If Z = X is any open set and D c Z is dense in Z, then f(D) is dense in f(Z).

Proof. Let yef(Z) and x € Z such that f(x)=y. Let V be any open set
containing y. We have from the quasicontinuity at x that a nonempty open G = Z
exists with f(G) = V. Since GNnD+# 0 and f(GND) < V, a point v € V belonging to
f(D) exists. The proof is finished. =

Remark 2. Itis known that the converse of Lemma 1 holds too. However, we
do not use this fact. ,

In what follows, we suppose that the functions f which are dealt with assume real
values. A generalization for metric spaces or some uniform spaces is possible. But
we are of the opinion that in that direction a sufficiently general version is given in
[14]. By the same method as in [14] our results may be transferred to suitable
uniform spaces. As to the spaces X, T on the product X X T of which the function f
will be defined, we shall suppose that (X, &, u) is a totally finite measure space and
T a separable topological space satisfying the first countability axiom. These
conditions will not be repeated in the formulations of the theorems. Only
additional conditions if necessary, will be explicitely stated. It can be easily verified
that the first countability axiom may be weakened in some of the results. The same
is true for the total finiteness of the space (X, &, u) if we restrict ourselves to
functions defined on E X T, where E € &, and u(E) <. ,

Lemma 2. Let f: XX T—R. Let toeT. If for ever te T the functions f' are

measurable and Iim f*'(x) = @(x) for every x € X, then @ is a measurable function.

Proof. From the assumption of the first countability of T it follows that ¢(x) =
= lim f(x, t,). Hence @ is measurable as a limit of a sequence of measurable
functions.

Remark 3. Obviously the assumption lim f'(x) = ¢(x) for every x € X may

be substituded by the assumption that lim f'(x) = @(x) almost everywhere.
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Lemma 3. Letf: X X T— R be such that f* are measurable for every t € T and f,
quasicontinuous for every x € X. Suppose that lirp f'(x) = @(x) for every x e X.

Then for every open set G < T and any € >0 the set F={x: |f(x, t)— @(x)| e,
for every t € G} is measurable.

Proof. Let D be a coutable dense subset of G. Suppose that D is the set of
values of a sequence {# }r-:. Put

Fi={x:|f(x, t)—@x)|=e, fork=1,2,...}.

Since f'» are measurable functions for k =1, 2, ... and @ is measurable according to
Lemma 2, we have that F,, as a countable intersection of measurable sets, is
measurable. It is sufficient to show that F = F,. The inclusion F c F, is obvious. Let
x € F, and ¢ any point in G. According to Lemma 1, we have that f, (D) is dense in
f:(G). Hence a sequence {f,}.-, exists such that f,(#,) tends to f(x, ¢). Since
x € Fy, it follows |f(x, &) — @(x)|=¢e forn=1, 2, ... Hence |f(x, t) — @(x)|=e.
Since ¢ was arbitrary, we have x € F. The inclusion F,cF is proved.

Theorem 1. Let f: XX Y—R. Let t,e T and lir}l f(x,t) = @(x) almost eve-

rywhere on X. Let f, be quasicontinuous for every x € X. Then for t — t,, f* tends to
@ almost uniformly.

Proof. Without loss of generality we may suppose that f*(x) converges to @(x)
forevery x e X. Let V, 2 V, ... be a base of open neighbourhoods at the point ,.

Lete>0.Putfork=1,2,..,n=1,2,...E; = {x:x€eX, |f(x,t) — o(x)| = %,
for every te V,}. According to Lemma 3 the sets E; are measurable. Since

OE2=X for n=1, 2, ... Moreover

k=1
EicE;., for k=1,2,... Thus for every n a number k(n) exists such that

w(X —Ejwm) <§£;. Put E = [ ) E},. The fact that u(X — E)<¢ follows now in the

n=1

lirp f'(x)=@(x) for every x € X, we have

same way as in the proof of the classical Jegoroff’s theorem, as well as the fact that
the convergence is uniform on E is now quite similar to the one in the classical case.

If n>0 is arbitrary, then we can choose n such that %<n. Now, since

E c Ej.), we have |f(x, t) — p(x)| _S_%

foreveryte V. andeveryx € E.
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3

In this section another sufficient condition will be given for an almost uniform
convergence in the case of a continuous parameter. The proof will be based on
a method which was used for proving the measurability of functions of two
variables by the author in his thesis (1963) and then applied in [1]. At first we shall
give some notes concerning this method. The functions will be again real valued.
The assumption concerning the domain will be specified in each of the assertions
which follow.

Definition 3. If X is a nonempty set, then a collection ? = {Py} of nonempty
sets k=1, 2, ...n e N(k), where N(k) is either a set {1, 2, ..., n,} or the set of all

ositive integers, and | JPs=X for k=1, 2, ..., is said to be a P-system on X.
p 8

Remark 5. Note that in [1] we used.the notion of a ?-system only in the case
when a measurable space (X, &) was considered and we supposed 2} € &. This will
not be the case here in general. If e ¥ forn e N(k) and k=1, 2, ..., we say that
P is a measurable P-system.

Definition 4. If ? is a P-system on X, then a function f defined in X is said to be
regular at x, with respect to %P, provided that for any open G containing f(x,) there
exists k, such that if k > k,, then x, x, € Py for some n implies f(x) € G. It is said to
be regular on X with respect to P if it is regular at any x, € X, with respect to .

Definition 5. If X is a topological space with the topology 9 and P a P-system
on X, then P is said to be regular with respect to J provided that for any U € J and
any x € U there exists k, such that if k > k,, then x € P implies Prc U.

Lemma 4. if ? is a P-system on a set X, then a function f on X which is regular
on X relative to P, is measurable with respect to the o-algebra generated by P.

Proof. Let G be an open set. If x,ef '(G), then there exists k, such that if
k >k, and x, x,€ Pk, then f(x)e G. Since for x, there is n such that x,e P%, we
have for this n f(2%)G if k > k,. Thus to any x, € f"'(G) a set % may be associated
such that f(2%) = G. This means that f~'(G) is a union of some sets belonging to 2.

Corollary. If X is a topological space and P a P-system on X which is Borel
measurable (i.e. every element of P belongs to the o-algebra generated by all open
sets), then any function regular on X with respect to P is Borel measurable.

Lemma S. If X is a topological space with the topology I and % a regular
P-system on X, then the o-algebra generated by % contains the collection of all
Borel sets.

Proof. It is sufficient to prove that any open set U belongs to the o-algebra
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generated by 2. Let x € U. From the regularity of & it follows that there exists ko
such that if k > k, and x € 2y, then P < U. Since to any x and any k there exists n
such that x € 2f. we have that U is a (countable) union of sets belonging to 2. The
lemma is proved.

Corollary. If X is a topological space and % a regular, Borel measurable
P-system on X, then the o-algebra generated by P concides with the g-algebra of
all Borel sets.

Lemma 6. If X is a topological space and P a regular P-system on X, then any
continous function on X is regular on X with respect to P.

We omit the simple proof. It is contained in [1].

Lemma 7. Let X be a set and P a P-system on X. Let f be a function regular on
X with respect to P. Then if 0+ Y c X, there exists a P-system P* on Y such that
the restriction f|Y is regular on Y with respect to P*.

Proof. If ?={P;}, k=1,2,...; neN(k), then put Qf=2inY for k=
=1,2,...; ne N(k). We may suppose that the sets Q% are nonempty. If this is
not the case, the only thing which will be different is that N(k) will be sub-
stituted by another finite set which is a subset of N(k). Evidently ?*={Q%}
k=1,2,...; neN(k) is a P-system on Y. Now if xoe Y and G is an open set
containing (f|Y) (x,), we have f(x,) e G. Since f is regular with respect to 2,
there is k, such that if k >k, x, x,€ P, then f(x) € G. Since Q% c P%, we obtain
inmediately that if kK >k, and x, x,€ Q¥, then (f| Y) (x)eG.

Remark 6. It is evident from the proof of Lemma 7 that if a class & of
functions and a P-system % are given such that each fe % is regular on X with
respect to 2, then the class F* of all f| Y, f € & is regular on Y with respect to the
P-system P * constructed in the proof of Lemma 7.

In what follows let (X, &, u) be again a totally finite measure space, T a
topological space and ¢, € T a point possessing a countable base of neighbourhoods. -

Theorem 2. Let f: X x T—R. Let a P-system P on T exist such that f, is
regular on T with respect to the P-system for every x € X and let f* be measurable

for every t € T. Then if lim f(x, t) = @(x) for almost every x, the convergence is

almost uniform as t tends to t,.

Proof. We may again suppose that lim f(x, #)=@(x) for every x € X. Let
{ Vi }¥-:1 be a decreasing sequence of open sets forming a base at #,. Exactly as in

Theorem 1 the main thing is to prove that the sets Ex = {x: |f(x, t) — @(x)| = ;11-,
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for every t € V. } are measurable forn =1, 2, ..., k=1, 2, ... Thus it is sufficient to
prove that the set E = {x: |f(x, t) — @(x)| ¢, for every t € V} is measurable for
any £ >0, and any open set V < T. Construct now a ?-system ?* on V such that
for the elements of ? we take the sets Qx=PiNV. Pke P (see Lemma 7 and
Remark 6). Choose in every nonempty Q- a point ¢} and denote by D the set of all
these points. Since D is countable, the set F, where F={x: f(x, t) — @(x)|=¢,
for every t € D}, is measurable as a countable intersection of measurable sets. (The
measurability of each of the sets {x : |f(x, t) — @(x)| = ¢} for a fixed ¢ follows from
the assumption and from the measurability of ¢, which in its turn follows in the
same way as in Lemma 2). Now we prove E =F. The inclusion E c F is trivial. Let
xeF and teV be any point. Let {n:};~, be a decreasing sequence of positive
numbers converging to 0. Since f, is regular (on V) with respect to ?*, there exists
for any 7, a positive integer k(i) such that if k£ >k (i), then for any ¢, such that ¢,,
t € Qf we have |f.(t)) — f.(t)]<n.. Especially if we choose instead of ¢, t:“ e D,
depending on i(¢£’ =t(i), to simplify-the notation), which belong to the same Qx
as t, we have [f,(¢x)) — f.(£)| <n.. Thus a sequence of points ¢, =¢(i) belonging

to D exists, such that lim f,(¢(i)) = f.(¢). Since t(i)eD, i=1, 2, ..., we have

If(x, t(i) —@x)|=¢ fori=1,2,....

hence |f(x, t) — @(x)| =¢. Since for t € V we may choose any point from V we have
If(x, ) — @(x)|=eforanyte V,andso x € E. Hence E =F and E is measurable.
Thus the measurability of E;, k=1, 2,., ne N(k), is proved and the rest of the
proof proceeds as in Theorem 1.

Corollary. Let (X, &, u) be a totally finite measure space and T a second
countable topological space. Let f: X X T— R be such that f, are continuous for

every x € X and f* measurable for every t € T. Then if lim f'(x) = @(x) for almost
every x € X, the convergence is almost uniform as t tends to t,.

Proof. If T is a second countable topological space, then a regular ?-system on
T exists (See [1]). Now according to Lemma 6 the sections f, are regular with
respect to ? and the result follows.

4

This section will be devoted to some discussion and lpossible generalization of
the obtained results. )

The aim of Theorem 1 and Theorem 2 was to state some simple sufficient
condition for the validity of Jegoroff’s theorem. It is not difficult to give an abstract
formulation of the mentioned theorems.
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Definition 6. We shall say that a function f defined on X X T (T a topological
space) satisfies the property (S) if the following is true:

(S) There exists a countable dense set D < T such that for any open G < T and
any closed interval I '

{x:f(x,t)el, forall teG} = {x:f(x,t)el,
forallte GND}

Remark 7. Note that the property (S) follows from the assumptions of
Theorem 1 (See Lemma 3) as well as from the assumptions of Theorem 2.

Lemma 8. If f is a real function defined on X X T and statistying (S) and ¢ a real
function on X, then there exists a countable dense set D = T such that for any real
¢ =0 and any open set G (S,) holds:

(S) {x:|f(x,t)—@x)|=c} forall teG={x:|f(x,t)—p(x)|=c
forall teGnD} .

Using the property (S,) we can prove a lemma analogous to Lemma 3 and then
the proof of the following theorem is strainghtforward.

Theorem 3. Let (X, &, u) be totally finite measure space. Let T be a separable
topological space satisfying the first countability axiom. Let the property (S,) be

satisfied. Then, if im f(x, t) = @(x) for almost every x € X, the convergence is

almost uniform as t tends to t,.

In the case in which T is a subspace of (— o, ») with the usual topology and
(X, &, u) a probability space, the property (S) is the usual definition of a separable
stochastic process. Hence from Theorem 3 and Lemma 8 we obtain as a corollary
the following result.

Corollary. If (X, &, u) is a probability space Tc(— o, ) and f: XXT—R a
separable stochastic process, then the almost everywhere convergence of f(x, t) to
@(x) for t—t, implies the almost uniform convergence.

Remark 8. In paper [9] Jegoroff’s theorem for sequences was proved in the.
case when the measure space was substituted by a space with the system of
collections of ,,small measure sets*. It is easy to see that our theorems may be
proved also for such spaces.
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MOYTbl PABHOMEPHASI CXOOMMOCTBb B CIIYYAE
HEINPEPBIBHBIX ITAPAMETPOB

Tu6op Hoit6pyH
Pesiome

Mycts (X, &, ) NPOCTPAHCTBO C BMOJHE KOHEYHON Mepoi, T-cenapaGenbHoe TOMONOrHYECKOE
MPOCTPAHCTBO MCTIOJHSIOLIEE MEPBYIO AKCHOMY CYETHOCTH. BemecTBeHHas dyHKuus f onpeneneHa Ha
X x T onpenensier cucremy yuxumit Ha X. UMento, ans te T, f'(x)=f(x, t). Ecnu 3Tn dynkunu
HU3MEPHMBI H ECITH

lim f'(x) = @(x)

t—tq

MOYTH BCIOAY, TO B HEKOTOPBIX ClyYasix 3Ta CXOAMMOCTb {4 — MOYTH paBHOMepHa. [loka3sbiBaercH,
4YTO ONHHM YCJIOBMEM M/ (4 — MOYTH PaBHOMEPHOH CXOMHHMOCTH SBISETCS KBa3HHENpEPbIB-
HOCTb X~ — ceyeHmit f,, byHkuuu f. B paGote faeTca Takxe Apyroe ycjiosue NOgOGHOro Tuma.
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