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Abstract. The interval function (in the sense of H.M.Mulder) is an important tool for
studying those properties of a connected graph that depend on the distance between vertices.
An axiomatic characterization of the interval function of a connected graph was published
by Nebeský in 1994. In Section 2 of the present paper, a simpler and shorter proof of that
characterization will be given. In Section 3, a characterization of geodetic graphs will be
established; this characterization will utilize properties of the interval function.
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By a graph we mean here a finite undirected graph (without loops and multiple
edges). If G is a graph, then V (G) and E(G) denote its vertex set and its edge set,

respectively. Moreover, if G is connected and u, v ∈ V (G), then dG(u, v) denotes the
distance between u and v in G.

The letters f, g, . . . , n will be used for denoting integers.

1. Let G be a connected graph. Put W = V (G). Following Mulder’s book [4], by
the interval function of G we mean the mapping IG of W ×W into 2W (i.e. into the

set of all subsets of W ) defined as follows:

IG(r, s) = {t ∈ W ; dG(r, s) = dG(r, t) + dG(t, s)}

for each ordered pair r, s ∈ W.

Lemma 1. Let G be a connected graph. Put W = V (G) and J = IG. Then J

satisfies the following axioms (i1)–(i7):

(i1) J(v, u) = J(u, v) for all u, v ∈ W ;
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(i2) u ∈ J(u, v) for all u, v ∈ W ;

(i3) if x ∈ J(u, v), then |J(u, x) ∩ J(x, v)| = 1 for all u, v, x ∈ W ;

(i4) if x ∈ J(u, v) and y ∈ J(x, v), then y ∈ J(u, v) for all u, v, x, y ∈ W ;

(i5) if x ∈ J(u, v) and y ∈ J(x, v), then x ∈ J(u, y) for all u, v, x, y ∈ W ;

(i6) if |J(u, x)| = 2 = |J(v, y)|, x, y ∈ J(u, v) and u ∈ J(x, y), then v ∈ J(x, y) for

all u, v, x, y ∈ W ;

(i7) if |J(u, x)| = 2 = |J(v, y)|, x ∈ J(u, v), x �∈ J(u, y) and y �∈ J(u, v), then

v ∈ J(x, y) for all u, v, x, y ∈ W .

�����. Axioms (i1)–(i5) can be verified easily. It is also not difficult to verify

axioms (i6) and (i7); their verification can be found in [6]. �

������ 1. Properties of the interval function of a connected graph that are
very similar to axioms (i1)–(i5) were presented in [4, 1.1.2.].

Let W be a finite nonempty set, and let J be a mapping of W ×W into 2W . We
denote by � J the graph H with V (H) =W and

E(H) = {rs; r, s ∈ W, r �= s and J(r, s) = {r, s} = J(s, r)}.

If � J is connected and n � 0, then we denote by Jn the mapping of

Zn
df
= {(u, v) ∈ W ×W ; d�J (u, v) = n}

into 2W such that Jn(x, y) = J(x, y) for each (x, y) ∈ Zn.

Lemma 2. If G is a connected graph and J = IG, then G = � J .

����� is obvious. �

In Lemmas 3–5 and in Corollary 1 we will assume that a finite nonempty set W

and a mapping J of W ×W into 2W are given.

Lemma 3. Assume that J satisfies axioms (i1), (i2) and (i3). Let u0, . . . , un ∈ W ,

where n � 1, and let

(1) |J(u0, u1)| = . . . = |J(un−1, un)| = 2.

Then u0u1, . . . , un−1un ∈ E(� J ).

����� is very easy. �
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Lemma 4. Assume that J satisfies axioms (i1)–(i4). Consider arbitrary distinct

u, v ∈ W . Then (a) u and v belong to the same component of � J and (b) there
exists w ∈ J(u, v) such that |J(u, w)| = 2.

�����. We proceed by induction on |J(u, v)|. By (i1) and (i2), |J(u, v)| � 2.
If |J(u, v)| = 2, then, by virtue of (i3), u and v are adjacent and thus they belong
to the same component; we put w = v. Now, let |J(u, v)| > 2. There exists x ∈
J(u, v), u �= x �= v. By (i1) and (i2), u ∈ J(u, x) and v ∈ J(x, v). According to (i1)
and (i4), J(u, x), J(x, v) ⊆ J(u, v). By virtue of (i3), |J(u, x)|, |J(x, v)| < |J(u, v)|.
By the induction hypothesis, (a′) x belongs to the same component as u and to the
same component as v, and (b′) there exists w ∈ J(u, x) such that |J(u, w)| = 2.
Obviously, u and v belong to the same component. Combining (i1) and (i4), we get
w ∈ J(u, v). Hence (a) and (b) hold. �

Corollary 1. If J satisfies axioms (i1)–(i4), then � J is connected.

Lemma 5. Assume that J satisfies axioms (i2), (i4) and (i5). Let u0, . . . , un, v ∈
W , where n � 1, and let

(2i) ui+1 ∈ J(ui, v)

for each i, 0 � i � n− 1. Then

(3j) uj ∈ J(u0, v) and uj−1 ∈ J(u0, uj)

for each j, 1 � j � n.

�����. We proceed by induction on j. The case j = 1 is trivial. Let j � 2. By
the induction hypothesis, uj−1 ∈ J(u0, v). By (2j−1), uj ∈ J(uj−1, v). As follows

from (i4), uj ∈ J(u0, v). As follows from (i5), uj−1 ∈ J(u0, uj). �

2. The interval function of a connected graph G plays a very important role in

studying those structural properties of G that depend on distance between vertices.
Cf.Mulder [4] or, for example, Bandelt and Mulder [1] and [2], and Bandelt, Mulder

and Wilkeit [3].
However, the concept of the interval function of a connected graph is not only well-

motivated; it is also transparently characterizable. Nebeský [6] proved a theorem
which can be reformulated as follows: If W is a finite nonempty set, J is a mapping

of W ×W into 2W and � J is connected, then J is the interval function of � J if and
only if J satisfies axioms (i1)–(i7).

The proof given in [6] was unnecessarily complicated. A new proof will be pre-
sented here. It will utilize some ideas of the original proof but it will be shorter and
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significantly simpler. We will formulate a theorem slightly stronger than the one

mentioned above:

Theorem 1. Let W be a finite nonempty set, and let J be a mapping of W ×W

into 2W . Then J is the interval function of a connected graph if and only if J satisfies

axioms (i1)–(i7).

�����. If J is the interval function of a connected graph G, then, by virtue of
Lemma 2, V (G) =W and thus, by Lemma 1, J satisfies axioms (i1)–(i7).
Conversely, let J satisfy axioms (i1)–(i7). Put G = � J . By Corollary 1, G is

connected. Put d = dG and I = IG. We will prove that J = I.
Suppose, to the contrary, that I �= J . Then there exists n � 0 such that Jn �= In

and

(4) Jf = If for all f, 0 � f < n.

It is easy to see that n � 2. We distinguish two cases.
	�
� 1. Let In \ Jn �= ∅. There exist u, v, w ∈ W such that d(u, v) = n and

w ∈ I(u, v) \ J(u, v). Thus, there exist v0, . . . , vn ∈ W and g, 0 < g < n, such

that v0 = v, vn = u, vg = w and (vn, . . . , v0) is a path from u to v of length d(u, v)
in G. Let vn−1 ∈ J(u, v); clearly, d(vn−1, v) = n − 1 and vg ∈ I(vn−1, v); by (4),

vg ∈ J(vn−1, v) and by (i4), vg ∈ J(u, v); a contradiction. Hence vn−1 �∈ J(u, v).
By (i1) and (i2), v ∈ J(u, v). Recall that d(u, v) = n. Lemmas 3 and 4 imply

that there exist u0, . . . , un ∈ W such that u0 = u, (1) holds and (2i) holds for each
i, 0 � i � n− 1. By Lemma 5, (3n) holds. As follows from Lemma 3,

(5) d(uj , vj) � n for each j, 0 � j � n.

Put u−1 = vn−1. The following three statements hold for i = 0:

d(ui, vi) = n,(6i)

v ∈ J(ui, vi),(7i)

ui−1 �∈ J(ui, vi).(8i)

By (3n) and (i1), un−1 ∈ J(un, u0). Since vn = u0, (8n) does not hold.

There exists h, 0 � h � n− 1, such that (6h), (7h) and (8h) hold but at least one
of (6h+1), (7h+1) and (8h+1) does not. Combining (2h), (7h) and (i1) with (i4) and

(i5), we get

uh+1 ∈ J(uh, vh),(9)

v ∈ J(uh+1, vh).(10)
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As follows from (6h),

(11) d(uh, vh+1) = n− 1.

Clearly, uh−1 ∈ I(uh, vh+1). By (11) and (4), uh−1 ∈ J(uh, vh+1). Let vh+1 ∈
J(uh, vh); by (i1) and (i4) we get uh−1 ∈ J(uh, vh), which contradicts (8h). Hence

(12) vh+1 �∈ J(uh, vh).

Let uh+1 ∈ J(uh, vh+1). By (11) and (4), uh+1 ∈ I(uh, vh+1). Thus d(uh+1, vh+1)

= n− 2. As follows from (6h), d(uh+1, vh) = n− 1 and vh+1 ∈ I(uh+1, vh). By (4),
vh+1 ∈ J(uh+1, vh). Combining (9) and (i4), we see that vh+1 ∈ J(uh, vh), which

contradicts (12). Hence uh+1 �∈ J(uh, vh+1). Thus, combining (9), (12) and (i7), we
get

(13) vh ∈ J(uh+1, vh+1).

Let d(uh+1, vh+1) < n. By (13) and (4), vh ∈ I(uh+1, vh+1). Therefore,

d(uh+1, vh) < n − 1. This means that d(uh, vh) < n, which contradicts (6h).
Thus, by virtue of (5), we get (6h+1).

Combining (10), (13), (i1) and (i4), we get (7h+1).
Assume that uh ∈ J(uh+1, vh+1). Combining (9), (13) and (i6), we see that

vh+1 ∈ J(uh, vh), which contradicts (12). We get (8h+1), which is a contradiction
with the definition of h.

	�
� 2. Let In ⊆ Jn. Then Jn \ In �= ∅. There exist u, v, z ∈ W such that
d(u, v) = n and z ∈ J(u, v) \ I(u, v). By (i2), z �= u. By Lemma 3, there exists

t ∈ J(u, z) such that |J(u, t)| = 2. By (i1), (i4) and (i5), t ∈ J(u, v) and z ∈ J(t, v).
If d(t, v) < n, then d(t, v) = n − 1, t ∈ I(u, v) and, by (4), z ∈ I(t, v) ⊆ I(u, v); a
contradiction. Hence d(t, v) � n. Lemmas 3 and 4 imply that there exist u0, . . . , un ∈
W such that u0 = u, u1 = t, (1) holds and (2i) holds for each i, 0 � i � n− 1. Since
d(u1, v) � n and u1u2, . . . , un−1un ∈ E(G), we have

(14i) d(ui+1, v) � n− i

for each i, 0 � i � n− 1. Thus un �= v. By Lemma 5, (3n) holds. Since d(u, v) = n,

there exist v0, . . . , vn ∈ W such that v0 = v, vn = u and (vn, . . . , v0) is a path from
u to v of length d(u, v) in G. Thus

(15i) d(v, vi) = i

for each i, 0 � i � n− 1. Moreover, (5) holds.
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Obviously, both (60) and (70) hold. By (3n), un ∈ J(vn, v). Since un �= v, (i1),

(i2) and (i3) imply that (7n) does not hold.
There exists h, 0 � h � n − 1, such that (6h) and (7h) hold but at least one of

(6h+1) and (7h+1) does not. Similarly as in Case 1, we get (9), (10) and (11).

Let d(uh+1, vh) < n. Combining (4) and (10), we get v ∈ I(uh+1, vh). By virtue
of (14h), we have d(v, vh) < h, which contradicts (15h). Hence d(uh+1, vh) � n.

Let d(uh+1, vh+1) < n. Since d(uh+1, vh) � n, we have d(uh+1, vh) = n and
d(uh+1, vh+1) = n− 1. Therefore, vh+1 ∈ I(uh+1, vh). Since In ⊆ Jn, we get vh+1 ∈
J(uh+1, vh). Thus, combining (9) and (i5), we see that uh+1 ∈ J(uh, vh+1). By (11)
and (4), uh+1 ∈ I(uh, vh+1) and therefore, d(uh+1, vh+1) = n − 2; a contradiction.
Thus, by virtue of (5), (6h+1) holds.
By virtue of (6h), vh+1 ∈ I(uh, vh); by (6h+1), uh ∈ I(uh+1, vh+1). Recall that

In ⊆ Jn. We have vh+1 ∈ J(uh, vh) and uh ∈ J(uh+1, vh+1). Thus, (9) and (i6)
imply (13). Similarly as in Case 1, we get (7h+1), which is a contradiction with the

definition of h.
Thus J = I, which completes the proof. �

������ 2. An extension of Theorem 1 (with a different and rather long proof)

was presented in Nebeský [8].

3. A graph G is said to be geodetic if it is connected and for each pair r, s ∈
V (G), there exists exactly one path from r to s of length dG(r, s). The problem to
characterize geodetic graphs was stated in Ore’s book [10].

The next theorem gives a characterization of geodetic graphs based on properties
of the interval function.

Theorem 2. Let G be a graph. Put W = V (G). Then G is geodetic if and only

if there exists a mapping J of W × W into 2W such that G = � J and J satisfies

axioms (i1), (i2), (i3) and the following axioms (g1) and (g2):
(g1) if x ∈ J(u, v), then J(u, v) = J(u, x) ∪ J(x, v) for all u, v, x ∈ W ;

(g2) if |J(u, x)| = 2 = |J(v, y)| and x ∈ J(u, v), then x ∈ J(u, y) or v ∈ J(x, y) for
all u, v, x, y ∈ W .

�����. I. Assume that G is geodetic. Then G is connected. Let J denote its
interval function. By Lemma 1, J satisfies (i1), (i2) and (i3). As immediately follows

from the definition of a geodetic graph, J satisfies (g1). We will show that J satisfies
(g2).

Consider arbitrary u, v, x, y ∈ W . Assume that |J(u, x)| = 2 = |J(v, y)| and
x ∈ J(u, v). If y = u, then x = v and thus v ∈ J(x, y). Let y �= u. Since G is

geodetic, there exists exactly one path P from u to v of length dG(u, v) in G. If
y ∈ J(u, v), then y belongs to P and thus x ∈ J(u, y). Let y �∈ J(u, v). Then
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dG(x, v) � dG(x, y) � dG(x, v) + 1. If dG(x, y) = dG(x, v) + 1, then v ∈ J(x, y). If

dG(x, y) = dG(x, v), then x ∈ J(u, y). Thus J satisfies (g2).
II. Conversely, assume that J satisfies (i1), (i2), (i3), (g1) and (g2). The fact that

J satisfies (g2) implies that J satisfies (i7). First, we will show that J also satisfies

(i4), (i5) and (i6).
Consider arbitrary u, v, x, y ∈ W .

Let x ∈ J(u, v) and y ∈ J(x, v). By (g1),

(16) J(u, v) = J(u, x) ∪ J(x, v) and J(x, v) = J(x, y) ∪ J(y, v).

Combining (i2) and (16), we get y ∈ J(u, v). By (g1) again,

(17) J(u, v) = J(u, y) ∪ J(y, v).

If x = y, then (i1), (i2) and (17) imply that x ∈ J(u, y). Let x �= y. By (i2),
x ∈ J(x, y). Since y ∈ J(x, v), it follows from (i3) that J(x, y) ∩ J(y, v) = {y}, and
therefore, x �∈ J(y, v). Since x ∈ J(u, v), (17) implies that x ∈ J(u, y). We see that
J satisfies (i4) and (i5).

Let |J(u, x)| = 2 = |J(v, y)| and let x, y ∈ J(u, v). As follows from (i1), (i2) and
(i3), we have x �= u �= v �= y, J(u, x) = {u, x}, J(v, y) = {v, y} and u, v ∈ J(u, v).

Hence |J(u, v)| � 2. First, let |J(u, v)| = 2. Then u = y and v = x. We have
u, v ∈ J(u, v). Now, let |J(u, v)| > 2. Then x �= v and y �= u. It follows from (i3)

and (g1) that |{u, x}∩J(x, v)| = 1 and J(u, v) = J(u, x)∪J(x, v). Thus u �∈ J(x, v).
As follows from (i3) and (g1) again, |J(x, y)∩{y, v}| = 1 and J(x, v) = J(x, y)∪{y, v}.
By (i1) and (i2), y ∈ J(x, y), Thus v �∈ J(x, y). Since u �∈ J(x, v), we get u �∈ J(x, y).
We see that J satisfies also (i6).

Put G = � J . By Corollary 1, G is connected. By Theorem 1 and Lemma 2, J is
the interval function of G. Recall that J satisfies (g1). We will show that

(18) there exists exactly one path from u to v of length dG(u, v) in G

for each pair of distinct u, v ∈ W .

Consider arbitrary distinct u, v ∈ W . Put n = dG(u, v). To prove (18), we will
proceed by induction on n. Obviously, n � 1. There exist u0, u1, . . . , un ∈ W such

that u0 = u, un = v and (u0, u1, . . . , un) is a path in G. Since dG(u, v) = n, we see
that ui and uj are adjacent in G if and only if |i− j| = 1 for all i and j, 0 � i � n

and 0 � j � n. Clearly, if n = 1, then (18) holds. Let n > 1. Then u1 �= v. Since
dG(u1, v) = n−1, the induction hypothesis implies that (u1, . . . , un) is the only path

from u1 to v of length n− 1 in G. Thus J(u1, v) = {u1, . . . , un}. By virtue of (g1),
J(u, v) = {u0, u1, . . . , un}. This means that (u0, u1, . . . , un) is the only path from u

to v of length n in G.
Thus G is geodetic. �
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������ 3. A characterization of geodetic graphs utilizing properties of the set

of all shortest paths was given in Nebeský [5] and [7]. A characterization of geodetic
graphs based on a binary operation on the vertex set was given in Nebeský [9].
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