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THE 3-PATH-STEP OPERATOR ON TREES

AND UNICYCLIC GRAPHS
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Abstract. E.Prisner in his book Graph Dynamics defines the k-path-step operator on the
class of finite graphs. The k-path-step operator (for a positive integer k) is the operator S′

k
which to every finite graph G assigns the graph S′

k(G) which has the same vertex set as G
and in which two vertices are adjacent if and only if there exists a path of length k in G
connecting them. In the paper the trees and the unicyclic graphs fixed in the operator S′

3
are studied.
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In [2], page 168, the k-path-step graph operator S′
k for a positive integer k is

defined. Let G be a finite graph. The graph S′
k(G) has the same vertex set as G

and two vertices are adjacent in it if and only if there exists a path of length k in G

connecting them.

Further, in [2] the abstract of [1] is quoted; it is said that the paper [1] never
appeared. In the abstract it was claimed that the finite connected graphs which

are periodic in S′
3 are just the complete graphs, the complete bipartite graphs, the

circuits of lengths not divisible by 3, the graphs of one more infinite family and four

exceptional graphs (they were not specified). But in [2] some further graphs were
presented which are fixed in S′

3. Among them there is a family of trees in Fig. 1.

The symbols p, q signify that the number of vertices most to the left in the figure

p









q

p � 0, q � 0�
Fig. 1
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is p and the number of vertices most to the right is q; these numbers p, q may be

arbitrary non-negative integers (including zero). Therefore Fig. 1 represents a whole
family of trees. Among the graphs mentioned there is a similar family of unicyclic
graphs and two other unicyclic graphs. They are shown in Fig. 2.

� � p







 q

p � 0, q � 0
�

Fig. 2

In this paper we shall prove hat the graphs in Fig. 1 and Fig. 2 are all trees and all

unicyclic graphs which are fixed in the operator S′
3, i.e. graphs G such that S′

3(G) ∼=
G. We start with trees. All graphs considered are without loops and multiple edges.

Lemma 1. Let T be a tree such that S′
3(T ) ∼= T . Then T contains no subtree

isomorphic to any one of the trees F1, F2, F3 in Fig. 3.
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�����. If T contains a subtree isomorphic to F1, to F2 or to F3, then the image

S′
3(T ) contains a subgraph isomorphic to S′

3(F1), to S′
3(F2), or to S′

3(F3). These
graphs are in Fig. 4. Evidently each of them contains a circuit: therefore S′

3(T ) is

then not a tree. �
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Fig. 4
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The absence of a subtree isomorphic to F1 implies that a tree fixed in S′
3 must

be a caterpillar. Indeed, caterpillars are characterized among trees by this property.
A caterpillar is defined as a tree with the property that by deleting all pendant edges
and vertices from it a path is obtained. (A pendant vertex of a tree is its vertex of

degree 1, a pendant edge is an edge incident with a pendant vertex.)

Thus, let us have a tree T fixed in S′
3. We describe it as a caterpillar. Let

the diameter of T be d. Let D be a diametral path of T . Denote its vertices by
u0, u1, . . . , ud so that the edges of D are uiui+1 for i = 0, 1, . . . , d − 1. The number
of vertices adjacent to u1 (or ud−1) and not belonging to D will be denoted by p− 1
(or q−1, respectively). We admit that these numbers may be zero. Further, by k we

denote the number of vertices S which are adjacent to the vertices ui for 2 � i � d−2.

Lemma 2. Let k be the above defined number. Then k = 2.

�����. The number of edges of T is d + p + q + k − 2. As S′
3(T ) ∼= T , so

must be the number of edges of S′
3(T ), i.e. the number of pairs of vertices whose

distance in T is 3. On D there are d− 2 such pairs, namely the pairs {ui, ui+3} for
i = 0, . . . , d − 3. If a vertex is adjacent to u1 or to ud−1 and does not belong to D,

then there exists exactly one vertex at the distance 3 from it, namely u3 or ud−3. If
a vertex is adjacent to ui for 2 � i � d − 2 then there are exactly two vertices at
the distance 3 from it, namely ui−2 and ui+2 (we must suppose the absence of F3).
Hence the number of edges of S′

3(T ) is d+ p+ q + 2k− 4. It is equal to the number
of edges of T if and only if k = 2. �

Thus we may suppose that there exist integers r, s such that 2 � r < r + 2 � s �
d−2 and there exists a vertex vr adjacent to ur and a vertex vs adjacent to u5 which

do not belong to D. Note that the case r = 2 is possible only if p = 1 and the case
s = d−2 is possible only if q = 1; otherwise a subtree isomorphic to F3 would occur.

Lemma 3. Let T be a caterpillar, let diam T � 6. Then T is not fixed in the

operator S′
3.

�����. If diam T � 2, then there is no path of length 3 in T . If 3 � diamT � 5,
then the above mentioned numbers r, s do not exist. If diam T = 6, then the unique
possibility is r = 2, s = 4 but then S′

3(T ) is a path. �

Therefore in the sequel we will suppose d = diamT � 7. The image S′
3(D)

consists of three connected components which are paths D0, D1, D2; for j ∈ {0, 1, 2}
we denote by Dj the path having the vertices ui with i ≡ j (mod 3). In S′

3(T ) there

are two paths R, S among these components of length 2 with vr and vs as inner
vertices. One of the paths D0, D1, D2 must have the property that both its terminal
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vertices are terminal vertices of the paths R and S; denote this property as V . We
shall treat the possible cases. If i, j are from {0, 1, 2}, then C(i, j) denotes the case
when d ≡ i (mod 3) and Dj has the property V .
Case C(0, 0). The path R connects u0 with u4, the path S connects ud with ud−4.

Hence r = 2, s = d − 2. The images of pendant vertices vr, vs in an isomorphism

of T onto S′
3(T ) are again pendant vertices u1 and ud−1 and the images of ur, u5

are u4 and ud−4. The images of u0 and ud are ud−2 and u2. The distance between

u4 and ud−2 in S′
3(T ) is

1
3d − 2, the distance between ud−4 and u2 is the same. If

S′
3(T ) ∼= T , then necessarily r = d− s = 1

3d− 2 and d = 12.

Case C(0, 1). If d � 12, then there exists a subtree of S′
3(T ) isomorphic to F1.

It consists of three paths of length 2 with the common terminal ud−6; the first has

the edges ud−12ud−9, ud−4ud−6, the second udud−3, ud−3ud−3, the third ud−2vd−4,
vd−4ud−6. This is a contradiction. The unique case for d < 12 is d = 9; it is easy to

try the corresponding tree and to recognize that it is not fixed in S′
3.

Case C(0, 2) may be transferred to C(0, 1) by changing the notation ui to ud−i for

each i.

Case C(1, 0). The path R connects u0 with u4, the path S connects ud−1 with

ud−5. Hence r = 2, s = d−3. The images of vr, vs are u1 and ud−2 and the images of
ur, us are u4, ud−5. The images of u0 and ud are u2 and ud. The distance between

u4 and ud is 13 (d − 1) − 1, the distance between u2 and ud−5 is 13 (d − 1) − 2. If
S′
3(T ) ∼= T , then one of these distances must be equal to r and the other to d − s.

This is possible only for d = 13.

Case C(1, 1) may be transferred to C(1, 0) by changing the notation ui to ud−i for

each i.

Case C(1, 2). If d � 13, then there exists a subtree of S′
3(T ) isomorphic to F1.

It consists of three paths of length 2 with a common terminal vertex u6; the first

has the edges u0u3, u3u6, the second u12u9, u9u6, the third u2v4, v4u6. This is a
contradiction. The unique cases for d < 13 are d = 7 and d = 10; it is easy to try

the corresponding trees and to recognize that they are not fixed in S′
3.

Case C(2, 0). If d � 14, then there exists a subtree of S′
3(T ) isomorphic to F1. It

consists of three paths of length 2 with a common terminal vertex ud−6: the first has
the edges ud−12ud−9, ud−9ud−6, the second udud−3, ud−3ud−6, the third ud−2vd−4,

vd−4ud−6. This is a contradiction. The unique cases for d < 14 are d = 8 and
d = 11; it is easy to try the corresponding trees and to recognize that they are not

fixed in S′
3.

Case C(2, 1). The path R connects u1 with u5, the path S connects ud−1 with

ud−5. Hence r = 3, s = d− 3. The images of vr, vs are u2 and ud−2 and the images
of ur, u5 are u5, ud−5. The images of u0 and ud are again u0 and ud. The distance
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between u5 and ud is 13 (d − 2) − 1 and the distance between u0 and ud−5 is also
1
3 (d− 2)− 1. If S′

1(T ) ∼= T , then r = d− s− 1
3 (d− 2)− 1 and d = 14.

Case C(2, 2) may be transferred to C(2, 0) by changing the notation ui to ud−i for
each i.

By these considerations we have proved the following lemma.

Lemma 4. Let T be a tree such that S′
3(T ) ∼= T . Then T is a caterpillar,

12 � diamT � 14 and in T there exist exactly two vertices of degree 3 with the
distance from both the terminal vertices of a diametral path greater than or equal

to 2.

From our lemmas and from the considerations which precede Lemma 4 we obtain
a theorem.

Theorem 1. Let T be a finite tree such that S′
3(T ) ∼= T . Then T belongs to the

family of trees depicted in Fig. 1.

The family from Fig. 1 is again depicted in Fig. 5 (diameter 12), Fig. 6 (diameter 13)
and Fig. 7 (diameter 14). For d = 12 there is only one tree; to u1 and u11 no vertices

not belonging to D may be adjacent, because then a subtree isomorphic to F3 would
occur. For d = 13 it is possible for only one of the vertices u1, u12: In Fig. 6 it is u12.

The second possibility would be a mirror image of the former. For d = 14 vertices
not belonging to D may be adjacent to both u1 and u13.

u0 u1 u2 v3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v2 v10

Fig. 5

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13

v2 v10

q − 1︷ ︸︸ ︷�
Fig. 6

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14

v3 v11

q − 1︷ ︸︸ ︷p− 1︷ ︸︸ ︷�
Fig. 7

Now we turn to unicyclic graphs.
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Theorem 2. Let G be a finite unicyclic graph such that S′
3(G) ∼= G. Then either

G is a circuit of length not divisible by 3, or it is some of the graphs depicted in
Fig. 2.

�����. Let G be an acyclic graph, let �(G) be the length of its circuit. If

�(G) = 3 and G is not isomorphic to the graph of �(G) = 3 from Fig. 2, then either
it is isomorphic to a subgraph of H1, or contains a subgraph isomorphic to H2, H3
or H4 in Fig. 8. The images of those graphs are in Fig. 9. In the first case S′

3(G)
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is isomorphic to a subgraph of S′
3(H1) and it is a forest, in the second case S′

3(G)
has a subgraph isomorphic to S′

3(H2), S′
3(H3) or S′

3(H4) and thus it has a circuit

of length 4 or of length 6, therefore it is not isomorphic to G. If �(G) = 4 and G

is not isomorphic to any graph of the family of graphs with �(G) = 4 depicted in

Fig. 2, then it has a subgraph isomorphic to H5 or H6 in Fig. 10. The graph S′
3(G)

has then a subgraph isomorphic to S′
3(H5) or to S′

3(H6) in Fig. 11; in both the cases
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Fig. 11
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it contains two circuits of length 4 and cannot be isomorphic to G. If �(G) = 6 and

G is not isomorphic to the graph with this �(G) in Fig. 2, then it is either a circuit
of length 6, or it is isomorphic to H1, H8 or H9 in Fig. 12. In the first case S′

3(H)
consists of three connected components being complete graphs with two vertices, in

the second case it contains a subgraph isomorphic to S′
3(H1), S

′
3(H8) or S′

3(H9) in
Fig. 13 and thus it is not isomorphic to G. Finally, let �(G) = 5 or �(G) � 7. If
�(G) is divisible by 3, then S′

3(G) contains three circuits of length
1
3�(G) and is not

isomorphic to G. Thus suppose that �(G) is not divisible by 3. If G is not only a

circuit, then G contains a vertex not belonging to its circuit, but adjacent to one of
its vertices. Such a vertex has distance 3 from the vertices of the circuit. The graph

S′
3(G) contains a circuit of length �(G) and a vertex adjacent to two vertices of that
circuit (in Fig. 14 for �(G) = 5), and thus it is not isomorphic to G.
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