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Matematický časopis 19 (1969), No. 2 

ON THE EXTENSION OF GRAPHS WITH A GIVEN 
DIAMETER WITHOUT SUPERFLUOUS EDGES 

FERDINAND GLIVJAK, P E T E R KYS, JAN PLESNIK, Bratislava 

Graphs of a diameter r (especially for r = 2) were considered in [2] and [3] 
first of all from the point of view of different estimates of the number of edges 
in a graph with a given diameter and of the number of vertices in graphs with 
some properties. For example it was required from a graph to contain certain 
subgraphs, to have a given maximal degree and other properties. We shall 
investigate in this paper the so-called graphs without superfluous edges i. e. 
such graphs that an dsleting of an arbitrary edge enlarges their diameter. 
We shall consider only graphs with a diameter r without k-gons fo 3 ^ k ^ 
^ r + 1. These graphs form a subclass of graphs without superfluous edges. 
By constructive means we solve the question how a graph with the required 
properties can be enlarged or reduced respectively by one vertex in the same 
class of graphs. For solving this question we have introduced some concepts, 
e. g. the //-set and the //-system (the set of all //-sets of a given graph). We 
have also given the estimations for a number of bases for arbitrary graphs. 

We wish to thank Prof. Kotzig for his suggestions, used in this paper. 

I. DEFINITIONS AND DENOTATIONS 

We suppose that the fundamental concepts are well known and therefore 
we shall not define these and use them as in [1]. 

We understand in this paper under a graph a graph without lbops and 
multiple edges; if we do not emphasize the opposite a graph is also connected 
and finite. We denote it by G = (U, H), where U is a vertex set and H is the 
set of edges of the graph G. If A is a set, then by \A\ we denote the cardinal 
number of A. An edge that is incident with the vertices x, y we denote by 
(x, y). A path from the vertex x e U to y e U (x 4= y) in a graph G we denote 
by w (x, y). The length of the path w(x, y) we denote by X[w(x, y)]. Let QG(X, y) 
denote the distance (i. e. the length of the shortest path) in a graph G = (U,H) 
between the vertices x,y e U. The diameter d(G) of a graph G = (U, H) is 
a number defined as follows: d(G) = max QG(%, y)-

x,yeU 
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The neighbourhood of a vertex ue U is a set Q(u) = {x\x e U /\ Q(U, X) = 1}. 
Let G = (U, H) be a graph. Let A <= U. A set A is denoted as a base of the 

graph G if it satisfies the following conditions: 

a) if x E A then Q(x) n A = 0, 
b) if x $ A then Q(x) n A * 0. 

An n-gon is a subgraph formed by the sequence of vertices {vi, v2, ..., vn} 
where: 
1) (Vi» vt+i) £ Hfor alH = 0,1, . . . , n — 1; 
2) ^o = v w ; 

3) Vi -# v; for all i + j ; i,j = 0,1, . . . , n except the case i = 0, j = n. 

A graph G = (U, H) is bipartite if there exist sets M, N such that N cz U, 
U - N = M and H = {(x, y)\x eM,yeN}. 

Let A <-= U. Then denote D(^4) = mino(a;, ?/) and Q(X, A) = min Q(X, Z). 
x,yeA zeA 
x^y 

Definition 1. An edge (u, v) in a graph G = (U, H) is superfluous if for the 
subgraph Gi = (U, Hi), where Hi = H — {(u, v)} we have d(G) = d(Gi). 

A graph G is without superfluous edges if every edge is not superfluous. 
Definition 2. a) /3r — graph is a graph G = (U, H) for which the following 

holds: 
1) d(G) = r, 
2) every edge is not superfluous. 

b) dr-graph is a graph G = (U, H) for which: 
1) d(G) = r, 
2) G does not contain any k-gon for 3 ^ k ^ r -f 1. 

Definition 3. Let G = (U, H), d(G) = d. A /u-set of the graph G is a set of 
vertices A <-= U with the following properties: 
1) Q(A) = d,if\A\>\, 
2) for every xeU — A there exist y e A such that Q(X, y) < d. 

Definition 4. A ju-system of the graph G is a set of all ju-sets of the graph G. 
We denote it by /u(G). 

Definition 5. Let us have some graphs Gi = (Ui,Hi), 6?2 = (U2, Ff2); 
\Ui\ = n. With every Xi e Ui there is associated a set X% <= U2. Denote it by 
SC = {Xi}f=1. Then we define the union of graphs Gi, 6?2 through the system 
& = {Xt}

n
i=1 as a graph G = (U±U U2, Hi U H2 U H'), where H' = 

= {(xi,z)\xt e Ui,zeXt}. 
Especially, if Ui = {y}, i. e. |U i | = 1, then G is a i>-extension of the graph G2 

by the vertex y through the set of vertices Y (Y <= [72). G2 is called the v~ 
reduction of the graph G. 
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Definition 6. Let a graph G\ be the v-extension of a graph G = (U, H) with 
a diameter r by the vertex v through the set Ae /n(G). Then 

a) such a v-extension is called a ^-extension, 
b) G is a fjb-reduction of the graph G\, 
c) if graphs G, G\ are both digraphs, then the vertex v is a /, -reducible vertex, 
d) if graphs G, G\ are both d2-graphs and moreover A = Q(x) for some vertex 

x e U, then such a v-extension is called an rj-extension; such a v-reduction 
of graph G\ is called an rj-reduction. The vertex v is an rj-reducible vertex. 

Definition 7. A graph is ^-irreducible if every vertex is not /u-reducible; a graph 
is r\-irreducible if every vertex is not rj-reducible. 

I I . RESULTS 

First of all we prove the existence of a //-set, of the //-system and construct 
some relations between the different notions. 

Theorem 1. Let G = (U, H), d(G) = r and ueU. Then there exists at least 
one ix-set A such that u e A. 

Proof . Let us denote M0 = {u}. If y eU — M0 for every Q(U, y) < r, 
then A = M0. If not, then there exists a vertex x\eU — M0, for which 
Q(U, x\) = r. Let us put M\ = M0 U {x\}, and we will again verify that 
Q(y, M\) < r for all y e U — M\ etc. Let us suppose that we have constructed 
the set Mi = {u, x\, ..., Xi}; if there exists x%+\ e U — Mi such that o(x, Xi+\) = 
= r for all x e Mi then we denote M(+\ = Mi u {xi+\}. If such Xi+\ does 
not exist then A = Mi. The described process is finite because the set U is 
finite. 

R e m a r k . The algorithm for finding out the /^-system of the graph G: 
Let G = (U, H), d(G) = d and |U| = n. From the definition of //-set follows 
the assertion: 

I. Let X = {x\, X2, . . . , xp}; X <= U, Q(X) = d. Then X e JU(G) if and only 
v 

if ( J Bi = U, where Bt = {x\x e U A Q(%i, %) < d}. 

By u\ we denote some vertex of th3 graph G. Let A be a set of vertices 
xeU, for which Q(U\, X) < d. Let \A\ = s; by symbols U2, u%, ..., us+\ 
we denote the vertices of the graph G which are from the set A. Let us+2, 
us+s, ..., un be the denotation of the remaining vertices of the graph G. 
The algorithm consists of the following steps: 

1. At the beginning let i have a zero value. 
2. Increase the value of i by one. 
3. If i ^ s -\- 1, then go to 4. Otherwise we should have found already 

all //-sets of the graph G. 
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4. Pu t h = 1, Xk = {ui}, qjc = i. 

5. Find out according to I which elements from Xjc are //-sets and the system 
of elements from Xjc which are not //-sets and denote them by Yjc. 

6. If Yjc = 0 then go to 2. Otherwise put h = h + 1 and construct the 
system of sets: 

Xk = {Z u {uQk} \uQkeUi AZe Yk-i A g*-i < 2* A e K * > 2 ) = d}'> g° t o 5-
We can order the //-sets as follows: Let M, N e/n(G), where M = 

= K i > ^ 2 > •••>™rJ> -^ = "Ki> ^ , » •••»^Pm}» n < r 2 < . . . < r * and pi < 
< pi ... < pm • If n = pi, r2 = P2, .. •, Tq = pq, (q < min (h, m)) and rq+i < 
< Pq+i, then the algorithm generates in the first place the //-set M. I t is clear 
tha t the algorithm generates all //-sets and every //-set only once because 
there does not exist a //-set that begins with the element j for j > s + 1. 

Lemma 1. Let G = (U, H) be a dr-graph. Then G is a ($r-graph. 
Proof . Let u,v eU. If Q(U, V) = 1; then there cannot exist a path from u 

to v of the length 1, 2 ^ Z ̂  r, because the vertices u and v would belong 
to the &-gon for h ^ r + 1. Thus after omitting the edge (u, v) we would have 
Q(U, V) > r, i. e. d(G) > r. So G is a /Vgraph. 

Lemma 2. £e£ G be a b2-graph. Then Q(u) e fx(G) for every vertex ueU. 
(I. e. an rj-extension is a special case of /^-extension of d2-graphs). 

Proof. If xi, X2 eQ(u), x\ 4= X2 then Q(X\, X2) = 2. For every y eU — Q(u) 
there exists a zeQ(u) such that Q(y,z) = 1, because otherwise we should 
have Q(y, u) > 2. 

The following two Theorems are dealing with a //-extension of *3r-graphs. 

Theorem 2. Let G = (U, H) be a 6r-graph, G\ = (U\, Hi) its /^-extension 
by the vertex v through a set M e JU(G). Then: 

(1) G±is a ds-graph and s ^ r holds. 
(2) The relation s = r holds if and only if at least one of the following conditions 

is satisfied: 

A) There exists xeU — M such that QG(%, M) = r — 1. 
B) There exist x\, X2 e U such that QG(XI, X2) = r and also QG(%I, M) + 

+ QG(x2, M) > r - 2. 
Proof . 1. After a //-extension of a o>-graph G there cannot occur a fc-gon 

for 3 ^ h ^ r v + 1, because in the opposite case there would exist two vertices 
x,y e M such that QG(X, y) ^ r — 1. I t is a contradiction with the assumption 
tha t M eju(G). 

For all x e U either xeM holds and then QGl(v, x) = I, or x $ M and then 
there exists a vertex zeM such that QG(Z, x) < r — 1. So QGI(V, X) ^ r, 
i. e. d(G±) ^ d(G). This is a proof of the assertion (1). 
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2. If the condition A) is satisfied, QGl(x, v) = r, hence d(G) = d(Gi). If i t 
fulfils the condition B) then QGl(xi, X2) = r and again d(Gi) = d(G). 

Let d(Gi) = d(G) = r. Then there must exist vartices x,y eU such tha t 
QG(X, y) = r. There are two possibilities: 

a) x 4= v, y = v, then x$M and QG(X, M) = r — 1 must hold because 
otherwise we would have QGI(X, V) < r. 

b) x 4= v, y 4= v, then QG(X, M) -f- QG(y, M) ^ r — 2, because otherwise 
we would have QGI(X, y) < r. This completes the proof of Theorem 2. 

Theorem 3. Let 6?i be a v-extension of a br-graph G = (U, H) by the vertex v 
through a set M. If G is a dr-graph then this v-extension is a {^-extension. 

Proof . For x,yeM, x 4= y, is QG(x,y) ^ r (since M c= U). G does not 
contain a k-gon for 3 < k ^ r + 1, hence QG(X, y) = r, i. e. Q(M) = r. If there 
exists a vertex zeU — M such that QG(Z, M) = r, then it would be QGI(Z, V) > 
> r, thus d(Gi) > r. Hence M e JLI(G). must hold. 

R e m a r k . One can see from Figure 1 that it is possible to construct a OV-graph 
from a digraph also by a different extension than a ^-extension. 

Corollary 1. Let G be a bt-graph and its v-reduction Gi be also a b^-graph. 
Then this v-reduction is a ^-reduction. 

Corollary 2. Let G be a b^-graph and let Gi be a v-extension of a graph G 
by the vertex v through a set M. Then C?i is a 82-graph if and only if this v-extension 
is a jn-extension. 

Proof . If Gi is a OVgraph then by Theorem 3 M e p(G). If M e fi(G), then 
from Theorem 2 it follows that Gi is a OVgraph because here the condition A) 
is satisfied (for every x e M in graph G Q(x) =j= 0 holds). 

Corollary 3. Let G be a b2-graph and Gi be its v-reduction by the vertex v 

Fig. l.From oVgraph there is construc­
ted a 62 -graph by a v-extension of the 

vertex c. 

Fig. 2. 
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through a set M. Then Gi is a dz-graph if and only if this v-reduction is a ^-re­
duction. 

R e m a r k . A /3r-graph, in general, need not be a /Vgraph after a //-extension 
as it can be seen from Figure 2 (the edge h is after a ^-extension superflouus). 

Now we shall deal with the cardinal numbers of //-systems and the number 
of bases. 

Theorem 4. Let G = (U, H) be a dr-graph and Gi be its /^-extension by the 
vertex v such that d(Gi) = r. Then 

a) \fi(G)\ <£ MoOl 
b) If in addition r = 2 and 6?i is the rj-extension of a graph G, then |//(6?)| = 

= \l*{<h)\. • 
Proof, a) Let Ne//(C?), then either Q(V, N) < r, hence N e //(t7i), or 

Q(V, N) = r, hence N u {v} e //((?). 
b) Let Gi be an ^-extension of a graph G over Q(a), as U. Let JVi e //(C?i). 

Then: 

1. If there exists x e Q(a) and also xeNi, then v^Ni and so NIGJU(G). 

2. If there does not exist such vertex x then v e Ni, a e Ni (because for all 
xeQ(a) we have x<£Ni), thus Ni = {v} U L where aeL and there exists 
Q e //((?) such that L c= Q. We shall show that L = Q. Let be Q — L = 0. 
Then there exists y eQ, y <£ L such that Q(y, L) = 2. Then Q(y, a) = 2 and 
£?(2/> v) = 2. Hence Q(y, Ni) = 2 in contradiction with the definition of a //-set 
(NiGfi(Gi)). 

R e m a r k . The second part of Theorem 4 does not hold for a /^-extension 
in general as it can be seen from the example on Figure 3. Let the extension 
of Peterson's graph G by vertex c through the set {1, 7, 8, 4} be a graph 6?i. 
If we consider the //-sets of graph 6?1{2, 6, 10, c}, {3, 5, 6, c}, {3, 9, 10, c} and 
{2, 5, 9, c) then we find that after the //-reduction of vertex c none of the subsets 
of the set mentioned above is a //-set of Peterson's graph. Hence |//(C?i)| ^ 
> 1/1(0)1 + 4. 

A 

Fig. 3. 
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Lemma 3. Let G = (U,H) be a &2-graph, let M e JLI(G). Then there exists 
N e p(G) such that Mn N = 0. 

Proof . Let be x e M; we put N = Q(x). Obviously N e //((?) ; since x e M, 
for every y e Q(x) we have y$M,soMnN = 0. 

T n 
Corollary. Let G be a d2-graph, then there exists A G /LI(G) such that \A\ ^ 

where n is the cardinal number of the set of vertices of the graph G. 

Theorem 5. Let G = (U, H) be a graph with diameter r. Then: 
A) / / there exists a subgraph Oi = (Ui, Hi) of the graph G such that d(G\) ^ 

^ r — 1, then |Ui | ^ \[*{G)\ holds. 
B) |,i(G)| > r. 
C) \/JI(G)\ = r if and only if either r = 2 and G is a bipartite graph or G 

is a path of the length r, or G is a 2r-gon. 
Proof . A) By Theorem 1 for every vertex x e U we can construct a set 

M G ju(G) such that xe M. For all vertices y e U± we have Q(X, y) ^ r — 1, 
hence every M e ju(G) contains at most one vertex x e U±. Thus we can con­
struct k different //-sets, when Jc = \U±\. 

B) The assertion follows from A). 
C) From the definition of a //-set it follows that |//(6?)| = r for the graphs 

in C). Let \/n(G)\ = r > 2. Then in the graph G there exists a path X = 
= (ui, U2, ...,ur+i) such that Q(UI, ur+i) = r. By Theorem 1 there exist 
in the graph G //-sets Ai, A2, ..,Ar with the following properties: UIEAI 

and hereby ur+i G Ai; u% e A\ for i = 2, 3, . . . , r. I t is obvious that Ai 4= -4/ 
for i 4= j . If one of the vertices ujt, Jc = 1, 2, . . . , r + 1, has the degree s > 2 
in the graph G, then there exists a vertex v e U (v 4= Wi, i = 1, 2, . . . , r + 1) 
such that o(v, Uk) = 1. By Theorem 1 there exists J5 G #((?) with the following 
properties: 

1. if 2 ^ 1c < r, t h e n ^ G ^ ; 
2. if & = 1, then there exist v, weU such that @(w, wi) = 1 and also 

Q(V, UI) = 1, W + V. Thus W3 may select such an Ar tha t w G Ar and wr e -4r-
A set B may be constructed such that v e B and simultaneously ur e B; 

3. if & = r + 1, then the //-sets may be constructed analogously as in 2). 
From this construction one can see that the set B =\= At for i = 1, 2, . . . , r ; 

hence \fi(G)\ ^ r + 1. From the preceding it follows also tha t a degree 
of every vertex ui of the path X is si ^ 2. 

Let in a graph G be a vertex yiG U of the degree s ^ 3 and yi 4= ^s 
(i = 1, 2, . . . , r + 1). Let us denote t = min (Q(yi, ui), Q(yi, ur+i)). Let 
t = 0(3/1, wi). Then there exists a sequence 1/1, y2, . . . , 2/M-I = MI, . . . , yr+i = 
= wr_*+i, such tha t : 

a) g(yt yi+i) = 1 for i = 1, 2, . . . , r + 1, 
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b) Q(yi, yr+i) = r. 
Thereby this case was transformed in the same way as the above mentioned 

one. We proved, that a degree s of every u e U is s ^ 2. 
G cannot be a (2r + l)-gon. (The proof may be given by a construction 

of r + 1 different //-sets). 
Let \/LC(G)\ = r = 2. G cannot contain a triangle following the part A of 

this Theorem. Let us denote //((?) = {M, N}. By Lemma 3 M n N = 0. 
Let U — (M U N) #= 0. Then for a; E U — (if U N) we can construct P e //((?) 
such that x e P, P + N, which is a contradiction. Hence there is U = M U N. 
If x e M, y e N then there must be Q(X, y) = 1. Hence G is a bipartite graph. 
This completes the proof of Theorem 5. 

At last we shall prove some bounds of the number of ^-coverings of the 
bases and of the cardinal number of the system of all //-sets. At first we shall 
introduce the notion of the k-covering, which is in fact a generalization of 
the base. 

Definition 8. Let G = (U, H) be a graph (not necessarily connected) let 
Gi = (U\, Hi) be its supergraph (not necessarily finite) such that for every edge 
(x, y) e Hi — H at least one of the vertices x, y is an element of the set Ui — U. 
Let k ^ 2 be a natural number. We call the set A (A <~ U) a k-cove. ing of the 
graph G in the graph Gi if the following holds: 

1. QGl(x, y) ^ k for every x, y e A. 
2. For every x e U there exists y e A such that QGI(X, y) < k. 
By yk(G, Gi) we denote the system of all k-coverings of the graph G in a 

graph Gi. 
R e m a r k 1. Let U = Ui and d(G) = k. Then the ^-covering of the graph G 

in the graph G is identical with the notion of a //-set of the graph G. 
R e m a r k 2. Let U = Ui, then the 2-covering of a graph G in graph G 

is identical with the notion of a base of a graph G. As y2(G, Gi) does not depend 
on the graph 6?i, we shall write only y2(G). 

Lemma 4. Let G be a snake-like graph which is formed by the path w = 
= (xi, x2, . . . , xn), where QG(OCI, xn) = n — \ and n ^ 3. Then \y2(G)\ ^ An 

where A is the positive root of the equation 1 -f- x = xz. 
P r o o f (by induction). 
1. For n ^ 5 one may verify the assertion directly. 
2. For n > 5 the number of 2-coverings containing (not containing) the 

vertex x2 is by the assumption at most An~3 (resp. An~2). Hence the number 
of all 2-coverings of G is at most An~z + An~2 ^ An. 

Lemma 5. Let G be an n-gon with vertices xi, x2, ..., xn, where Q(XI-I, X\) = 1 

for i = 2, 3, . . . , n. Let n ^ 6. Then \y2(G)\ < 2^. 
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Proof . The number of those coverings which contain the vertex #i(#2, 
and #3 respectively) is at most An~z (by Lemma 4). Hence the number of all 

n 

2-coverings is at most 3An~~. So for n ^ 4 we have 3An~z < 2~~~, hence 172(G)! < 

< 2~t~. 

Corollary. Let G = (U, H) be a connected graph without triangles with n ver-
n 

tices. Let the degree of every vertex be at most 2. Then |y2(Cr)| < 2~~~~. 
A proof for n > 5 follows from the preceding lemmas. For n ^ 5 the asser­

tion may be verified directly. 
Lemma 6. Let Gbe a graph with r components G\, 6?2, . . . , Gr. Then \y2(G) \ = 

= \n(Oi)\\M~2)\...\Yt(Or)\. 
The proof follows from the definition 8. 

Theorem 6. For a graph G (not necessarily connected) with n vertices and 

without triangles \y2(G)\ ^ 2~~~ holds. 
P r o o f (by induction). 1. For n = 1 the Theorem obviously holds. 
2. a) if G is not connected, then according to Lemma 6 and to the assumption 

the theorem holds. 
b) if G is connected and there exists a vertex of a degree k ^ 3 (in the 

opposite case the assertion follows from Lemma 5) then by the induction 
hypothesis the number of all 2-coverings which contain this vertex is at most 

2 ; the number of coverings which does not contain this vertex is a t most 
2n~. Hence for k ^ 3 we have 2^~~ + 2~~~~ ^ 2~̂ ~, that is \yi(Q)\ ^ 2^~. 

Lemma 7. For a graph (which need not be connected) with n vertices \y2(G)\ ^ 

^ 3""" holds. 
Proof . 1. One may directly verify that for a triangle the assertion holds; 

for the rest of the graphs which do not contain a vertex of degree k > 3 
the assertion follows from the corollary of Lemma 5. 

2. Let for the vertex x be \Q(x)\ = k ^ 3, then it can be shown analogously 

as in the proof of Theorem 6 tha t |?2(G)| ^ 3 ^ + 3^" ^ 3^ . 

Theorem 7. Let G = (U, H) be a graph with n vertices which need not be 

connected. Let k ^ 2. Then \y\z(G, G\)\ ^ 3~~~ for every graph G\. 
P r o o f (by induction). 1. For k = 2 the assertion holds by Lemma 7. Let 

k > 2. The theorem holds for every graph G for which d(G) < k. (Here 

\yk(G,Gx) <n< 3^). 
2. If d(G) ^ k, then there exists in G a path w with the vertices v0, v±, ..., vjc 

whereby QG(VO,VJC) = k. Let us consider the graphs G' = (U', H')\ G" = 
= (U", H") (see Figure 4) with the properties: U' = U — {vx}; U" = U — M, 
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where M = {x \ x e U A QG(VI, X) < k}. A set H' (or H") contains all edges 
of G with endpoints in the set U' (or U"). For every ^-covering of G the following 
holds: either it contains a vertex vi and then it does not contain any vertex 
from the set M — { î} or it contains the vertex from the set M — {#1} and 
then it-does not contain the vertex vi. By using the induction the following 

n-p , n-1 

hypothesis holds: \yk(G,Gi)\ ^ 3 8 + 3 8 , where p = \M\. From Figure 4 
n-p n-1 n-4 n-l n 

o ne may see tha t p ^ k + 1 ^ 4. Then we have : 3"*~ + 3"«~ < 3"1" + 3 ~ ^ 3 V 

Fig. 4. 

Corollary. 
n 

1. If G is connected, then \ju(G)\ ^ 3^". 
n 

2. i/Cr is a digraph, then |//(6?)| ^ 2~r. 
R e m a r k . The equality in Theorem 7 is achieved for the graphs which 

consist of the triangles as components for every n of the form n = 3p. Analog­
ously the equality in Theorem 6 is achieved for graphs, the components 
of which are connected graphs with two vertices. 
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