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ON r-EXTENDABILITY OF THE HYPERCUBE Qn 
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(Received February 6, 199G) 

Summary. A graph having a perfect matching is called r-extendable if every matching 
of size r can be extended to a perfect matching. It is proved that in the hypercube Qn, a 
matching S with |S| ^ n can be extended to a perfect matching if and only if it does not 
saturate the neighbourhood of any unsaturated vertex. In particular, Qn is r-extendable 
for every r with 1 < r ^ n - 1. 
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1. INTRODUCTION 

We consider only finite, simple graphs. A set S of edges in a graph G is called a 

matching if no two edges of S have a common vertex. A matching S is called a perfect 

matching if every vertex of G is an end vertex of some edge in S. Let r and p be 

positive integers and let G be a graph on 2p vertices having a perfect matching, that 

is having a 1-factor. Then G is said to be r-extendable if every matching of size r in 

G can be extended to a perfect matching of G. The r-extendable graphs were studied 

in [2] and [3], Plummer proved [3] that for p > 2 and p + r ^ f c ^ 2 p - l any graph 

G on 2p vertices with the minimum degree 5(G) Ji k is r-extendable. Moreover, if 

r ^ p — 1, then any r-extendable graph is (r — l)-extendable and (r + l)-connected. 

The tetrahedron, the hypercube Qn, the dodecahedron, the icosahedron, the com­

plete bipartite graphs Kn,n with n ^ 2 are all 2-extendable, but the octahedron and 

the Petersen graph are not. The extendability of generlized Petersen graphs was 

studied in [1] and [4]. In this note we study r-extendability of the hypercube Qn and 

prove that Qn is r-extendable for every r with 1 ^ r $ n — 1. 
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2. T H E H Y P E R C U B E Qn 

For a positive integer n with n ^ 2, the hypercube Q„ is the graph whose vertex 

set V(Qn) is given by {a = ( 0 1 , . . . , o n ) | a, = 0 or 1 for each i} and whose edge 

set E(Qn) is given by {ah \ a; ^ 6; for exactly one i}. Clearly Qn is a graph on 

2 n vertices and is regular with the degree of regularity equal to n. The following 

properties of Qn are useful. 

(i) Any two adjacent edges of Qn belong to a unique 4-cycle. 

(ii) For a fixed vertex a, let Lt be the set of all vertices at a distance i from a. 

This set is called the i th level of the vertex a. Clearly L, = 0 for all i > n. Moreover, 

every vertex 6 in Li has precisely i neighbours in L;_i and n — i neighbours in L,;+i. 

By 0 we denote the vertex having all coordinates equal to 0 and by el we denote 

the vertex having the i th coordinate equal to 1 and all the other coordinates equal 

to 0. 

For a positive integer i, 1 ^ ? ^ n, by the ith decomposition of the hypercube Qn 

we mean the partition {14,1 .} of the vertex set V(Qn), where Vi = {a | a; = 0} 

and V2 = {a \ o; = 1}. Clearly, the induced subgraphs on Vx as well as on V2 

are isomorphic to the cube Qn-i- We denote these smaller hypercubes by Gi and 

G2 . The edge set E(Qn) also gets partitioned into three subsets: E(Gi),E(G2) and 

a perfect matching {xy \ Xj = yj,l ^ j ^ n,j ^ i}. The edges of this perfect 

matching are called the cross edges in the i th decomposition. Every vertex x in 

Gi (or G2), is adjacent to a unique vertex in G2 (Gi, respectively). This vertex is 

called the mirror image of x and is denoted by m(x). By taking mirror images of 

vertices as well as edges, one can see that for a subgraph H of Gi (or G 2 ) , there 

is an isomorphic copy of it in G2 (Gi, respectively). It is denoted by m(H). For 

a set S of edges in Qn, by the set A(S) of associated integers of S we mean the 

set {j | the end vertices of some edge e g S differ in the j t h coordinate}. If S = {e} 

and A(S) = {i}, then we say that the integer i is the associated integer of the edge 

e. If S is a set of edges in Qn, we say that S saturates a vertex x if some edge e of 

S is incident with the vertex x, otherwise x is said to be unsaturated. 

For a vertex x in G_, by Ll,L2,... we mean the levels of x in G\. Similarly, the 

levels of m(x) in G2 will be denoted by Lx, L 2 , . . . . Clearly, L; = Lt U L{_x for all i. 

T h e o r e m . Let S be a matching in Qn such that \S\ ^ n. Then S can be extended 

to a perfect matching of Qn if and only if S does not saturate the neighbourhood of 

any unsaturated vertex. 

In particular, Qn is r-extendable for each r with 1 ^ r < n — 1. 

P r o o f . It is easy to see that if S can be extended to a perfect matching, then 

it does not saturate the neighbourhood of any unsaturated vertex. For the converse, 

250 



we use induction on n. One can easily see that the theorem is true for n = 2,3 and 

4. Let n >- 5. 

Case 1: \A(S)\ < n. 

Subcase 1(a): \S\ <. n — 1. Choose an integer i £ A(S) and consider the i th 

decomposition of Qn. Let St = S n F ( G t ) , t = 1,2. Clearly, S = Sx U S2 and 

Si n S2 = 0. If |S i | < ?i — 1 and |S 2 | < n — 1, then by induction we can extend each 

St to a perfect matching Ft in Gu t = 1,2. Let F = Fi U F 2 . 

If Si is of size n — 1 and S2 = 0, we proceed as follows. If Si does not saturate 

the neighbourhood in Gi of any unsaturated vertex, then by induction we extend 

Si to a perfect matching Fi of G j . Choose any perfect matching F 2 of G2 and let 

F = F U F 2 . 

If Si saturates the neighbourhood in Gi of an unsaturated vertex x, remove any 

edge e = y 2 in S i , where y is a neighbour of x. 

x m(x) 

By induction, S - {y 2} can be extended to a perfect matching Fi of G\. Clearly, 

the edge x y must belong to F\. Let the edge of Fi saturating 2 be 2w. One can now 

let F = Fi U m(F i ) U {e,m(e),xm(x),wm(w)} - {xy,m(xy),2w,m(2w)}. Clearly 

F is a perfect matching of Qn containing S. 

Subcase 1(b): \S\ = n. As before, let St = S n E(Gt),t = 1,2. If |S i | = n and 

Si does not saturate the neighbourhood of any unsaturated vertex, then choose any 

edge e = y 2 from S. Otherwise for ?i > 5, the set S can saturate the neighbourhood 

of only one unsaturated vertex x. So choose the edge e such that y is a neighbour of x. 

If n = 5, then the set S can possibly saturate the neighbourhoods of two unsaturated 

vertices x,w. In this case, choose the edge e in S such that y is a neighbour of x and 

2 is a neighbour of w. By induction, extend S - {e} to a 1-factor Fi of G\. One can 

now see tha t F = Fi U m ( F i ) U { e , m ( e ) } - {xm(x),wm(w)} is the required 1-factor. 

Here xy,2w are the edges of Fi saturating y and 2, respectively. 
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If |S i | < n - 2 a n d |S 2 | ^ n - 2 , orif |Si | = n - l , | S 2 | = 1 but S] does not saturate 

the neighbourhood in G\ of any unsaturated vertex, then we can extend each St to 

a perfect matching E( of G (,« = 1, 2. Let E = E U E>. 

Now suppose that \S\\ = n - 1,\S2\ = 1 and that Si saturates the neighbourhood 

of an unsaturated vertex x in G\. Let S2 = {y z}. By hypothesis, the neighbourhood 

of x in Qn is not saturated. Hence both y and z are different from m(x). Since 

Qn is bipartite, .distances of y and z from m(x) are not the same. Without loss of 

generality, suppose that d(m(x),y) = d and d(m(x),z) = d+ 1. 

If d ^ 3, choose a neighbour v of x in G\ and an edge e = v w £ Si . If d = 1 but 

m(y z) £ Si , then choose an adge e = tJiu £ Si such that S / y . By induction, we 

can extend Si U {m(y z ) } - { e ) t o a perfect matching F\ of G\. Let w k = / be the 

edge of F\ saturating w. The only edgeincidence with the vertex x that can belong 

to Ei is xv. 

It is clear that F = F\ Um(E) U {e,m(e),xm{x),km(k)} - {f,m(f),xv,m(xv)} 
is a perfect matching of Qn containing S. 

Now suppose d = 1 and m(§5) ^ Si . By assumption, y is saturated by some edge 

in Si . Choose an edge e = vw in S\ such that v ^ m(y) and j) is a neighbour of x. 

Extend Si — {e} to a 1-factor E of G\. Clearly, the edge xv belongs to F\.llwk is 

the edge in Ei saturating w, then k cannot be m(y) since m(y) is saturated in Si , and 

it cannot be m(z) since both w and m(z) belong to the level L2 of x. This means that 

the edges yz,m(xv),m(wk) are parallel in G2. By induction, extend this set to a 

1-factor E2 of G2. As before, we can now let E = E UE2 U {e, m(e),xm(x), km(k)} -

{xv,m(xv),w k,m(w k)}. 
If d = 2 then the distance of m(z) from x is 3. But then there are exactly 3 

neighbours of m(z) on any shortest path from x to m(z). Since n — 1 ^ 4, we can 
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choose an edge / 6 Si such that v is not on a shortest x-m(z) path. The rest of the 

construction is the same as when d ^ 3. 

Case 2: |A (S ) | = n. If \A(S)\ = n then in any ith decomposition of Qn, there 

is precisely one edge having one end vertex in Gx and t in other in G2 . Consider 

the first decomposition of Qn. Let xm(x) be the unique cross edge. As before, let 

Si = SnE(Gi),i = 1,2 and suppose that \S2\ ^ |Si | . 

Subcase 2(a): Si U m(S2) is a matching in G\. Let E = Si U m(Si) U S2 U m(S2) 

and E = Ei U {all the cross edges with vertices unsaturated by Ei}. 

Subcase 2(b): Si U)n(S2) is not a matching, but there is a neighbour y of x in Gi 

such that both y,m(y) are unsaturated by 5. 

Subcase 2(b-I): |Si | ^ n - 3. or |S i | = n — 2 but Si U {xy} does not saturate 

the neighbourhood in Gx of any unsaturated vertex. Then by induction we extend 

Si U {xy} to a 1-factor E of Gi, extend S2 U {m(xy)} to a 1-factor E2 of G2 and 

let E = E UF2U{xm(x),ym(y)}-{xy,m(x.y)}. 
Subcase 2(b-II): |S i | = n - 2, |S 2 | = 1 and S[ = Si U {xy} saturates the neigh­

bourhood in Gi of some unsaturated vertex w. Clearly, w is different from x as well 

as y, but it is a neighbour of precisely one of them. 

Suppose w is adjacent to x. Since S does not saturate the neighbourhood of w 

in Qn, the vertex m(w) is unsaturated. Hence we replace the edge xy by the edge 

xw in the above argument. One can easily check that Si U {xw} does not saturate 

the neighbourhood in Gi of any unsaturated vertex. Now we proceed as in Subcase 

2(b-I). 

If w is a neighbour of y, then Si saturates only one neighbour of S in G%. Since 

n — 1 ^ 4 and |S 2 | = 1, one can choose one more vertex u adjacent to the vertex x 

such that u and m(u) are both unsaturated. It is easy to see that Si U {xu} does 

not saturate the neighbourhood in Gi of any unsaturated vertex. Now we proceed 

as in Subcase 2(b-I). 

Subcase 2(c): \A(S)\ = n , m ( S 2 ) u S i is not a matching in Gi and every neighbour 

of x in Gi is saturated by m(S2) U S i . 

The graph Qn is bipartite and hence no edge joins two neighbours of x. This means 

n - 1 edges of Si U m(S2) saturate n - 1 distinct neighbours of x. Since Si U m(S2) 

is not a matching, the subgraph H induced by this set in Gi is the union of paths, 

each having alternating edges in Si and m(S2). 

If possible, let there be a path of length at least 3. Then there is a vertex z of 

degree 2 on this path which is on the first level Lx of x. But then there is one edge 

in Si and one in m(S2) saturating this vertex. This contradicts the fact that n - 1 

edges of Si U m(S2) saturate n — 1 distinct neighbours of x. Hence the subgraph H of 

Gi induced by Si U m(S2) is the union of paths of length 1 or 2 and there is at least 
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one path of length 2. Moreover, end vertices of every path of length 2 are neighbours 

of x. 

Without loss of generality, let S = (0, . . . , 0 ) = 0 and consider a path {el, el + 

e~],e~]}, of length 2, where the edge e^(el + e]) is in S\ and the edge m(e~](e] + e])) is 

in S2 . The associated integers of these edges are j and i, respectively. All edges in 

Si U TO(S2) have one end vertex in Lj and the other in £ 2 . If e7(ej + e~) is a path of 

length one in Si U m(So), then the associated integer of this edge is A:. 

~k + Є ( 

~k 

Єi+Єj 

I Щ Л e~] 

~\ + ei + ej 

ěi + e]\ 

Ö e i 

Since | J 4 ( S ) | = n, the integer k is different from i and j . This means that neither 
of these vertices is a neighbour of el or of el + e~]. Suppose {e~, e~ + e~i,ei} is a path of 
length two in Si U m(S2). Then by the same argument, both k,l are different from 
i, j . Hence the only neighbours of el saturated by S are 0 and (el + e]). Similarly, 
the only neighbour of el + e] saturated by S is el + e] + e~. Now we can consider the 
jth decomposition and complete the required 1-factor as in Subcase 2(b). • 

E x a m p l e . The condition \S\ < n on the size of the matching S is optimal. 
We give an example of a set of 5 parallel edges in Q\, which does not saturate the 
neighbourhood of any unsaturated vertex but cannot be extended to a 1-factor. 

Єi + e 2 

254 



Let S = {el (ei + e3),e5 (ej + el) , ej (el + e5),m(el (el + e5)),m(ei (eg + e5))}. If 

this is to be extended to a 1-factor, one is forced to include the edge OeJ. But then 

one is left with no choice of an edge to saturate the vertex £3 + ej . 

We conjecture that a set of n + 1 parallel edges in Qn which does not saturate the 

neighbourhood of any unsaturated vertex can be extended to a 1-factor if n ^ 5. 
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