Mathematic Bohemica

Bohdan Zelinka

The 3-path-step operator on trees and unicyclic graphs

Mathematica Bohemica, Vol. 127 (2002), No. 1, 33-40
Persistent URL: http://dml.cz/dmlcz/133982

Terms of use:

© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE 3-PATH-STEP OPERATOR ON TREES AND UNICYCLIC GRAPHS

Bohdan Zelinka, Liberec

(Received March 1, 2000)

Abstract. E. Prisner in his book Graph Dynamics defines the k-path-step operator on the class of finite graphs. The k-path-step operator (for a positive integer k) is the operator S_{k}^{\prime} which to every finite graph G assigns the graph $S_{k}^{\prime}(G)$ which has the same vertex set as G and in which two vertices are adjacent if and only if there exists a path of length k in G connecting them. In the paper the trees and the unicyclic graphs fixed in the operator S_{3}^{\prime} are studied.

Keywords: 3-path-step graph operator, tree, unicyclic graph
MSC 2000: 05C38, 05C05

In [2], page 168, the k-path-step graph operator S_{k}^{\prime} for a positive integer k is defined. Let G be a finite graph. The graph $S_{k}^{\prime}(G)$ has the same vertex set as G and two vertices are adjacent in it if and only if there exists a path of length k in G connecting them.

Further, in [2] the abstract of [1] is quoted; it is said that the paper [1] never appeared. In the abstract it was claimed that the finite connected graphs which are periodic in S_{3}^{\prime} are just the complete graphs, the complete bipartite graphs, the circuits of lengths not divisible by 3 , the graphs of one more infinite family and four exceptional graphs (they were not specified). But in [2] some further graphs were presented which are fixed in S_{3}^{\prime}. Among them there is a family of trees in Fig. 1. The symbols p, q signify that the number of vertices most to the left in the figure

Fig. 1
is p and the number of vertices most to the right is q; these numbers p, q may be arbitrary non-negative integers (including zero). Therefore Fig. 1 represents a whole family of trees. Among the graphs mentioned there is a similar family of unicyclic graphs and two other unicyclic graphs. They are shown in Fig. 2.

Fig. 2
In this paper we shall prove hat the graphs in Fig. 1 and Fig. 2 are all trees and all unicyclic graphs which are fixed in the operator S_{3}^{\prime}, i.e. graphs G such that $S_{3}^{\prime}(G) \cong$ G. We start with trees. All graphs considered are without loops and multiple edges.

Lemma 1. Let T be a tree such that $S_{3}^{\prime}(T) \cong T$. Then T contains no subtree isomorphic to any one of the trees F_{1}, F_{2}, F_{3} in Fig. 3.

Fig. 3

Proof. If T contains a subtree isomorphic to F_{1}, to F_{2} or to F_{3}, then the image $S_{3}^{\prime}(T)$ contains a subgraph isomorphic to $S_{3}^{\prime}\left(F_{1}\right)$, to $S_{3}^{\prime}\left(F_{2}\right)$, or to $S_{3}^{\prime}\left(F_{3}\right)$. These graphs are in Fig. 4. Evidently each of them contains a circuit: therefore $S_{3}^{\prime}(T)$ is then not a tree.

O3
$S_{3}^{\prime}\left(F_{1}\right)$

$S_{3}^{\prime}\left(F_{2}\right)$

$S_{3}^{\prime}\left(F_{3}\right)$

Fig. 4

The absence of a subtree isomorphic to F_{1} implies that a tree fixed in S_{3}^{\prime} must be a caterpillar. Indeed, caterpillars are characterized among trees by this property. A caterpillar is defined as a tree with the property that by deleting all pendant edges and vertices from it a path is obtained. (A pendant vertex of a tree is its vertex of degree 1 , a pendant edge is an edge incident with a pendant vertex.)

Thus, let us have a tree T fixed in S_{3}^{\prime}. We describe it as a caterpillar. Let the diameter of T be d. Let D be a diametral path of T. Denote its vertices by $u_{0}, u_{1}, \ldots, u_{d}$ so that the edges of D are $u_{i} u_{i+1}$ for $i=0,1, \ldots, d-1$. The number of vertices adjacent to u_{1} (or u_{d-1}) and not belonging to D will be denoted by $p-1$ (or $q-1$, respectively). We admit that these numbers may be zero. Further, by k we denote the number of vertices S which are adjacent to the vertices u_{i} for $2 \leqslant i \leqslant d-2$.

Lemma 2. Let k be the above defined number. Then $k=2$.
Proof. The number of edges of T is $d+p+q+k-2$. As $S_{3}^{\prime}(T) \cong T$, so must be the number of edges of $S_{3}^{\prime}(T)$, i.e. the number of pairs of vertices whose distance in T is 3 . On D there are $d-2$ such pairs, namely the pairs $\left\{u_{i}, u_{i+3}\right\}$ for $i=0, \ldots, d-3$. If a vertex is adjacent to u_{1} or to u_{d-1} and does not belong to D, then there exists exactly one vertex at the distance 3 from it, namely u_{3} or u_{d-3}. If a vertex is adjacent to u_{i} for $2 \leqslant i \leqslant d-2$ then there are exactly two vertices at the distance 3 from it, namely u_{i-2} and u_{i+2} (we must suppose the absence of F_{3}). Hence the number of edges of $S_{3}^{\prime}(T)$ is $d+p+q+2 k-4$. It is equal to the number of edges of T if and only if $k=2$.

Thus we may suppose that there exist integers r, s such that $2 \leqslant r<r+2 \leqslant s \leqslant$ $d-2$ and there exists a vertex v_{r} adjacent to u_{r} and a vertex v_{s} adjacent to u_{5} which do not belong to D. Note that the case $r=2$ is possible only if $p=1$ and the case $s=d-2$ is possible only if $q=1$; otherwise a subtree isomorphic to F_{3} would occur.

Lemma 3. Let T be a caterpillar, let diam $T \leqslant 6$. Then T is not fixed in the operator S_{3}^{\prime}.

Proof. If diam $T \leqslant 2$, then there is no path of length 3 in T. If $3 \leqslant \operatorname{diam} T \leqslant 5$, then the above mentioned numbers r, s do not exist. If diam $T=6$, then the unique possibility is $r=2, s=4$ but then $S_{3}^{\prime}(T)$ is a path.

Therefore in the sequel we will suppose $d=\operatorname{diam} T \geqslant 7$. The image $S_{3}^{\prime}(D)$ consists of three connected components which are paths D_{0}, D_{1}, D_{2}; for $j \in\{0,1,2\}$ we denote by D_{j} the path having the vertices u_{i} with $i \equiv j(\bmod 3)$. In $S_{3}^{\prime}(T)$ there are two paths R, S among these components of length 2 with v_{r} and v_{s} as inner vertices. One of the paths D_{0}, D_{1}, D_{2} must have the property that both its terminal
vertices are terminal vertices of the paths R and S; denote this property as \mathcal{V}. We shall treat the possible cases. If i, j are from $\{0,1,2\}$, then $C(i, j)$ denotes the case when $d \equiv i(\bmod 3)$ and D_{j} has the property \mathcal{V}.

Case $C(0,0)$. The path R connects u_{0} with u_{4}, the path S connects u_{d} with u_{d-4}. Hence $r=2, s=d-2$. The images of pendant vertices v_{r}, v_{s} in an isomorphism of T onto $S_{3}^{\prime}(T)$ are again pendant vertices u_{1} and u_{d-1} and the images of u_{r}, u_{5} are u_{4} and u_{d-4}. The images of u_{0} and u_{d} are u_{d-2} and u_{2}. The distance between u_{4} and u_{d-2} in $S_{3}^{\prime}(T)$ is $\frac{1}{3} d-2$, the distance between u_{d-4} and u_{2} is the same. If $S_{3}^{\prime}(T) \cong T$, then necessarily $r=d-s=\frac{1}{3} d-2$ and $d=12$.

Case $C(0,1)$. If $d \geqslant 12$, then there exists a subtree of $S_{3}^{\prime}(T)$ isomorphic to F_{1}. It consists of three paths of length 2 with the common terminal u_{d-6}; the first has the edges $u_{d-12} u_{d-9}, u_{d-4} u_{d-6}$, the second $u_{d} u_{d-3}, u_{d-3} u_{d-3}$, the third $u_{d-2} v_{d-4}$, $v_{d-4} u_{d-6}$. This is a contradiction. The unique case for $d<12$ is $d=9$; it is easy to try the corresponding tree and to recognize that it is not fixed in S_{3}^{\prime}.

Case $C(0,2)$ may be transferred to $C(0,1)$ by changing the notation u_{i} to u_{d-i} for each i.

Case $C(1,0)$. The path R connects u_{0} with u_{4}, the path S connects u_{d-1} with u_{d-5}. Hence $r=2, s=d-3$. The images of v_{r}, v_{s} are u_{1} and u_{d-2} and the images of u_{r}, u_{s} are u_{4}, u_{d-5}. The images of u_{0} and u_{d} are u_{2} and u_{d}. The distance between u_{4} and u_{d} is $\frac{1}{3}(d-1)-1$, the distance between u_{2} and u_{d-5} is $\frac{1}{3}(d-1)-2$. If $S_{3}^{\prime}(T) \cong T$, then one of these distances must be equal to r and the other to $d-s$. This is possible only for $d=13$.

Case $C(1,1)$ may be transferred to $C(1,0)$ by changing the notation u_{i} to u_{d-i} for each i.

Case $C(1,2)$. If $d \geqslant 13$, then there exists a subtree of $S_{3}^{\prime}(T)$ isomorphic to F_{1}. It consists of three paths of length 2 with a common terminal vertex u_{6}; the first has the edges $u_{0} u_{3}, u_{3} u_{6}$, the second $u_{12} u_{9}, u_{9} u_{6}$, the third $u_{2} v_{4}, v_{4} u_{6}$. This is a contradiction. The unique cases for $d<13$ are $d=7$ and $d=10$; it is easy to try the corresponding trees and to recognize that they are not fixed in S_{3}^{\prime}.

Case $C(2,0)$. If $d \geqslant 14$, then there exists a subtree of $S_{3}^{\prime}(T)$ isomorphic to F_{1}. It consists of three paths of length 2 with a common terminal vertex u_{d-6} : the first has the edges $u_{d-12} u_{d-9}, u_{d-9} u_{d-6}$, the second $u_{d} u_{d-3}, u_{d-3} u_{d-6}$, the third $u_{d-2} v_{d-4}$, $v_{d-4} u_{d-6}$. This is a contradiction. The unique cases for $d<14$ are $d=8$ and $d=11$; it is easy to try the corresponding trees and to recognize that they are not fixed in S_{3}^{\prime}.

Case $C(2,1)$. The path R connects u_{1} with u_{5}, the path S connects u_{d-1} with u_{d-5}. Hence $r=3, s=d-3$. The images of v_{r}, v_{s} are u_{2} and u_{d-2} and the images of u_{r}, u_{5} are u_{5}, u_{d-5}. The images of u_{0} and u_{d} are again u_{0} and u_{d}. The distance
between u_{5} and u_{d} is $\frac{1}{3}(d-2)-1$ and the distance between u_{0} and u_{d-5} is also $\frac{1}{3}(d-2)-1$. If $S_{1}^{\prime}(T) \cong T$, then $r=d-s-\frac{1}{3}(d-2)-1$ and $d=14$.

Case $C(2,2)$ may be transferred to $C(2,0)$ by changing the notation u_{i} to u_{d-i} for each i.

By these considerations we have proved the following lemma.

Lemma 4. Let T be a tree such that $S_{3}^{\prime}(T) \cong T$. Then T is a caterpillar, $12 \leqslant \operatorname{diam} T \leqslant 14$ and in T there exist exactly two vertices of degree 3 with the distance from both the terminal vertices of a diametral path greater than or equal to 2 .

From our lemmas and from the considerations which precede Lemma 4 we obtain a theorem.

Theorem 1. Let T be a finite tree such that $S_{3}^{\prime}(T) \cong T$. Then T belongs to the family of trees depicted in Fig. 1.

The family from Fig. 1 is again depicted in Fig. 5 (diameter 12), Fig. 6 (diameter 13) and Fig. 7 (diameter 14). For $d=12$ there is only one tree; to u_{1} and u_{11} no vertices not belonging to D may be adjacent, because then a subtree isomorphic to F_{3} would occur. For $d=13$ it is possible for only one of the vertices u_{1}, u_{12} : In Fig. 6 it is u_{12}. The second possibility would be a mirror image of the former. For $d=14$ vertices not belonging to D may be adjacent to both u_{1} and u_{13}.

Fig. 7

Now we turn to unicyclic graphs.

Theorem 2. Let G be a finite unicyclic graph such that $S_{3}^{\prime}(G) \cong G$. Then either G is a circuit of length not divisible by 3 , or it is some of the graphs depicted in Fig. 2.

Proof. Let G be an acyclic graph, let $\ell(G)$ be the length of its circuit. If $\ell(G)=3$ and G is not isomorphic to the graph of $\ell(G)=3$ from Fig. 2, then either it is isomorphic to a subgraph of H_{1}, or contains a subgraph isomorphic to H_{2}, H_{3} or H_{4} in Fig. 8. The images of those graphs are in Fig. 9. In the first case $S_{3}^{\prime}(G)$

H_{1}

H_{3}

H_{4}

Fig. 8

$S_{3}^{\prime}\left(H_{2}\right)$

Fig. 9
is isomorphic to a subgraph of $S_{3}^{\prime}\left(H_{1}\right)$ and it is a forest, in the second case $S_{3}^{\prime}(G)$ has a subgraph isomorphic to $S_{3}^{\prime}\left(H_{2}\right), S_{3}^{\prime}\left(H_{3}\right)$ or $S_{3}^{\prime}\left(H_{4}\right)$ and thus it has a circuit of length 4 or of length 6 , therefore it is not isomorphic to G. If $\ell(G)=4$ and G is not isomorphic to any graph of the family of graphs with $\ell(G)=4$ depicted in Fig. 2, then it has a subgraph isomorphic to H_{5} or H_{6} in Fig. 10. The graph $S_{3}^{\prime}(G)$ has then a subgraph isomorphic to $S_{3}^{\prime}\left(H_{5}\right)$ or to $S_{3}^{\prime}\left(H_{6}\right)$ in Fig. 11; in both the cases

H_{5}

H_{6}
Fig. 10

$$
S_{3}^{\prime}\left(H_{5}\right)
$$

Fig. 11
it contains two circuits of length 4 and cannot be isomorphic to G. If $\ell(G)=6$ and G is not isomorphic to the graph with this $\ell(G)$ in Fig. 2, then it is either a circuit of length 6 , or it is isomorphic to H_{1}, H_{8} or H_{9} in Fig. 12. In the first case $S_{3}^{\prime}(H)$ consists of three connected components being complete graphs with two vertices, in the second case it contains a subgraph isomorphic to $S_{3}^{\prime}\left(H_{1}\right), S_{3}^{\prime}\left(H_{8}\right)$ or $S_{3}^{\prime}\left(H_{9}\right)$ in Fig. 13 and thus it is not isomorphic to G. Finally, let $\ell(G)=5$ or $\ell(G) \geqslant 7$. If $\ell(G)$ is divisible by 3 , then $S_{3}^{\prime}(G)$ contains three circuits of length $\frac{1}{3} \ell(G)$ and is not isomorphic to G. Thus suppose that $\ell(G)$ is not divisible by 3 . If G is not only a circuit, then G contains a vertex not belonging to its circuit, but adjacent to one of its vertices. Such a vertex has distance 3 from the vertices of the circuit. The graph $S_{3}^{\prime}(G)$ contains a circuit of length $\ell(G)$ and a vertex adjacent to two vertices of that circuit (in Fig. 14 for $\ell(G)=5$), and thus it is not isomorphic to G.

H_{7}

H_{8}

H_{9}

Fig. 12

$S_{3}^{\prime}\left(H_{7}\right)$

$S_{3}^{\prime}\left(H_{8}\right)$

$S_{3}^{\prime}\left(H_{9}\right)$

Fig. 13

H_{10}

$S_{3}^{\prime}\left(H_{10}\right)$

Fig. 14

References

[1] F. Escalante, L. Montejano: Trees and n-path invariant graphs, Abstract. Graph Theory Newsletter 33 (1974).
[2] E. Prisner: Graph Dynamics. Longman House, Burnt Mill, Harlow, 1998.
Author's address: Bohdan Zelinka, Department of Applied Mathematics, Technical University of Liberec, Voroněžská 13, 46001 Liberec 1, e-mail: bohdan.zelinka@vslib.cz.

