Mathematic Bohemica

Michal Ǩ̌ížek; Jan Chleboun

A note on factorization of the Fermat numbers and their factors of the form $3 h 2^{n}+1$

Mathematica Bohemica, Vol. 119 (1994), No. 4, 437-445

Persistent URL:
http://dml.cz/dmlcz/126115

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A NOTE ON FACTORIZATION OF THE FERMAT NUMBERS AND THEIR FACTORS OF THE FORM $3 h 2^{n}+1$

Michal Křížek, Jan Chleboun, Praha
(Received May 9, 1994)

Summary. We show that any factorization of any composite Fermat number $F_{m}=$ $2^{2^{m}}+1$ into two nontrivial factors can be expressed in the form $F_{m}=\left(k 2^{n}+1\right)\left(\ell 2^{n}+1\right)$ for some odd k and $\ell, k \geqslant 3, \ell \geqslant 3$, and integer $n \geqslant m+2,3 n<2^{m}$. We prove that the greatest common divisor of k and ℓ is $1, k+\ell \equiv 0 \bmod 2^{n}, \max (k, \ell) \geqslant F_{m-2}$, and either $3 \mid k$ or $3 \mid \ell$, i.e., $3 h 2^{m+2}+1 \mid F_{m}$ for an integer $h \geqslant 1$. Factorizations of F_{m} into more than two factors are investigated as well. In particular, we prove that if $F_{m}=\left(k 2^{n}+1\right)^{2}\left(\ell 2^{j}+1\right)$ then $j=n+1,3 \nmid \ell$ and $5 \nmid \ell$.

Keywords: Fermat numbers, prime numbers, factorization, squarefreeness
AMS classification: 11A51, 11Y05

Throughout the paper all variables $i, j, k, n, n_{1}, \ldots$ are supposed to be positive integers except for m and z which can moreover attain the value zero. For $m=$ $0,1,2, \ldots$, the m th Fermat number is defined by $F_{m}=2^{2^{m}}+1$. The aim of this paper is to derive some properties of factors of composite Fermat numbers.

Recall that $F_{0}=3, F_{1}=5, F_{2}=17, F_{3}=257, F_{4}=65537$ are primes and other primes F_{m} (if they exist) are not known yet. For instance, in 1732 Euler found that $F_{5}=641 \cdot 6700417$, where the both factors are prime. The Fermat number F_{6} was factored by Landry in 1880 (see e.g. [10]), F_{7} by Morrison and Brillhart in 1970 [8], F_{8} by Brent and Pollard in 1980 [2], F_{9} by Lenstra, Lenstra, Jr., Manasse, Pollard in 1990 [7] and F_{11} by Brent in 1988 [1]. The complete factorizations of F_{m} are known only for the above mentioned numbers for the time being. Their structure, however, remainds a deterministic chaos. Some prime factors of F_{10} and of more than 100 other Fermat numbers can be found in excellent surveys [3, 6]. From all of the above-mentioned papers we have

$$
\begin{equation*}
1=\Omega_{0}=\ldots=\Omega_{4}<2=\Omega_{5}=\ldots=\Omega_{8}<3=\Omega_{9}<5=\Omega_{11}<6<\Omega_{12} \tag{1}
\end{equation*}
$$

where Ω_{m} is the number of prime divisors of F_{m} (counted with multiplicity). Anyhow, the monotonocity of the whole sequence $\left\{\Omega_{m}\right\}$ is an open problem as well as the squarefreeness of F_{m}.

In 1877, Lucas established a general form of prime divisors of the Fermat numbers, namely that: Every prime divisor p of $F_{m}, m>1$, satisfies the congruence (see e.g. [4, p. 376])

$$
\begin{equation*}
p \equiv 1 \bmod 2^{m+2} \tag{2}
\end{equation*}
$$

The main idea of its proof is the following. As in [7, p. 320] we put $b=$ $2^{2^{m-2}}\left(2^{2^{m-1}}-1\right)$. Then $b^{2}=2^{2^{m-1}}\left(2^{2^{m}}-2 \cdot 2^{2^{m-1}}+1\right)$ and we get

$$
\begin{equation*}
b^{2} \equiv 2 \bmod p \tag{3}
\end{equation*}
$$

since $2^{2^{m}}+1 \equiv 0 \bmod p$. From here we have $b^{2^{m+1}} \equiv 2^{2^{m}} \equiv-1 \bmod p$ which implies that

$$
\begin{equation*}
b^{2^{m+2}} \equiv 1 \bmod p \tag{4}
\end{equation*}
$$

According to (3), the numbers b and p are coprime and thus by the little Fermat theorem (i.e., $b^{p-1} \equiv 1 \bmod p$) and (4) it is possible to deduce that $2^{m+2} \mid p-1$. Therefore, (2) holds.

We start with several simple lemmas.
Lemma 1. If $2^{n}+1$ divides F_{m} for some $n \geqslant 1$ and $m \geqslant 0$ then $F_{m}=2^{n}+1$.
Proof. Set $Q_{n}=2^{n}+1$, i.e., $F_{m}=Q_{2^{m}}$. From the binomial theorem we obtain

$$
Q_{i j}=2^{i j}+1=\left(Q_{j}-1\right)^{i}+1 \equiv 1+(-1)^{i} \bmod Q_{j}
$$

and thus

$$
\operatorname{gcd}\left(Q_{i j}, Q_{j}\right)= \begin{cases}1 & \text { for } i \text { even } \tag{5}\\ Q_{j} & \text { for } i \text { odd }\end{cases}
$$

Hence,

$$
\begin{equation*}
\operatorname{gcd}\left(F_{z}, F_{m}\right)=1 \quad \text { for } z \neq m \tag{6}
\end{equation*}
$$

i.e., no two different Fermat numbers have a common divisor greater than 1 (see also [5, p. 14]).

Suppose that $Q_{n} \mid F_{m}$ for some $n<2^{m}$. Then $n=i 2^{z}$, where i is odd and $z<m$. Using (5) for $j=2^{z}$, we see that $Q_{2^{z}} \mid Q_{n}$. However, this contradicts (6), since $Q_{2^{z}}=F_{z}$ and $Q_{n} \mid F_{m}$. Therefore, $n=2^{m}$.

Lemma 2. Let F_{m} be composite. Then there exist natural numbers j, k, ℓ, n such that

$$
\begin{equation*}
F_{m}=\left(k 2^{n}+1\right)\left(\ell 2^{j}+1\right), \quad k \geqslant 3, \ell \geqslant 3, k \text { and } \ell \text { are odd. } \tag{7}
\end{equation*}
$$

Proof. Since F_{m} is odd and composite, it can be written as a product of two odd numbers $k 2^{n}+1$ and $\ell 2^{j}+1$ for some natural numbers n, j and odd integers k, ℓ. However, according to Lemma 1 the case $k=1$ or $\ell=1$ is not possible. Hence, $k \geqslant 3$ and $\ell \geqslant 3$.

Definition 3. Let $q>1$ be an odd integer. A uniquely determined exponent n from the decomposition $q=k 2^{n}+1$, where k is odd, is called the order of q.

In the next lemma we prove that the orders of two odd factors are not greater than the order of their product.

Lemma 4. Let

$$
\begin{equation*}
k 2^{n}+1=\left(k_{1} 2^{n_{1}}+1\right)\left(k_{2} 2^{n_{2}}+1\right) \tag{8}
\end{equation*}
$$

where k, k_{1}, k_{2} are odd. Then $n \geqslant \min \left(n_{1}, n_{2}\right)$, where the sharp inequality holds if and only if $n_{1}=n_{2}$. Moreover, $k>k_{1} k_{2} 2^{\max \left(n_{1}, n_{2}\right)}$ whenever $n_{1} \neq n_{2}$.

Proof. Without loss of generality assume that $n_{1} \geqslant n_{2}$. Then

$$
\begin{equation*}
k 2^{n}+1=\left(k_{1} k_{2} 2^{n_{1}}+k_{1} 2^{n_{1}-n_{2}}+k_{2}\right) 2^{n_{2}}+1 \tag{9}
\end{equation*}
$$

Since k is odd, $n \geqslant n_{2}=\min \left(n_{1}, n_{2}\right)$. The number in the brackets from (9) is even if and only if $n_{1}=n_{2}$. If $n_{1}>n_{2}$ then $n=n_{2}$ and thus $k>k_{1} k_{2} 2^{n_{1}}$ by (9).

Theorem 5. Let F_{m} be composite and let $k 2^{n}+1$ be its arbitrary factor (not necessarily prime) where k is odd. Then $k \geqslant 3, n$ is an integer for which

$$
\begin{equation*}
m+2 \leqslant n<\frac{1}{3} 2^{m} \tag{10}
\end{equation*}
$$

and there exists an odd $\ell \geqslant 3$, such that

$$
\begin{equation*}
F_{m}=\left(k 2^{n}+1\right)\left(\ell 2^{n}+1\right) \tag{11}
\end{equation*}
$$

i.e., the both factors have the same order. Moreover,

$$
\begin{equation*}
k+\ell \equiv 0 \bmod 2^{n} \tag{12}
\end{equation*}
$$

k and ℓ are coprime, i.e.,

$$
\begin{gather*}
\operatorname{gcd}(k, \ell)=1 \tag{13}\\
\max (k, \ell) \geqslant F_{m-2} \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\text { either }=3 \mid k \text { or } 3 \mid \ell \tag{15}
\end{equation*}
$$

i.e., for any composite Fermat number F_{m} there exists a natural number h such that $3 h 2^{n}+1 \mid F_{m}$.

Proof. Let $\ell 2^{j}+1$ be a cofactor to $k 2^{n}+1$ such that ℓ is odd. According to (7), we have

$$
F_{m}=k \ell 2^{n+j}+k 2^{n}+\ell 2^{j}+1
$$

Without loss of generality we may assume that $n \geqslant j$. Then

$$
2^{2^{m}-j}=k \ell 2^{n}+k 2^{n-j}+\ell
$$

where the terms $2^{2^{m}-j}$ and $k \ell 2^{n}$ are even because $2^{m}>j$ and $n \geqslant 1$. This implies that $n=j$, since ℓ is odd. (The role of k and ℓ is thus the same.)

From the relation

$$
2^{2^{m}-n}=k \ell 2^{n}+k+\ell
$$

we deduce that $2^{m}-n>n$ which implies (12). Moreover, if $q \mid k$ and $q \mid \ell$ for some odd q then $q \mid 2^{2^{m}-n}$. Hence, $q=1$ and we observe that (13) holds.

Further we establish the proposed bounds (10) for n. By (12), $k+\ell \geqslant 2^{n}$. Since $k \neq \ell$ due to (13), we have

$$
\begin{equation*}
\max (k, \ell)>2^{n-1} \tag{16}
\end{equation*}
$$

and thus

$$
F_{m}=\left(k 2^{n}+1\right)\left(\ell 2^{n}+1\right)>\left(2^{n-1} 2^{n}+1\right)\left(2 \cdot 2^{n}+1\right)>2^{3 n}+1
$$

Consequently, $3 n<2^{m}$.
By (2) each prime factor of F_{m} is of the form $r 2^{m+2}+1$ for some integer r. Hence, if $k 2^{n}+1$ is a prime factor then $m+2 \leqslant n$, since k is odd. Suppose that $k 2^{n}+1$ is a product of two primes which is of the form (8). Then Lemma 4 implies $m+2 \leqslant \min \left(n_{1}, n_{2}\right) \leqslant n$. By induction we find that $m+2 \leqslant n$ for any factor of F_{m}, i.e., (10) is valid.

If $n \leqslant 2^{m-2}$ then by (11), (13) and (10)

$$
\max (k, \ell)>2^{-n}\left(\sqrt{F_{m}}-1\right)>2^{-2^{m-2}}\left(2^{2^{m-1}}-1\right)=2^{2^{m-2}}-2^{-2^{m-2}}
$$

and thus $\max (k, \ell) \geqslant F_{m-2}$, since $\max (k, \ell) \geqslant 2^{2^{m-2}}$ and k and ℓ are odd. Conversely, if $n \geqslant 2^{m-2}+1$ then by (16),

$$
\max (k, \ell)>2^{n-1} \geqslant 2^{2^{m-2}},
$$

i.e., (14) holds.

Finally we prove (15). Obviously,

$$
\begin{equation*}
3 \mid 2^{n}+(-1)^{n+1} \tag{17}
\end{equation*}
$$

Hence, $3 \mid F_{m}-2\left(\right.$ taking $\left.n=2^{m}\right)$ and thus $\left(k 2^{n}+1\right)\left(\ell 2^{n}+1\right) \equiv 2 \bmod 3$. This and (17) imply

$$
\begin{equation*}
\left(1+(-1)^{n} k\right)\left(1+(-1)^{n} \ell\right) \equiv 2 \bmod 3 \tag{18}
\end{equation*}
$$

We easily find that $x y \equiv 2 \bmod 3$ if and only if $x \equiv 2 \bmod 3$ and $y \equiv 1 \bmod 3$ or $x \equiv 1 \bmod 3$ and $y \equiv 2 \bmod 3$. From here and (18) we observe that just one of the numbers k and ℓ is divisible by 3 .

Corollary 6. Let the assumptions of Theorem 5 be satisfied and let $3 \mid \ell$. Then

$$
\begin{array}{lll}
k=3 u+1 & \text { for some } u \text { even } \Longleftrightarrow & n \text { is even, } \\
k=3 u+2 & \text { for some } u \text { odd } \Longleftrightarrow & n \text { is odd. } \tag{20}
\end{array}
$$

Proof. As $3 \mid \ell$, we have from (15) that $k=3 u+y, 1 \leqslant y \leqslant 2$ and from (18)

$$
1+(-1)^{n} k \equiv 2 \bmod 3
$$

This yields (19) and (20).
Remark 7. Although the upper bound on n in (10) is too rough, we observe that no n satisfies (10) if $m \leqslant 4$ (which implies that F_{0}, \ldots, F_{4} are primes without carrying out any trial divisions). For the prime factor $641=5 \cdot 2^{7}+1$ of F_{5} we have the equality $n=m+2$. On the other hand, the sharp inequality $n>m+2$ holds e.g. for the factorization of F_{8} into two primes with $n=11$. By (11) and (10)

$$
\min (k, \ell)<\left(2^{n} \min (k, \ell)+1\right) / 2^{n}<\sqrt{F_{m}} / 2^{n}<F_{m-1} / 2^{m+2} .
$$

Moreover, $\min (k, \ell) \geqslant 3$, where the equality is achieved e.g. for prime factors of F_{38} and F_{207} (see [3, p. lxxxviii]). According to (11) and (13), no Fermat number is a square of a natural number.

Theorem 8. Let $n_{1} \leqslant n_{2} \leqslant n_{3}$ and let

$$
\begin{equation*}
F_{m}=\prod_{j=1}^{3}\left(k_{j} 2^{n_{j}}+1\right) \tag{21}
\end{equation*}
$$

where k_{j} are odd. Then $k_{j} \geqslant 3$ for $j=1,2,3$,

$$
\begin{equation*}
m+2 \leqslant n_{1}=n_{2}<n_{3} \tag{22}
\end{equation*}
$$

and either no k_{j} is divisible by 3 or just two k_{j} are divisible by 3.
Moreover, if $k_{1}=k_{2}$ (i.e., if F_{m} is not squarefree) then $n_{3}=n_{1}+1,3 \nmid k_{3}$ and $5 \nmid k_{3}$.

Proof. Obviously $k_{j} \geqslant 3$ and $n_{j} \geqslant m+2$ by Theorem 5. Let us rewrite (21) as a product of two factors

$$
\begin{equation*}
F_{m}=\left(k_{1} 2^{n_{1}}+1\right)\left[\left(k_{2} k_{3} 2^{n_{3}}+k_{2}+k_{3} 2^{n_{3}-n_{2}}\right) 2^{n_{2}}+1\right] \tag{23}
\end{equation*}
$$

The number $k_{2} k_{3} 2^{n_{3}}+k_{2}+k_{3} 2^{n_{3}-n_{2}}$ cannot be even, since then $n_{3}=n_{2}$ and by Theorem 5 we would get $n_{1} \geqslant n_{2}+1$ which contradicts the assumption $n_{1} \leqslant n_{2}$. Therefore, $k_{2} k_{3} 2^{n_{3}}+k_{2}+k_{3} 2^{n_{3}-n_{2}}$ is an odd number and thus $k_{3} 2^{n_{3}-n_{2}}$ is even. This implies that $n_{3}>n_{2}$. By Theorem 5 and (23) we have $n_{1}=n_{2}$.

From (23) and (15) we see that all three k_{j} cannot be divisible by 3 . Suppose now that just one k_{j} is divisible by 3 . Let for instance $3 \nmid k_{1}, 3 \mid k_{2}$ and $3 \nmid k_{3}$. Then $k_{2} k_{3} 2^{n_{3}}+k_{2}+k_{3} 2^{n_{3}-n_{2}}$ is not divisible by 3 which contradicts (15) and (23). In a similar way we get a contradiction for the cases $3 \nmid k_{1}, 3 \nmid k_{2}, 3 \mid k_{3}$, and $3 \mid k_{1}$, $3 \nmid k_{2}, 3 \nmid k_{3}$.

Finally, suppose that $k_{1}=k_{2}$ in (21). Then obviously $3 \nmid k_{3}$ and from (11) and the relation

$$
F_{m}=\left[k_{1}\left(k_{1} 2^{n_{1}-1}+1\right) 2^{n_{1}+1}+1\right]\left(k_{3} 2^{n_{3}}+1\right)
$$

we find that $n_{3}=n_{1}+1$.
Recall that the last digit of $k_{1} 2^{n_{1}}+1$ belongs to the set $\{1,3,7,9\}$, since $5 \nmid F_{m}$ for $m \neq 1$ by (6). Hence,

$$
\left(k_{1} 2^{n_{1}}+1\right)^{2} \bmod 10 \in\{1,9\}
$$

From here, (21) and the trivial fact that $F_{m} \equiv 7 \bmod 10$ for $m>1$, we have $k_{3} 2^{n_{3}}+$ $1 \bmod 10 \in\{3,7\}$ which yields $5 \nmid k_{3}$.

Remark 9. The Fermat number F_{9} is a product of three prime factors $k_{j} 2^{n j}+1$, $j=1,2,3$, cf. (1). According to [7, p. 321], their orders are $n_{1}=n_{2}=11=m+2$ and $n_{3}=16$ and thus by (11), we get

$$
\begin{equation*}
F_{9}=\left(k_{1} 2^{11}+1\right)\left(\ell_{1} 2^{11}+1\right)=\left(k_{2} 2^{11}+1\right)\left(\ell_{2} 2^{11}+1\right)=\left(k_{3} 2^{16}+1\right)\left(\ell_{3} 2^{16}+1\right) \tag{24}
\end{equation*}
$$

for some $\ell_{j} \geqslant 3$ odd. Hence, any factor $\ell 2^{n}+1$ of F_{m} for which $n=m+2$ need not be a prime factor yet. We also see that for given $n \geqslant m+2$ the Diophantine equation (11) with unknowns k and ℓ can have no or one or more solutions. It is also interesting that no k_{j} from (24) is divisible by 3 . This can be directly verified from the explicit expressions of the prime factors of F_{9} (see [7]) and thus $3 \mid \ell_{j}$ for $j=1,2,3$ by (15). According to (22), no Fermat number is a cube of a natural number.

Theorem 10. Let $n_{1} \leqslant n_{2} \leqslant \ldots \leqslant n_{N}, N>1$ and let

$$
\begin{equation*}
F_{m}=\prod_{j=1}^{N}\left(k_{j} 2^{n_{j}}+1\right) \tag{25}
\end{equation*}
$$

where k_{j} are odd. Then $m+2 \leqslant n_{j}, k_{j} \geqslant 3$ for $j=1, \ldots, N$, and the number of factors $k_{j} 2^{n_{j}}+1$, whose order is n_{1}, is even. No two factors from (25) form a twin prime pair.

Proof. We again have by Theorem 5 that $m+2 \leqslant n_{j}$ and $k_{j} \geqslant 3$ for all $j=1, \ldots, N$. For $N<4$ the proof of the first part of Theorem 10 follows from Theorems 5 and 8. So let $N \geqslant 4$. Suppose, on the contrary, that $2 z+1$ (for an integer $z \geqslant 0$) is the number of factors of the lowest order n_{1}, i.e., $n_{2 z+1}<n_{2 z+2}$ if $2 z+1<N$. Then by Lemma 4 we have for $z \geqslant 1$ that

$$
\operatorname{ord}\left(\left(k_{2 i} 2^{n_{1}}+1\right)\left(k_{2 i+1} 2^{n_{1}}+1\right)\right)>n_{1} \quad \text { for any } i=1, \ldots, z
$$

where analogously to [7, p. 321] the operator ord denotes the order from Definition 3 , i.e., $\operatorname{ord}\left(k 2^{n}+1\right)=n$ for k odd. Using Lemma 4 again, we find by induction that

$$
\operatorname{ord}\left(\prod_{j=2}^{2 z+1}\left(k_{j} 2^{n_{1}}+1\right)\right)>n_{1}
$$

and thus also

$$
\begin{equation*}
\operatorname{ord}\left(\prod_{j=2}^{N}\left(k_{j} 2^{n_{j}}+1\right)\right)>n_{1} \tag{26}
\end{equation*}
$$

for $z \geqslant 1$. However, we easily find that (26) holds even if $z \geqslant 0$. This contradicts (25) and (11), as $\operatorname{ord}\left(k_{1} 2^{n_{1}}+1\right)=n_{1}$.

Let $n_{j} \leqslant n_{i}$. Then

$$
\left|\left(k_{i} 2^{n_{i}}+1\right)-\left(k_{j} 2^{n_{j}}+1\right)\right|=\left|\left(k_{i} 2^{n_{i}-n_{j}}-k_{j}\right) 2^{n_{j}}\right| \geqslant 2^{n_{j}} \geqslant 2^{m+2}
$$

whenever $n_{i} \neq n_{j}$ or $k_{i} \neq k_{j}$. From here we see that the product (25) cannot contain a twin prime pair.

Remark 11. The 21-digit factor of F_{11} (see [1]) is of order 14. The other four factors have order 13.

Two prime factors of F_{10} are already known and their orders are 12 and 14 (see [3]). The associated cofactor is known to be composite, i.e., $\Omega_{10}=N \geqslant 4$, cf. (1) and (25). Note that the first prime factor of F_{10} is of the form $k_{1} 2^{n_{1}}+1=11131 \cdot 2^{12}+1$. By Theorem 10 there exists its another prime factor of order $m+2=12, k_{2} 2^{12}+1$, $k_{2} \geqslant 3$ odd, where k_{2} is for the time being unknown. However, by (20) and (11), k_{2} cannot be of the form $k_{2}=3 v+2$, since $n_{2}=12$ is even.

From Theorem 10 we observe that there exist at least four factors of F_{12} of order $m+2=14$, as three of them are already known [3].

Finally note that k_{j} in (25) need not be coprime (cf. (13)). For instance we have $3 \mid k_{j}$ for two factors of F_{11} and $7 \mid k_{j}$ for other its two factors, and $7 \mid k_{j}$ for three of the known factors of F_{12}, etc.

Acknowledgement. This research was supported by grant No. 201/94/1067 of the Grant Agency of the Czech Republic. The authors thank the referee for valuable suggestions and the reference [9].

References

[1] R. P. Brent: Factorization of the eleventh Fermat number. Abstracts Amer. Math. Soc. 10 (1989), 176-177.
[2] R. P. Brent, J. M. Pollard: Factorization of the eight Fermat number. Math. Comp. 36 (1981), 627-630.
[3] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, S. S. Wagstaff: Factorization of $b^{n} \pm 1, b=2,3,5,6,7,10,11,12$ up to high powers. Contemporary Math. vol. 22, Amer. Math. Soc., Providence, 1988.
[4] L. E. Dickson: History of the theory of numbers, vol. I, Divisibility and primality. Carnegie Inst., Washington, 1919.
[5] G. H. Hardy, E. M. Wright: An introduction to the theory of numbers. Clarendon Press, Oxford, 1945.
[6] W. Keller: Factors of Fermat numbers and large primes of the form $k \cdot 2^{n}+1$. II. Preprint Univ. of Hamburg, 1992, 1-40.
[7] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard: The factorization of the ninth Fermat number. Math. Comp. 61 (1993), 319-349.
[8] M. A. Morrison, J. Brillhart: A method of factoring and the factorization of F_{7}. Math. Comp. 29 (1975), 183-205.
[9] N. Robbins: Beginning number theory. W. C. Brown Publishers, 1993.
[10] H. C. Williams: How was F_{6} factored? Math. Comp. 61 (1993), 463-474.
Authors' address: Michal Křž̌ek, Jan Chleboun, Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, CZ-11567 Prague 1, Czech Republic, e-mail: krizek@earn.cvut.cz, chleboun@earn.cvut.cz.

